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Abstract: We provide, for non-experts, a brief overview of holographic QCD and

a review of a recent proposal of matrix-description [1] of multi-baryon systems in

holographic QCD. Based on the matrix model, we derive the baryon interaction

at short distances in multi-flavor holographic QCD. We show that there is a very

universal repulsive core of inter-baryon forces for generic number of flavors. This

is consistent with a recent lattice QCD analysis for Nf = 2, 3 where repulsive core

looks universal. We also provide a comparison of our results with the lattice QCD

and the operator product expansion (OPE) analysis.
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1. M-theory for Nuclear Physics?

What is “M-theory” for nuclear physics? Although the “M-theory”1 stands for a

theory of everything which unifies all string theories [2], one can generalize the use

of the word “M-theory” not only for string theories but also for other subjects in

physics. What is M-theory for nuclear physics, if exists?

This kind of question brings us to a bigger picture of relations between vari-

ous subjects within physics, so it is not of no use. The question, however, sounds

ridiculous, because the answer for it is obvious: The M-theory for nuclear physics

is QCD, or more precisely, the Standard Model of elementary particles. Nucleons,

which are the building blocks of nuclei, are bound states of quarks and gluons in

1M is for mystery, mother, matrix. [2]
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QCD. Supposing that one could solve QCD completely, in principle one should be

able to derive all the properties of nuclei, which is nothing but the nuclear physics.

Therefore, in this sense, QCD is the M-theory for the nuclear physics. However, QCD

is notorious as being difficult to solve, due to its strong coupling nature: the strong

force makes quarks bound to each other. Therefore we need a new tool for solving

QCD to “derive” nuclear physics. Once the new tool is available, we may then say

that we “understand” the real-world nuclear physics phenomena from M-theory.

Since this new tool has been missing for long years in research, apparently we

have a hierarchical structure between studying perturbative QCD, nuclear physics

and hadron physics (see Fig. 1). Standard nuclear physics starts with a quantum

mechanics of multi nucleons, with inter-nucleon potential (nuclear force) given by

experiments, or by hand to match phenomena. The quantum mechanics Lagrangian

becomes

S =

∫
dt

[
A∑
s=1

M

2

(
∂tx

M
(s)(t)

)2 −
∑
s1 6=s2

V [xM(s1) − xM(s2)] + · · ·

]
, (1.1)

where we have A nucleons whose locations are given by xM(s)(t) with s = 1, · · · , A.

The first term is the kinetic term of the nucleons with mass M , while the second

term is the nuclear force. The problem lying in the unification of our concern is the

fact that in nuclear physics the nuclear force V is given by experiments, and not by

fundamental theory, i.e., QCD. In principle, the potential should have been derived

from QCD, as we all know that nucleons and hadrons are made of quarks and gluons

— but it is very difficult.

It is very recent that the nuclear force was calculated from QCD with use of

numerical methods: lattice QCD [3, 4]. The lattice QCD has accomplished a great

success in hadron physics. In particular for hadron spectroscopy and hadron inter-

actions, the lattice QCD is now very close to the physical parameters of QCD, the

real world. Furthermore, there is a progress in this direction toward nuclear physics

itself [5]. Once the lattice QCD comes to deal with a system of multi-baryons, a

part of nuclear physics becomes accessible directly from QCD. A huge number of

quark contractions in large nuclei, which requires almost unrealistically high power

of supercomputers, however, is a big obstacle in this direction. Furthermore, it is of

course more ideal if we can understand physics without relying on the computers.

Unfortunately we have not yet reached that stage. Therefore, we are facing at a

situation where the hadron physics and the nuclear physics are disconnected each

other in a sense, due to a difficulty in solving the strongly coupled QCD.

At this occasion, the new tool using string theory comes into play. The renowned

AdS/CFT correspondence [6, 7] makes it possible to solve a certain limit of QCD-

like gauge theories, and it offers a certain direct path from QCD to nuclear physics.

If one can derive an action like (1.1) from QCD, it can be regarded as an effective

theory for nuclear physics derived from M-theory.
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Figure 1: A conceptual merit of the AdS/CFT correspondence, for a possible bridge

between elementary particle physics, hadron physics and nuclear physics.

In this paper, we review the recent progress along this direction as an application

of the AdS/CFT correspondence. In [1], two of the present authors (K.H. and N.I.),

together with Piljin Yi, derived an action of a multi-baryon system, by using the

AdS/CFT correspondence applied to large Nc QCD. The action indeed has the form

of (1.1), and it serves as a candidate for the bridge between QCD and nuclear physics.

As it was derived from the large Nc QCD, the action is written only with two free

parameters: the QCD scale and the QCD coupling. Therefore we can make a check

of the derived theory by just calculating various observables in nuclear physics with

this action and compare those with experiments, to test the validity of the action, up

to the approximations of the large Nc and the strong coupling expansion. Explicitly

demonstrated in the literature are:

(i) Baryon spectroscopy [1]

(ii) Universal repulsive core of nucleons [1]

(iii) Three-body nuclear forces [8]

(iv) Spin statistics of baryons [9]

(v) Formation of atomic nuclei [10]

In all of these calculations, the results are qualitatively reasonable compared to

the experiments2. As we will describe in this paper, there are a lot more physical

2Within the same framework, using the flavor brane action, it has been reported that a wider

class of results are compatible with experiments: baryon spectrum was originally derived in [11],

and charge radii of baryons [12], suppression of multi-nucleon forces [13], baryon spectra with three

flavors [14], etc. The repulsive core has been calculated in the same manner [15]. See also some

alternative approach given in [16].
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observables which can be calculated in the framework.

The first aim of this paper is to give a review of the effective action for the

multi-baryon system [1], for non-experts of holographic methods. The second aim is

to show a new result on the short-distance force between baryons with multi flavors

where the number of flavors Nf is Nf > 2.

This paper is organized as follows. The first part of this paper is mainly a review.

In section 2, we give a brief review of the status of holographic QCD, explaining

the difference between the holographic QCD and real QCD, to emphasize what are

remaining problems in holographic QCD. Then in section 3, we shall explain the

nuclear physics action derived in AdS/CFT correspondence, with emphasis on its

properties, new insights and connection to nuclear physics, for non-experts.

The second part of this paper consists of new results. In section 4, we calculate

the short distance inter-baryon forces for the case of multi-flavors (the number of

flavors larger than 2). We shall see that the repulsive core remains even for generic

number of flavors, thus find a universal repulsive core. The result is consistent with

recent lattice results with Nf = 3 where in most of the channels there appears

an inter-baryon repulsive potential. Therefore our result would also serve as another

nontrivial consistency check. This part of the paper includes technical details. Read-

ers who know holographic QCD and the matrix model approach of [1] can start with

section 4 as it is written independently of section 2 and 3. In the last section 5, we

provide a review of the recent lattice results for multi-flavors and also the operator

product expansion (OPE), as a comparison to our holographic results.

2. Universal Problems in Holographic QCD

For readers who are not familiar with the subject of the holographic QCD (the

AdS/CFT correspondence applied to QCD),3 here in this section, we summarize

important problems which are to be addressed in the holographic QCD. In particular,

we make a stress on what are assumptions and what are ignored in holographic QCD.

This would make clear an importance and a validity of the AdS/CFT matrix model

approach to multi-baryon system and nuclear physics, which we shall review in the

next section.

2.1 How holographic QCD is different from QCD

The holographic QCD is different from the real QCD. The holographic QCD, how-

ever, is very important setting as it provides us with a non-perturbative and analytic

3In this article, and in most of articles in this field, the word “AdS/CFT” is equivalent to the

word “gauge/gravity” or “holography” in use. We say “bulk” for gravity or string side calculation

and “boundary” for the gauge theory side calculations.
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method to systematically study the strong coupling nature of gauge theories includ-

ing QCD-like gauge theories. Therefore we first need to know why it is difficult to

directly apply the holography method to the real QCD.4

2.1.1 Forced large Nc and λ limits

The AdS/CFT correspondence in string theory is a conjecture on the equivalence

between a non-gravitational gauge theory and a string theory in asymptotically AdS

background. Note that the duality is not between gauge theory and gravity, but

rather string theory. Only when large Nc and large λ (which is a ’t Hooft coupling

of the gauge theory) are taken, the sting theory side can be approximated by a

gravity theory with background geometries of weakly curved spacetime. Low energy

excitations of the string, such as gravitons, are light, while the long string itself

becomes very heavy. This is almost an unique universal situation where one can

describe low energy physics concretely in string theory as gravitational theory. Due

to the technical difficulty of solving string theory in generically curved background,

in many situation where we apply the holography to theories like QCD, the two

limits, large Nc and large λ, are forced so that we can approximate string theory as

a gravity theory.

It is this approximation which makes us face several difficulty in the comparison

between the holographic QCD and realistic QCD or nuclear phenomena. According

to old string models, hadrons with higher spins are stringy excitations. Holographic

QCD follows and generalizes the old string models based on QCD strings. In the

AdS/CFT correspondence, the tension of the strings in the gravity side is O(λ),

so the stringy excitations become extremely heavy, and resultantly, the higher spin

modes are parametrically heavy and decouple from the gravity excitations. This is

the reason why in large λ, string theory is approximated as a gravitational theory. If

we take λ to infinity, however, the highest spin excitation of the system be graviton,

which has spin 2, and all the stringy modes whose spin are bigger than 2 be infinitely

heavy. On the other hand, in nuclear physics, there are many hadronic excitations

whose spin are bigger than 2 and all of these higher spin hadronic excitations have

the same order mass scale compared with lower spin excitations. Therefore, in holo-

graphic QCD within the gravitational approximation, we should keep in our mind

that there could be a contradiction for a comparison with data caused by the missing

degrees of freedom whose spin are bigger than 2.

4Here keep in mind that we are talking about top-down approach of holography from string

theory. Any bottom-up approach, to write down higher-dimensional gravity models as phenomeno-

logical models for QCD, does not have clear understanding on which gauge theory is dual to those

bottom-up gravity models. Therefore, to be precise, we discuss top-down model only in the frame-

work derived in string theory in this paper. Bottom-up models are criticized only through their

comparison to real QCD data, while top-down models can be more concrete in criticisms as they

are directly related to QCD through string theory or D-brane construction.
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One may then wonder why we do not directly try to solve string theory in asymp-

totically AdS background, instead of using the gravity approximation. A problem

is that a precise treatment of the fundamental strings in the curved geometry, i.e.

the quantization of the string, is still missing in any formulations of string theory.

We miss a fundamental tool to analyze the string side. This waits for a further

development of methods to quantize strings in curved geometries.5

In addition, we have Nc = 3 in realistic QCD, while any quantities are computed

at the leading order of the 1/Nc expansion around Nc =∞ in holographic QCD. So,

in comparison to experiments, we expect, at least, 33% or more errors generically due

to the large Nc approximation. At present, computations of the sub-leading 1/Nc

corrections, which correspond to that of string loop corrections in the gravity side,

are technically difficult. These all imply that the holography methods are better

applied to reveal some robust features of QCD, which are independent on the values

of Nc, not to make a comparison to precision measurements.

We might wonder under what circumstance physical quantities could be more

insensitive to Nc. In the confining phase of QCD, as the color degrees of freedom

are confined, we cannot directly observe the number of colors. We therefore naively

might expect that physics might be independent on the values of Nc. On the other

hand, physics in the deconfining phase would suffer more defects from the large Nc

limit. Interestingly, however, there are many successful examples of the calculations

in the deconfining phase for the shear viscosity [18], quark energy loss [19] etc in

the quark gluon plasma phase compared with the experiments at RHIC and LHC.

At this moment, we do not have a clear picture under what situation the large Nc

approximation are justified6.

2.1.2 Lack of the asymptotic freedom leading to multiple parameters

QCD is specified by a peculiar energy scale ΛQCD as a result of the running coupling

constant and the asymptotic freedom. In particular for the massless QCD, it has only

this scale in the theory and there is no other parameter. In contrast to this, the scale

in the holographic QCD is introduced into the system by hand as an input. In the

holographic QCD, the operators which break the conformal invariance is introduced

5One major progress along this line would be a correspondence between vector models and

higher-spin gauge theories [17], as an explicit toy model of the AdS/CFT correspondence in the

λ→ 0 limit.
6There are several good examples which work beyond the large Nc and large λ limit in the

holographic setting. One of the examples is the Wilson loop, which is nothing but a heavy string

trajectory, where we can calculate, by using the localization technique, large Nc but any values of λ

calculation and can see a precise matching between string side and gauge theory side. In addition,

in the holographic QCD setting, there is an attempt even in the large λ limit to take into account

the degrees of freedom corresponding to the massive open strings whose spins are bigger than 2,

and quantize these massive stringy excitation in the weakly curved geometry [20]. This also gives

a qualitatively very good comparison with the experimental data.
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at some scale Λcutoff , so that the coupling constant in the theory becomes scale

dependent (the running coupling).

This leads us to a strange situation where we have two scales in holographic

system: One is the scale Λcutoff we introduced, and the other is the ΛQCD. This

ΛQCD is an emergent scale in the low energy physics where hadron physics emerges.

This ΛQCD is determined as a function of two input parameters, Λcutoff and ’t Hooft

coupling constant λ = gsNc (where gs is a string theory coupling constant). In

principle, if one can take the double-scaling limit at which the ΛQCD is fixed while

the holographic scale Λcutoff (at which typically particle fields which do not exist in

QCD appear) is taken to infinity, by fine-tuning λ, then the above problem would

be resolved.

This, however, is not an easy task: In order to make the gauge theory cou-

pling constant at the scale Λcutoff to be weak, the corresponding geometry in the

holographic side becomes highly curved that the supergravity description is no more

reliable. As mentioned in the previous section, however, it is technically difficult to

go beyond large Nc and λ. As a result, the difficulty of taking the double scaling

limit remains in any holographic QCD models in the top-down approach.

Of course, one can say that the number of the parameters, two given by Λcutoff

and λ, is significantly small, and it is good enough to have nontrivial check and

predictions in QCD, compared to many other phenomenological models.

It is noted that the coupling constant in the gauge theory becomes strong again

beyond Λcutoff due to supersymmetric particles which appear above Λcutoff
7. This

property is completely different from the ordinary QCD, where the coupling constant

becomes smaller and smaller at higher and higher energy (the asymptotic freedom).

2.2 Popular holographic models and their problems

Next we shall look at popular holographic models which are widely used for various

purposes, in particular from the viewpoints of their strong points and limitations.

We make emphasis on the point that, depending on physical quantities of interest,

one can choose a holographic model among many. We here briefly review five models

popularly used in the top-down approach of the holographic QCD.

• Supersymmetric D3-brane model (Asymptotic AdS5)

The gauge-theory counterpart of this model is N = 4 supersymmetric Yang-

Mills theory. This theory is highly supersymmetric and so is far from the

realistic QCD. However, to see robust results of deconfined gluons in high

temperature, where we expect the effect of supersymmetry is not crucial, the

theory would be sometimes good enough to extract typical pehnomena of strong

7On the other hand, the ΛQCD is seen in gravity side as an IR cut-off of the geometry and no

geometry exists below that IR cut-off scale (radius).
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coupling gauge theories. The most successful result which came out of this is

the computation of shear viscosity of quark gluon plasma in high temperature

phase of QCD [18]. Although the computation has employed only a geometry

representing a finite temperature phase of the N = 4 supersymmetric gauge

theory, the result is close to the experimental observation.

It is difficult to argue why this model works so well. In terms of the large Nc

expansion, reasons why the 1/Nc corrections do not contribute and why they

do not modify qualitative nature are still missing. In addition, there are many

fields in the supersymmetric theory which are absent in QCD. An issue of the

universality of the value of the shear viscosity is still to be settled. Nevertheless,

other physical quantities have been calculated so far and results give insightful

suggestion for heavy ion experiments.

• D3D7 model

Introducing D7-branes as flavor D-branes [21] makes it possible to include su-

persymmetric quark fields (hyper multiplets in fundamental representation) in

above D3-brane model. This make it possible to calculate the quark energy

loss in quark gluon plasma and drug forces [19].

One can also discuss U(1) part of chiral symmetry breaking in this D3D7 setting

[22]. The position of flavor D7-brane represents the symmetry in the Yang-Mills

theory on D3-branes. If the position of flavor D7-brane are symmetric, we have

that symmetry in Yang-Mills theory, however if not, we have corresponding

symmetry breaking. By embedding the U(1) part of chiral symmetry as a

geometrical rotational symmetry in D3-brane-setting, we can discuss how this

rotational symmetry is spontaneously broken from the position of D7-brane

at low temperature, and restored at high temperature. The position of D7-

branes is determined in order to minimize the free energy of the system. See

for example, Fig. 6.2 and Fig. 6.6 of [23].

• Witten’s non-supersymmetric model [24]

The corresponding geometry is called Gibbons-Maeda geometry [25], and cor-

responds to a 1+3-dimensional pure bosonic Yang-Mills theory (i.e. the the-

ory of gluons) at low energy without supersymmetry. The geometry is made

of Nc D4-branes wrapping a circle. This circle compactification brings the

1+4-dimensional theory down to the 1+3-dimensional Yang-Mills theory. It

breaks the supersymmetry by imposing anti-periodic boundary conditions for

fermions, and at low energy all fermions are massive and only massless gluons

survive. Adjoint scalars obtain masses through quantum corrections which are

roughly of order of the scale defined by the radius of the circle.
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This geometry captures important gauge-theory property: the confinement.

In fact, using the bulk equations of motion from the gravity side, one can

demonstrate as [24] that the fluctuation spectrum corresponding to the glueball

spectra is discrete and mass-gapped, and that the calculated wilson loop shows

the area low. Furthermore, above a critical temperature a phase transition

occurs and is interpreted as a confinement-deconfinement transition since the

spectrum becomes continuous at the high temperature phase.

There is one caveat here: the phase transition scale is nothing but the scale

of the extra circle on which D4-branes wrapping, as it is the unique dimen-

sionful physical parameter. So naively speaking, the higher-dimension cutoff

scale is re-interpreted as the scale of the gluon theory. The excitation of the

massive gluinos and adjoint scalars and their superpartners should come into

the spectrum above the scale, therefore the theory be no more purely bosonic

Yang-Mills theory. If one naively ignore those and regard the gravity fluctu-

ation as the glueball spectrum made solely of the gluons above this scale, we

might get some mismatches for the spectrum comparison.

Therefore the intrinsic problem of this geometry interpreted as a dual of the

pure Yang-Mills theory is the double meaning of the dynamical scale and the

compactification scale. In order to remove additional degrees of freedom, we

have to take the double scaling limit; We keep ΛQCD fixed and at the same

time, take the scale, associated with the D4-brane wrapping circle, to infinity.

Any proper scaling limit where the dynamical scale is fixed while the compact-

ification scale is taken to infinity, has not been formulated yet.

• D4D6 model [26]

In the Witten’s geometry, flavor D6-branes can be added to include quarks in

the theory. The string connecting the Nc D4-branes and the Nf D6-branes

give a low energy excitation which behaves like a quark. In the gravity de-

scription, the shape of the D6-branes is deformed and it can be interpreted as

a spontaneous breaking of the (anomalous) U(1) axial symmetry. The model

can include various quark masses, so in particular quark mass dependences of

various low energy quantities can be studied.

• D4D8 model (Sakai-Sugimoto model) [27]

This theory adds flavor D8-branes in the Witten’s geometry. One of the supe-

rior point of this model compared with others is that by adding D8-branes, one

can obtain only left-chirality fermions at the intersection points between D4

and D8-branes. On the other hand, by adding anti-D8-brane, one can obtain

only right-chirality fermions at the intersection points between D4 and anti-D8

branes. This implies that by adding Nf number of both D8 and anti-D8-branes,

– 9 –



Figure 2: A schematic picture of two phases in the gravity dual of the bosonic pure Yang-

Mills theory. On the geometry specified by the surface of the cylinder, flavor D8-branes

(red lines) are put. The vertical direction in the figure is a holographic dimension, while

the circular direction is for the compact circle which brings the 1+4-dimensional theory

down to the 1+3-dimensional pure Yang-Mills theory. The left figure shows a geometry

corresponding to a confining phase, while the right one is that for a deconfined geome-

try. (Left) The geometry consistently truncated at a certain place along the holographic

direction corresponding to ΛQCD, and the D8-brane and the anti-D8-brane are connected

due to the geometry, which shows the spontaneous chiral symmetry breaking. (Right)

The geometry ends with a horizon of a black hole (shaded region). The D8-brane and the

anti-D8-brane are independent, which is a chiral symmetry restoration.

we can have both left and right chiral fermions (quarks) in the system with ex-

plicit dependence on the chiral symmetry U(Nf )L × U(Nf )R, which are very

close to the realistic QCD.

Similar to the D3D7 system, the chiral symmetry U(Nf )L × U(Nf )R is seen

from the position of flavor D8 and anti-D8-branes. Due to the warped factor

of Gibbons-Maeda geometry, one can demonstrate that the free energy at low

temperature is lower if both Nf D8-branes and Nf anti-D8-brane are combined

into Nf 8-branes. See the left figure of Fig. 2. In high temperature, these com-

bined effects of D8 and anti-D8 are hidden behind the horizon (right figure of

Fig. 2), and we have chiral symmetry restoration, which can be seen geometri-

cally. In this way, this model shows the spontaneous chiral symmetry breaking

at low temperature and its restoration at high temperature in a geometrical

way.

Except for the point that the quark mass is difficult to be introduced8 due to the

non-supersymmetric nature and the existence of chiral matter, this holographic

8See [28] for a possible way to introduce the quark masses to the model.
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model is the most successful model in view of the study for the low energy

hadron physics. In addition to the meson spectrum and interactions, baryon

spectrum and its chiral dynamics can be systematically studied.

This model again suffers from the same problem as the Witten’s geometry has:

the unnecessary modes, such as squarks in addition to the gluinos, exist in the

theory at high energy scale9. So we tentatively ignore modes which are expected

to be absent in QCD, to compare the holographic results with experiments.

In summary, in all holographic models popularly known, there remains a problem

of having fields which are absent in real QCD above some scale of the theory. And

relatedly, the low energy scale of the theory which one would like to interpret as the

QCD scale is shared with the scale where the unnecessary fields show up.

Naively, at very low energy, the effects of these unnecessary fields would be small,

so the prediction from holography should be better at the low energy. This simple

fact would motivate us strongly to visit nuclear physics. Nuclear physics treats

nuclei: bound states of nucleons at the energy scale much lower than the QCD scale.

However in order to make the comparison with data more presice, we have to take

the double scaling limit in holographic QCD, where we take the scale, beyond which

unnecessary fields be dynamical, to infinity while keeping the QCD scale fixed.

Due to the reasons explained in section 1, nuclear physics includes a lot to be

explained by QCD. Standard nuclear physics has many assumptions, and the origins

of those fundamental assumptions may be explained directly from QCD, once we

apply the holographic methods to QCD.

3. Review : M(atrix) Description of Multi-Baryon System

The upshot of the theory [1] for the multi-baryon system, derived in AdS/CFT, is

that it is a theory of matrix degrees of freedom, with the following robust form of

the action:

S =
M

2

∫
dt tr

[(
∂tX

M(t)
)2 − g[XM , XN ]2 + · · ·

]
(3.1)

Let us clarify the relation between (3.1) and the nuclear physics action (1.1). The

matrix XM is a hermitian A× A matrix, where A is the number of baryons (which

resultantly becomes the mass number of a nucleus if all the baryons are bounded

together as a big nucleus). Once it is diagonalized, the eigenvalues are nothing but

the locations of the baryons which are given by xM(s) (for s = 1, · · · , A) in the nuclear

physics action (1.1). There are off-diagonal entries in XM , which we interpret the

degrees of freedom associated with the nuclear force mediator (such as pion, massive

9Here holographic scale, which is determined by the scale on which D4-branes are wrapping,

gives the scale beyond which these additional “junk” are excited.
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Baryon is heavy at large Nc  

Baryon = D-brane 

Multiple D-branes 
described by matrix 

Nucleus is a matrix 

Figure 3: Derivation of the matrix description of nuclear physics.

vector mesons etc). Classically integrating those degrees of freedom in the action

gives rise to the interaction between the eigenvalues of XM . For the detail of nuclear

force derivations, see section 4 of [1]. This interaction is interpreted as the inter-

nucleon potential (nuclear force). The terms which are not written in the action

(3.1) (specified as “+ · · · ”) are fields representing spins and isospins (flavor degrees

of freedom of the baryons). Again, the precise form of the action is given in [1] and

presented in (4.1).

In this section, we provide a review of the matrix formulation of the multi-baryon

system in simple terms. First, we shall explain below the reason why we have the

matrix degrees of freedom for the baryons in AdS/CFT, and the origin of the action

written above. Then we come to a review of the concrete analysis for a single baryon

system to obtain the baryon spectrum, and also a review of two and three baryon

systems for deriving the short distance nuclear force. These were done in the original

paper [1]. Then in the final part of this section, we review the importance of the

matrix model action (3.1) for providing a possible unified view of nuclear physics.

3.1 Baryons are matrices

As we outlined above, the most important and novel part of the new description of

the multi-baryon system (3.1) is the fact that baryons are described by A×A matrices.

In fact, this is a robust result once one applies the AdS/CFT correspondence to QCD

for the multi-baryon system.

There are two key points to derive this fact, which are shown in Fig. 3.

• A baryon is a D-brane.

In AdS/CFT correspondence, we need a large Nc expansion to use the dual

gravity description. For large Nc QCD, baryons are heavy object whose mass
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is of order of O(Nc), since a single baryon consists of Nc quarks. In the gravity

side of the AdS/CFT, what is the object whose mass is so large? The answer

is D-branes. D-branes are solitonic objects in string theory, whose mass are

order of O(Nc). Therefore the baryons are expected to correspond to the D-

branes in the gravity side of the AdS/CFT correspondence. In fact, baryons

are D-branes, and technically speaking, these baryon D-branes are wrapping

on the closed surface like higher dimensional sphere on which string theoretic

RR flux is penetrating. Through the D-brane action, the wrapped D-branes on

some closed surface with penetrating flux induces Nc unit of U(1) charges on

that closed surface. On the closed surface, total charges must be zero to satisfy

Gauss’s law. This implies that we need to add compensating charged objects

on that surface, which turns out to be Nc number of fundamental strings [29].

Therefore these D-branes behaves as baryons.

• Multi-D-branes are matrices.

D-branes are defined as surfaces on which open strings can end. When D-branes

are on top of each other, fundamental and anti-fundamental strings connecting

between those D-branes can be arbitrarily short, and can be massless. The

low-energy excitation of those light modes are classified by an A × A matrix

when A is the number of the D-branes, since each open string has two ends

labeled as (a, b) where a, b = 1, · · · , A. Therefore the low energy degrees of

freedom on the coincident A D-branes are A× A matrices.

Combining these two, we arrive at the inevitable conclusion that nuclei (or the

multi-baryon system) in the AdS/CFT correspondence should be described by ma-

trices.

Furthermore, the effective action of D-branes has the universal form of (3.1).

The interpretation is definite: the eigenvalues of the field X are location of the A

number of D-branes. Therefore, we come to a conjecture that the effective action

(3.1) describes nuclear physics.

One of the most important properties of nuclei is its crucial dependence on

isospins. Nuclear force strongly depends on whether the nucleon is a proton or a

neutron. Consequently, we have a nuclear chart and stable/unstable nuclei. How

the isospin dependence can come in in this formulation? The answer is quite simple:

another matrix w which is an A×Nf complex matrix joins the effective action. The

isospins are nothing but the quark flavor degrees of freedom, and Nf is the number

of the quark flavors.

Fig. 4 clarifies why this new matrix shows up in the gravity side of the AdS/CFT

correspondence. As we reviewed in the previous section, the flavor can be represented

by an introduction of “flavor D-branes” into the gravity geometry. Then, in addition

to the baryon D-branes, we have the flavor D-branes, so there appears an open string
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Gravity side of AdS/CFT 

Nf flavor D-branes 
Curved 

geometry A x A matrix “X(t)” 
    Eigenvalues  
       = Baryon location

A x Nf matrix “w(t)” 
      Spin / Isospin

Figure 4: The appearance of two kinds of matrices X and w. X connects baryon D-branes

(depicted as two black blobs), while w connects a baryon D-brane and a flavor D-brane

(depicted as three parallel sheets). w obtains nonzero VEV to satisfy the Gauss’s law on

each baryon D-brane, which is equivalent to Nc open strings.

which connects the two kinds of D-branes. This string should be described by A×Nf

matrices, as in the same manner as the A × A matrix X for the string among the

baryon D-branes.

Although the species of the fields appearing in the low energy of the multi-

baryon system in the AdS/CFT are just X and w, the precise interaction between

these fields, and also the coefficients in the effective action, depends on what kind of

D-brane configurations (holographic models) we use for the large Nc QCD. When we

use the most popular D4D8 model (Sakai-Sugimoto model) described in section 2.2,

the baryon D-branes are D4-branes wrapping S4, and the flavor D-branes are D8-

branes wrapping S4. This means that the baryon D4-branes can be located inside the

flavor D8-branes. The Dp-D(p+ 4) system in superstring theory is well-understood,

as a geometric realization of the instanton construction: the Dp-brane can be seen

as a Yang-Mills instanton through the gauge fields on the D(p + 4)-brane, where

the dynamics of the Dp-brane can be determined by a so-called ADHM matrices

used for the instanton construction [30, 31]. Therefore, within the D4D8 holographic

model, our low energy effective action for the multi-baryon system is nothing but a

generalization of the ADHM matrix models.

The matrix effective action is concretely written in (4.1) for D4D8 model, but in
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this review part we don’t need the explicit form, as we explain only the conceptual

part to show the robustness of the derivation. Furthermore, it is straightforward to

construct explicit forms for the matrix effective action for another D-brane models

described in subsection 2.2. However for concreteness, in this paper we concentrate

on the model constructed for D4D8 model in [1].

Next, we give a review of a single baryon spectrum (A = 1), and also a derivation

of the short distance nuclear force (A = 2, 3). The important fact for the application

is that the matrix action has only two free parameters:

3.2 Derived baryon spectrum

The simplest case is A = 1 where we have only a single baryon. In this case, the

quantum mechanics should give the baryon spectrum. Excited states of a baryon

emerges from the quantum mechanics.

Let us recall the Skyrme model [32, 33]. In the Skyrme model, a baryon appears

as a soliton of the Skyrme model which is nothing but a peculiar effective action

of low energy pions. Any soliton has fluctuation modes, massive or massless (zero

modes). The fluctuation modes, which are just a function of time, obey a hamilto-

nian, and they can be quantized. The resulting quantized fluctuation spectrum is

interpreted in the Skyrme model as the baryon spectrum. Here in the AdS/CFT ma-

trix model approach, the hamiltonian of the fluctuation modes are directly given as

our matrix model hamiltonian (3.1). So, one easy interpretation of the matrix model

is a moduli hamiltonian of generalized Skyrmions. However very small number of

parameters (only two parameters) in our holographic setting gives the superiority of

our construction compared with generic Skyrme model which have many parameters.

For A = 1, the matrix model becomes extremely simple. The hamiltonian for

two flavors (Nf = 2) looks [1]

H =
λNcMKK

54π

[(
27π

λMKK

)2
1

2ρ2
+

1

3
M2

KKρ
2 +

2

3
M2

KK(X4)2

]
, (3.2)

where

wiα̇ = ρ(t)U i
α̇(t). (3.3)

Here ρ(t) and X4(t) are scalar degrees of freedom, and U(t) is a 2×2 unitary matrix

degree of freedom. ρ(t) represents dissolved size of the D-brane (which is roughly the

size of the baryons), and X4(t) is a displacement of the D-brane along the holographic

direction. The matrix U is nothing but the moduli degrees of freedom appearing in

the Skyrme model, and its quantization gives higher spins and isospins.

These three modes provides almost-independent harmonic oscillators, and the

quantization results in the following spectra:

M = M0 +
MKK√

6

[√
(I/2 + 1)2 +N2

c + 2nρ + 2nX4 + 2
]
. (3.4)
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X4

X1, X2, X3

Baryon D-brane

Flavor D-brane

size !

Figure 5: A schematic picture of the baryon D-brane on the flavor D-brane. The harmonic

oscillator excitation on the baryon D-brane is the size fluctuation ρ and the fluctuation of

the D-brane location along the holographic direction X4. The horizontal direction is our

space x1, x2, x3.

Here I is the isospin which is equal to the spin in the present case, and nρ (nX4) is

a non-negative integer coming from the harmonic oscillator ρ(t) (X4(t)).

The baryon spectrum (3.4), as well as its calculation from the quantum hamilto-

nian, is quite close to what has been obtained in the soliton quantization approach

in the Sakai-Sugimoto model [11].

We again would like to stress that the result is qualitatively robust in the

AdS/CFT approach: because the baryon in the gravity dual should be represented

by X and w strings, the spectrum should be given by its low energy quantization.

So we are inevitably led to the quantum number nX4 which is the oscillation of the

D-brane along the holographic directions, and also the quantum number nρ which

is the fluctuation of the magnitude of the string connecting the baryon D-brane and

the flavor D-brane, and also the spin operator U which is the internal orientation of

the same string. The coefficients appearing in the mass spectrum formula may differ

among holographic models, but its structure should be shared in all the holographic

models.

3.3 Universal repulsive core of nucleons

Once the baryon state can be identified within the matrix model degrees of freedom,

it is straightforward to calculate the inter-baryon potential. Since the short-distance

behavior of the nuclear force is one of the most important problems in nuclear physics,

to derive it analytically is a very important issue. As we have the matrix model action
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for A = 2 at hand, whether it reproduces the empirically-known repulsive core of

nucleons would be a good touchstone for the validity of the matrix model approach.

Since the matrix model action (3.1) is explicitly given for A = 2, we just need

to: first derive the off-diagonal term classically by solving ADHM constraints10 for

a given set of two diagonal entries which defines the locations and the spin/isospins

of the two baryons, and then substitute all back into the hamiltonian to derive the

inter-baryon potential energy.

The calculation is straightforward and was given in [1]. The result for the inter-

nucleon potential is as follows:11

Vcentral(r) =
πNc

λMKK

(
27

2
+ 8~I1 · ~I2

~J1 · ~J2

)
1

r2
, (3.5)

Vtensor(r) =
2πNc

λMKK

~I1 · ~I2
1

r2
. (3.6)

This short-distance potential is positive for any choice of the spins and the isospins,

therefore we conclude for Nf = 2 case, there are universal repulsive cores for the

nuclear forces at short distance. This repulsive core behaves as 1/r2, showing very

strong repulsive core at r → 0 limit. We concluded that qualitatively the matrix

model approach for multi-baryon system is consistent with experiments, in this sense.

Whether the repulsive core behaves as 1/r2 or not should be tested in future.

The three-body nuclear force can be evaluated in the same manner. The short

distance contribution to the intrinsic three-body force, which does not come from

the effective integration of massive states (for example the famous Fujita-Miyazawa

force [34]), is important as it cannot be evaluated using chiral perturbations. Using

the matrix model approach, one can straightforwardly evaluate the three-body in-

teraction. It was shown in [8] that the proton-proton-neutron aligned on a line gives

a positive three-body potential, and that a spin-averaged three-neutron aligned on

a line is positive too. These are consistent with experiments12. In particular, the

latter is relevant for neutron stars as it has a dense neutron system, and the effective

repulsion would give a hard equation of state which is a good tendency for a recent

observation of heavy neutron stars.

3.4 Toward a description of atomic nuclei

As we have the effective action (3.1) of the multi-baryon system, in principle, atomic

nuclei and their properties, i.e. the nuclear physics, should emerge from the action.

The action (3.1) has only two parameters, so once one can solve the effective action

10For detail, see section 4.1.2. of [1].
11Using the soliton approach in the holographic D4D8 model, the short distance nuclear force

was calculated [15]. The result is qualitatively similar to the result of the matrix model.
12See also the recent attempt in lattice QCD [35].
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Figure 6: A plot of a nuclear density inside the nucleus, calculated in AdS/CFT [10].

completely in a quantum mechanical fashion, one can compare the results with ex-

periments in principle. Whether this action provides us with an efficient and good

description of atomic nuclei is a very important question, as the AdS/CFT connects

directly the nuclear physics and QCD.

In particular, properties of heavy nuclei are yet to be uncovered, and they are far

from QCD. The aim of the holographic approach is to uncover the relation between

the nuclear physics and QCD directly, to make clear how observables in nuclear

physics may depend on quantities defined in QCD. One of the important targets

in nuclear physics in this sense is the nuclear radius. It has been known for many

decades that stable nuclei are subject to a relation

r ∼ 1.2× A1/3 [fm] (3.7)

where A is the mass number (the number of baryons) of the nucleus. This has

been explained as a result of the nuclear density saturation: the nucleon density

inside nuclei is almost constant and takes a universal value, so the nuclear radius is

proportional to A1/3.

The repulsive core of nucleons is thought to be a component to explain the A

dependence of the nuclear radius in nuclear physics. If a nucleon can be regarded as

a hard ball which is almost equivalent to the repulsive core, the total nucleus should

have a volume proportional to A, therefore the A dependence follows. Since in the

holographic QCD approach the repulsive core was reproduced as explained in the

previous subsection, this nuclear radius would be a natural consequence.

In [10], one of the authors (K.H.) together with T. Morita demonstrated that

indeed the above (3.7) is reproduced from the quantum mechanical matrix action

(3.1), with a certain approximation employed. The result obtained in [10] is an

analytic formula for the nuclear radius,

√
r2

mean =
35/2π2/3

25/651/6

1

MKKλ2/3N
1/3
c

A1/3. (3.8)

A nontrivial point is that the formula has the correct A1/3 dependence.
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The approximation used for deriving (3.8) is: a large A limit with quenching

(ignoring the w degrees of freedom), and a large dimension limit (which is almost

equivalent to a mean field limit), in addition to the standard limits taken in holo-

graphic QCD, such as the large Nc limit and the strong coupling limit λ � 1.

Whether these approximations are appropriate or not should be studied in the fu-

ture study. However, the message here is that we now have a good starting point

(3.1) for calculating various quantities in nuclear physics from QCD.

It would be possible that the action (3.1) itself may be modified to include higher

order terms, or that one needs to apply different approximations to (3.1) to correctly

derive physical observables from (3.1). Especially higher order terms are crucial when

we consider the effect of large A limit. The original action (3.1) is derived at the limit

where baryon D-branes are at the bottom of the warped geometry, see Fig. 5. As the

size be bigger, we need to consider the effect of curved geometry more precisely and

this gives the higher derivative corrections to the action (3.1)13. All of those efforts

can be a good bridge between QCD and nuclear physics.

4. Multi-Flavor Nuclear Forces Via Holography

4.1 Strangeness and holography

QCD at high density is a final frontier, which is still remains to be unveiled. It is ex-

pected that at the core of neutron stars, high density matter would be supplemented

with strange quarks, in order to relax the Fermi energy of the ordinary two-flavor

matter of neutrons and protons. To judge whether the strangeness really kicks in to

the high density core of the neutron stars, we need to know inter-baryon interaction

with multi-flavors. It has been known experimentally for many decades that nucle-

ons are accompanied with repulsive cores, the short distance repulsion. To reveal

whether there exists the repulsive core even for baryons including strange quark(s)

is an indispensable cornerstone to reach the truth in the high density QCD.

The inter-baryon potential is a non-perturbative regime of QCD, even at the

short distances of concern. Thus we need to rely on analytic method to solve the

QCD approximately. In this section, we shall extend the analysis [1] to the case of

multiple flavors Nf > 2, to find the short distance properties of the inter-baryon

potential.

Another non-perturbative framework of QCD, lattice simulations, recently un-

covered interesting features of the short-distance inter-baryon potential for the case

of three flavors. It was demonstrated [37, 38] that indeed there remains a repulsive

13In addition, one may take a gravity dual of the matrix model under a certain assumption (such

that A is large and also that the inter-nucleon distance is small) to investigate giant resonances in

nuclei [36].

– 19 –



field index U(k) SU(Nf ) SU(2)× SU(2)

XM(t) M = 1, 2, 3, 4 adj. 1 (2,2)

wα̇i(t) α̇ = 1, 2; i = 1, · · · , Nf k Nf (1,2)

A0(t) adj. 1 (1,1)

Ds(t) s = 1, 2, 3 adj. 1 (1,3)

Figure 7: Fields in the nuclear matrix model.

core, so the repulsion is universal. 14 In this section, we find that the holographic

QCD shows the universal repulsive core for generic states in multi flavors.

4.2 The effective model of multi-baryon system

To extract the non-perturbative potential among baryons at short distances, the

nuclear matrix model [1] derived in holographic QCD should provide a good sense

of the generic nature. The action of the model is a quantum mechanics,

S =
λNcMKK

54π

∫
dt trk

[
(D0X

M)2 − 2

3
M2

KK(X4)2

+D0w̄
α̇
i D0wα̇i −

1

6
M2

KKw̄
α̇
i wα̇i +

36π2

4λ2M4
KK

(
~D
)2

+ ~D · ~τ α̇
β̇
X̄ β̇αXαα̇ + ~D · ~τ α̇

β̇
w̄β̇i wα̇i

]
+Nc

∫
dt trkA0 . (4.1)

The system possesses a gauge symmetry U(k) where k is the number of the baryons

in the system. The table 1 shows the field content of the model.

Here, the dynamical fields are XM and wα̇i, while A0 and Ds are auxiliary fields.

In writing these fields, the indices for the gauge group U(k) are implicit. The sym-

metry of this matrix quantum mechanics is U(k)local × SU(Nf ) × SO(3) where the

last factor SO(3) is the spatial rotation, which, together with a holographic dimen-

sion, forms a broken SO(4) ' SU(2) × SU(2) shown in the table. The breaking is

due to the mass terms for X4 and wα̇i. In the action, the trace is over these U(k)

indices, and the definition of the covariant derivatives is D0X
M ≡ ∂0X

M−i[A0, X
M ],

D0w ≡ ∂0w − iwA0 and D0w̄ ≡ ∂0w̄ + iA0w̄. The spinor indices of X are defined as

Xαα̇ ≡ XM(σM)αα̇ and X̄ α̇α ≡ XM(σ̄M)α̇α where σM = (i~τ , 1) and σ̄M = (−i~τ , 1),

with Pauli matrices τ . The model has a unique scale MKK, and λ = Ncg
2
QCD is

the ’tHooft coupling constant of QCD, with the number of colors Nc. The diagonal

14There is a channel at which the repulsive core disappears, for an appropriate choice of the

baryon states. It is closely related to the conjectured two-baryon bound state called H-dibaryon

[39], as demonstrated in lattice simulations [38, 40]. Whether such dibaryon exists or not should

be confirmed by future experiments.
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entries of X i (i = 1, 2, 3) specify the location of the baryons. The location of the

baryon D-brane in the holographic direction X4 is stabilized at X4 = 0 around which

the harmonic excitations label excited baryon states. The w fields are responsible

for spins and isospins (and flavor representations) of each baryon.

In [1], explicitly demonstrated is the nuclear force for the two-flavor case. There,

a universal repulsive core was found. We here simply extend the two-flavor cal-

culation to the case with a generic number of massless flavors, and will see the

consequence.

The procedure we employ in the following is as follows. First, we look at the

configuration which minimizes the potential of the matrix model. When taking a

large λ, the D-term condition is required to be satisfied, which is nothing but the

ADHM constraint. Then, we obtain a classical potential with a solution of the ADHM

constraint, which depends on the inter-baryon distance and the moduli parameters

of the two baryons. Taking an expectation value of this potential with respect to the

product of the wave functions for each baryon, we obtain the inter-baryon potential.

4.3 Two-baryon configuration

The large λ limit lets only configurations satisfying the ADHM constraint remain.

The ADHM constraint is equivalent to the D-term condition concerning Ds, and is

given by

~τ α̇
β̇

(
X̄ β̇αXαα̇ + w̄β̇ iwiα̇

)
BA

= 0. (4.2)

Here A,B are U(k) indices. For a single baryon with generic number of flavors, the

ADHM constraint is simply solved by X = constant (baryons located anywhere),

and

w = U


ρ 0

0 ρ

0 0

· · · · · ·
0 0

 , (4.3)

which shows the (i, α̇) entry. Here U is a U(Nf ) unitary matrix specifying the baryon

spin and isospin (flavor dependence). The flavor symmetry acts on U as U 7→ GU .

The baryon wave function is given as ψ(U), as in the same manner as the famous

Skyrme model.

We want to put two baryons located at xM = ±rM/2, so that the distance

between the two baryons is rM . For the two baryons, now the coordinate field XM

is two by two matrices, so we parameterize them as

XM =
1

2
raMτa (4.4)
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where τa is a Pauli matrix with index (A,B). We specify the baryon location by the

diagonal entries r3
M , while assuming the off-diagonal r1 and r2 are small as 1/(r3), so

that the distance defined by r3 makes sense at large r3. The two baryons can have

independent spins and flavor representations, so we allow

wA = U (A)


ρA 0

0 ρA
0 0

· · ·· · ·
0 0


(
12×2 + ε(A)

)
,

for each baryon, A = 1, 2. (In this expression we don’t make a summation over the

index A.) And ε(A) is taken to be a 2× 2 traceless matrix at O(1/(r3)2). Note that

at the large inter-baryon distance limit r3 → ∞, the ADHM data above reduces to

just a set of two single-baryon ADHM data, (4.3) and a constant diagonal X.

It is quite straightforward to solve the ADHM constraint (4.2) with the above

generic ansatz, and the solution is given as follows.

r1
MσM =

−ρ1ρ2

|r3|2
r3
MσM(P12 − P †12), (4.5)

r2
MσM =

−iρ1ρ2

|r3|2
r3
MσM(P12 + P †12), (4.6)

ε(1) =
−ρ2

2

4|r3|2
[P12, P

†
12], ε(2) =

ρ2
1

4|r3|2
[P12, P

†
12]. (4.7)

Here we have defined

P12 ≡ P
[
(U (1))†U (2)

]
, (4.8)

with P being a projection of the Nf ×Nf matrix to its upper-left 2× 2 components,

so that P12 is a 2× 2 matrix. We can easily see that, when Nf = 2, the result here

can reproduces the two-flavor result of [1].

4.4 Explicit inter-baryon potential

Let us substitute the above ADHM data, the two-baryon configuration with the

inter-baryon distance r3
M and the spin/flavor dependence U (A), into the action (4.1)

and derive the inter-baryon potential as a function of r3 and U (A). As was done

in [1], we need to integrate out the U(2) auxiliary gauge field A0 of the quantum

mechanics,

A0 = A0
012×2 + Aa0τ

a. (4.9)

Since the model includes only the linear and quadratic terms in A0, it is straight-

forward to perform the integration. In the action (4.1), the terms relevant to A0
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are

SA0 =
λNcMKK

54π

∫
dt

[
2(Aa0)2(rbM)2 − 2(Aa0r

b
M)2

+
(
(A0

0)2 + Aa0)2
) (
|wA=1|2 + |wA=2|2

)
+2A0

0A
1
0

(
wA=1w̄A=2 + wA=2w̄A=1

)
−2iA0

0A
2
0

(
wA=1w̄A=2 − wA=2w̄A=1

)
+2A0

0A
3
0

(
|wA=1|2 − |wA=2|2

)
+

108π

λMKK

A0
0

]
. (4.10)

We integrate out all the components15 of the auxiliary field A0 and write the potential

as SA0 = −
∫
dt VA0,2−body. We expand the result in terms of small ρ/r3 (note that

r3 is the distance between the baryons in x3 direction, not the cubic power of r!), to

obtain the leading term

VA0,2−body =
27π

4

Nc

λMKK

1

(r3)2

∣∣trP12

∣∣2. (4.11)

Here we have already put ρ1 = ρ2 = ρ which is ensured at large Nc.

The remaining contributions to the inter-baryon potential, from the matrix

model action, is the mass terms tr(X2
4 ) and |w|2. Substituting the two-baryon con-

figuration, we obtain

VX4,2−body =
λNcM

3
KK

162π

−ρ2
1ρ

2
2

((r3)2)2

×tr
[
r3
MσMP

†
12

]
tr
[
r3
MσMP12

]
. (4.12)

It turns out that the mass term for w does not give rise to an extra potential.

So, in total, the inter-baryon potential V in the small ρ/r3 expansion is given as

a sum of (4.11) and (4.12),

V2−body =
27πNc

4λMKK

1

|~r|2
(∣∣trP12

∣∣2 +
∣∣tr[~̂r · ~τ P12

]∣∣2) . (4.13)

Here, we already substituted r3
M=4 = 0 which is satisfied by the baryon wave functions

at large Nc [1], and denoted r3
M=1,2,3 as ~r, the inter-baryon vector. ~̂r is the unit

vector along ~r, and we also used the classical size ρ of a single baryon [1], ρ2
1 = ρ2

2 =

37/2π/(
√

2λM2
KK).

We immediately notice that by taking Nf = 2 the potential (4.13) reduces that

of the two-flavor inter-nucleon potential given in [1]. The potential has the 1/|~r|2
behavior which is peculiar to the holographic QCD [15, 12, 41], which is nothing

but a harmonic potential in 4-dimensional space (our spatial 3 dimensions plus the

holographic direction).

15Note that (4.5) and (4.6) satisfy r1Mr
3
M = r2Mr

3
M = 0 which may help reducing the A0 action.
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4.5 Universal repulsive core

It is already manifest that the inter-baryon potential for generic number of flavors,

(4.13), is positive-semi-definite, since (4.13) is a sum of two positive semi-definite

terms. Therefore, we conclude that holographic QCD predicts positive-semi-definite

repulsive core for combination of any two baryon states.

Looking at the magnitude of the potential, we notice the following important

fact: As the number of the flavors is larger than 3, the classical potential (4.13) can

vanish, for appropriate choice of the baryon state. This is simply because we can

choose a set of the unitary matrices U (1) and U (2) such that P((U (2))†U (1)) vanishes.

As the projection operator P refers only the upper-left corner of the unitary matrices,

once the size of the matrix Nf gets larger, the configuration of the baryon can evade

the upper-left 2×2 corner, and thus does not contribute to the inter-baryon potential

(4.13).

Substituting some particular values of constant U corresponds to a classical

evaluation of the potential (as in the same manner as the Skyrme model), but in

reality we need to take into account the baryon wave function ψ1(U (1))ψ2(U (2)). A

generic wave function has a wide distribution over the space of the unitary matrices

normalized. So the magnitude of the repulsive core depends on the two baryon states.

The situation is the same as what has been known for the nucleon case (Nf = 2) [1].

In the next section, we review briefly the recent lattice calculations of the inter-

baryon potential for three-flavor QCD, and discuss a comparison with our holographic

result.

5. A comparison with lattice QCD and OPE

In the previous section, we have calculated a short-distance potential between two

baryons in multi-flavor holographic QCD. We have found a universal repulsive po-

tential for generic baryon states. In this section, we shall compare our results with

ones obtained by a completely different technique: the lattice QCD.

First, we shall review the results in lattice QCD. Potentials between two octet

baryons have been investigated in lattice QCD in the flavor SU(3) symmetric limit

[37, 42], where all quark mass in the 3 flavor QCD are artificially taken to be equal,

mu = md = ms, with the lattice spacing a ' 0.12 fm and the spatial extension

L ' 2−4 fm. Simulations employ six different values of quark mass, which correspond

to the pseudo-scalar meson mass mPS ' 470, 670, 840, 1020, 1170 MeV, where the

relation that m2
PS = Amq holds for a small quark mass mq with a common coefficient

A. There are 6 independent potentials between two octet baryons, which correspond
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to irreducible representations of the flavor SU(3) group as

8⊗ 8 = 27⊕ 8s ⊕ 1︸ ︷︷ ︸
symmetric

⊕
anti−symmetric︷ ︸︸ ︷

10∗ ⊕ 10⊕ 8a, (5.1)

where the first 3 representations are symmetric under the exchange of two octet

baryons, while the last 3 are anti-symmetric. To satisfy a condition that a total wave

function is odd under exchange of two octet baryons, the first 3 states have spin zero

(S = 0, odd under the exchange) while the last 3 states must have spin one (S = 1,

even under the exchange) if the orbital angular momentum between two baryons is

zero (L = 0).

A typical example of corresponding potentials is shown in Fig. 8, taken from

Ref. [37], where the central potentials (left three) and the effective central potential

(right three), where an effect of the tensor potential is included, are plotted.

As can be seen from Fig. 8, inter-baryon potentials strongly depend on the

representations. In top panels, V (27) and V (10∗), which correspond to isospin-triplet

and isospin-singlet nucleon-nucleon (NN) potentials in the Nf = 2 case16 [3, 4],

respectively, have a repulsive core at short distance and an attractive pocket at

medium distance. These features qualitatively agree with those of the NN potentials

in quenched QCD, shown in Fig. 9. For L = 0, V (27) is isospin-triplet (I = 1) at

Nf = 2 and spin-singlet (S = 0) while V (10∗) is isospin-singlet (I = 0) at Nf = 2 and

spin-triplet (S = 1). Therefore, the flavor singlet potential at Nf = 2 can not have

spin-zero for L = 0.

On the other hand if the strange quark is introduced in the flavor representation,

we have more varieties of potentials: V (10) has a stronger repulsive core and a weaker

attractive pocket than V (27), V (10∗), and V (8s) has only a repulsion with the strongest

repulsive core among all, while V (8a) has a strongest attractive pocket with the

weakest repulsive core. In contrast to these five cases, the singlet potential, V (1)

shows attraction at all distances without repulsive core, which produces one bound

state, the H-dibaryon, in this channel [38, 40]. Note that the flavor singlet potential

has spin-zero for L = 0 in this case, contrary to the Nf = 2 case.

Increasing the number of flavor from 2 to 3, we observe that repulsive core

becomes weaker in some channel (8a) and it even disappears in the singlet (1), as

seen in Tab. 5, where we summarize features of inter-baryonic potential in the flavor

SU(3) limit.

Now let us discuss a comparison between our holographic QCD results and the

lattice QCD results. In the previous section, we have found a universal repulsive core

for multi-flavor inter-baryon potential. On the other hand, in the three-flavor lattice

QCD, in most of the channels there appears repulsive cores. Therefore we conclude

that our holographic results are consistent with the lattice QCD results, generically.

16This is because the Young tableau of both 27 and 10∗ do not have three rows.
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Figure 8: The 6 independent potentials in the flavor SU(3) limit obtained in lattice QCD

at mPS = 1014 MeV (red) and 835 MeV (green) [37].

Only one exception is the existence of an attractive channel. In the lattice

QCD result, the flavor-singlet combination of the baryons in the 8 representation

for Nf = 3 is found to have a vanishing repulsive core. In the holographic side, as

we work with the large Nc, it is not clear how the lattice QCD with Nf = Nc = 3

can be mapped to the holographic QCD. However, in the previous section, we have

seen that a classical inter-baryon potential can vanish. So the disappearance of the

repulsive core in the lattice QCD is not a contradiction with the holographic QCD.

We leave a more detailed comparison to a future work.

In table 5, we summarize qualitative features of baryon-baryon potentials, to-
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Figure 9: NN potentials in quenched QCD at mπ ' 730 MeV [4]. The spin singlet sector

(1S0) belongs to the 27 representation while the triplet to the 10∗ in the flavor SU(3).

gether with the prediction from the operator product expansion (OPE) in perturba-

tive QCD for their short distance behaviors [43, 44, 45]. Although the OPE analysis

is consistent with the attractive core for the singlet potential in the lattice QCD, it

disagrees with the strong repulsion of the 8s potential in the lattice QCD.17 Obvi-

ously it is desirable to investigate the short distance behaviors of the inter-baryon

potential by various methods, including holographic QCD, in more details.

representation 27 8s 1 10∗ 10 8a
repulsion yes strongest no yes strong weak

attraction yes no strongest yes weak strong

comment NN(I = 1) H-dibaryon NN(I = 0)

OPE rpl. att. atr. rpl. rpl. atr.

Table 1: Overall feature of inter-baryon potential in each representation. The last line

shows the short distance behavior of the potential from OPE, where rpl.=repulsive and

atr.=attractive.
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