

LHCb Upgrade Plans

Franz Muheim University of Edinburgh

on behalf of the LHCb collaboration

Standard Model and New Physics Sensitivity LHCb Experiment

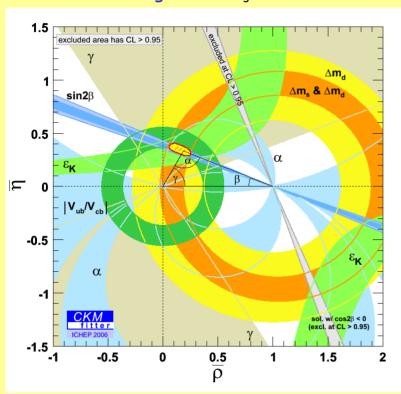
Physics Programme the first 5 years Running LHCb at 10 times design luminosity

Physics Reach with a 100 fb⁻¹ data sample

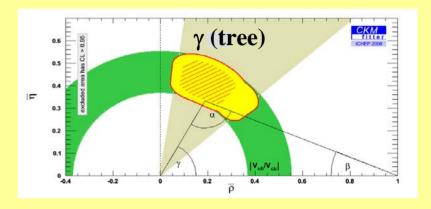
CP violation in B_s decays Probe New Physics in hadronic and electroweak penguin decays CKM angle gamma

LHCb Upgrade Detector and Trigger Plans

LHCb Upgrade Detector Vertex detector studies Trigger and Read-out studies


Conclusions

Status of CKM Unitarity Triangles


ICHEP2006 Status

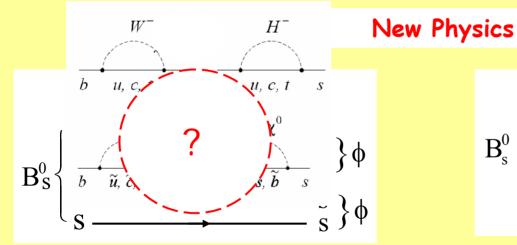
- including CDF Δm_s measurement

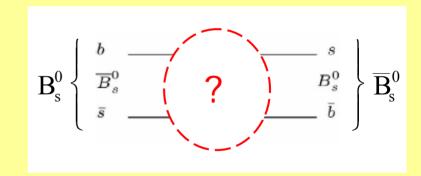
Tree diagrams

Not sensitive to New Physics

Probe New Physics

- by comparing to SM predictions including loops
- by measuring γ in loop diagrams
- same for lpha , eta and χ
- Standard Model is a very successful theory
- We are very likely beyond the era of « alternatives» to the CKM picture. NP would appear as «corrections» to the CKM picture Nir

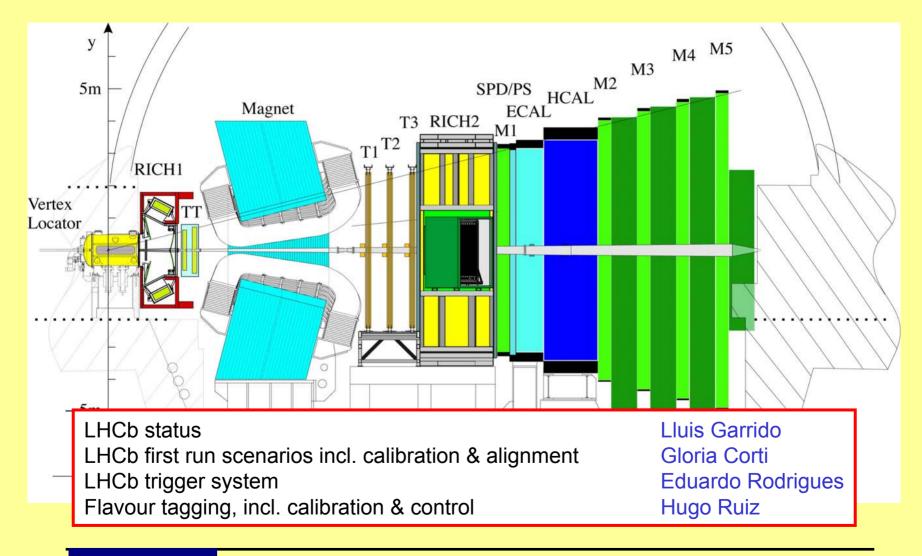

Probing New Physics in B_s Mesons


• Flavour Changing Neutral Currents

- NP appears as virtual particles in loop processes
- leading to observable deviations from SM expectations in flavour physics and CP violation (CP)
- New Physics parameterisation in B_s Oscillations

$$\Delta m_q = \left| 1 + h_q e^{2i\sigma_q} \right| \Delta m_q^{SM}$$

 $B_s \rightarrow \phi \phi$ penguin decay


B_s-B_s oscillations

If New Physics is found at LHC

- Probe NP flavour structure with FCNC

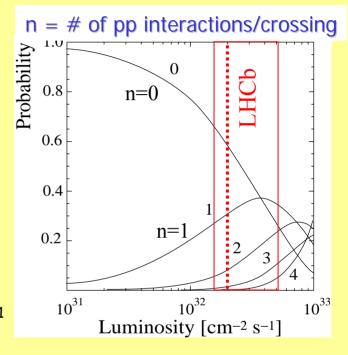
LHCb Experiment

LHCb Sensitivities with 2 fb⁻¹

Muresan

	T T		1		1
	Channel	Yield	B/S	Precision	
γ	$B_s \rightarrow D_s^{-+} K^{+-}$	5.4k	< 1.0	σ(γ) ~ 14°	
	$B_d o \pi^{^+}\pi^{^-}$	36k	0.46	σ(γ) ~ 4°	Angelo
	$B_s \rightarrow K^+ K^-$	36k	< 0.06		Carbone
	$B_d \rightarrow D^0 (K\pi,KK) K^{*0}$	3.4 k, 0.5 k, 0.6 k	<0.3, <1.7, < 1.4	σ(γ) ~ 7° - 10°	
	$B^- \to D^0 (K^- \pi^+, K^+ \pi^-) K^-$	28k, 0.5k	0.6, 1.5	σ(γ) ~ 5° - 15°	Yuehong
	$B^- \rightarrow D^0 (K^+ K^-, \pi^+ \pi^-) K^-$	4.3 k	1.0		Xie
	$B^- \rightarrow D^0 (K_S \pi^+ \pi^-) K^-$	1.5 - 5k	< 0.7	σ(γ) ~ 8° - 16°	
α	$B_d \rightarrow \pi^+ \pi^- \pi^0$	14k	< 0.8	σ(α) ~ 10°	Patrick
	$B \rightarrow \rho^+ \rho^0, \rho^+ \rho^-, \rho^0 \rho^0$	9k, 2k, 1k	1, <5, < 4		Robbe
β	$B_d \rightarrow J/\psi(\mu\mu)K_S$	216k	0.8	σ(sin2β) ~ 0.022	
Δm_s	$B_s \rightarrow D_s^- \pi^+$	80k	0.3	$\sigma(\Delta m_s) \sim 0.01 \text{ ps}^{-1}$	
φs	$B_s \rightarrow J/\psi(\mu\mu)\phi$	131k	0.12	$\sigma(\phi_s) \sim 0.023$	Nicolo Magini
Rare decays	$B_s \rightarrow \mu^+ \mu^-$	17	< 5.7	Maria Smizanska	
	$B_d \rightarrow K^{\star 0} \mu^+ \mu^-$	4.4 k	< 2.6	$\sigma(C_7^{\text{eff}}/C_9^{\text{eff}}) \sim 0.13$	
	$B_d \rightarrow K^{*0} \gamma$	35k	< 0.7	σ(A _{CP}) ~0.01	Stefano
	$B_s \rightarrow \phi \gamma$	9.3 k	< 2.4		de Capua
charm	$D^{*+} \rightarrow D^0 \left(K^- \pi^+ \right) \pi^+$	50 M			Raluca

LHCb – The First Five Years



LHCb Operations

- Luminosity tuneable by adjusting beam focus
- Design is to run at $\mathcal{L} \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ detectors up to $5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- little pile-up (n = 0.5)
- less radiation damage
- Luminosity will be achieved during 1st physics run

• LHCb Physics Goals

- Run five (nominal) years at $\mathcal{L} \sim 2 \times 10^{32}$ cm⁻²s⁻¹ and collect 6 to 10 fb⁻¹
- Exploit the B_s system
- Observation of CP violation in B_s mesons
- Precision measurements of B_s mass and lifetime difference
- Reduce error on CKM angle γ by a factor 5
- Probe New Physics in rare B meson decays with electroweak, radiative and hadronic penguin modes
- First observation of very rare decay $B_s \rightarrow \mu^+\mu^-$

LHCb at higher Luminosity?

What's next?

- Many LHCb results will be statistically limited
- Can LHCb exploit the full potential of B physics at hadron colliders?
- LHCb is only B-physics experiment approved for running after 2010

• LHCb Luminosity

- Running at $\mathcal{L} \sim 2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ is a LHCb design choice
- LHC design luminosity is 50 times higher $\mathcal{L} \sim 10^{34}$ cm⁻²s⁻¹
- Can LHCb operate at higher luminosity?

LHCb Upgrade Plans

- Upgrade LHCb detector such that it can operate at 10 times design luminosity of $\mathcal{L}\sim 2\times 10^{33}$ cm⁻²s⁻¹
- Run ~5 yrs at $\mathcal{L} \sim 2 \times 10^{33}$ cm⁻²s⁻¹
- Collect 100 fb⁻¹ data sample
- Multiple interactions per beam crossing increases to n ~ 4
- Does not require LHC luminosity upgrade (SLHC)
- Could be implemented ~2013 before SLHC

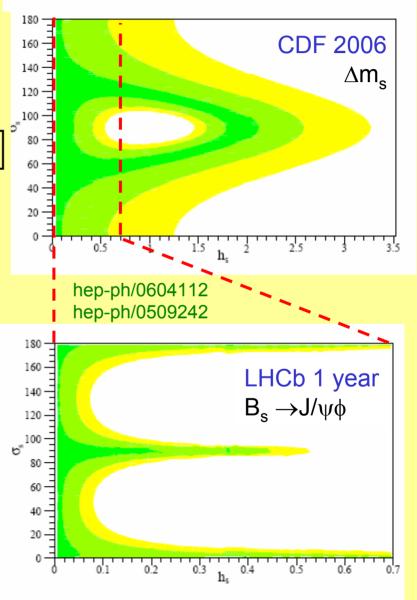
LHCb Physics Reach with 100 fb⁻¹

ϕ_s from $B_s \rightarrow J/\psi \phi$

• CP Violation in B_s mesons

- Interference in B_s mixing and decay
- B_s weak mixing phase ϕ_s is very small in SM

$$\phi_s = -\arg(V_{ts}^2) = -2\chi \approx -2\lambda^2 \eta \approx -0.035$$


- ⇒ sensitive probe for New Physics
 e.g. stringent NMFV test
- NP parameterisation

$$\Delta m_q = \left| 1 + h_q e^{2i\sigma_q} \right| \Delta m_q^{SM}$$

- Angular analysis to separate $J/\psi\phi$ 2 CP-even and 1 CP-odd amplitudes

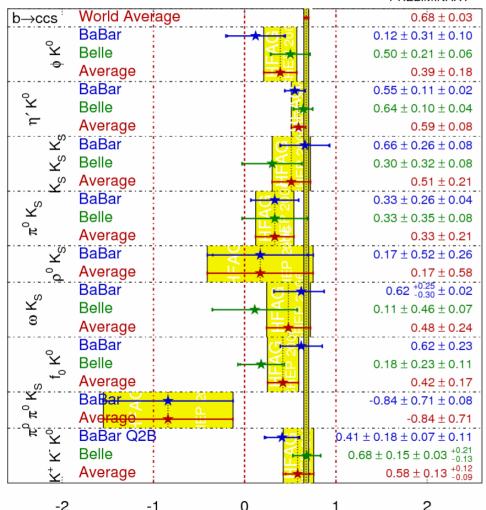
φ_s Sensitivity

- at $\Delta m_s = 20 \text{ ps}^{-1}$
- Expect 125k $B_s \rightarrow J/\psi \phi$ signal events per 2 fb⁻¹ (1 year)
- Expected precision $\sigma(\sin \phi_s) \sim 0.023$
- Small improvement in ϕ_s precision by adding pure CP modes

ϕ_s from $B_s \rightarrow J/\psi \phi$

- ϕ_s will be the ultimate SM test
 - For **CP** in B mesons
 - Similar to ε' in kaons for direct CP violation
- ϕ_s Sensitivity
 - LHCb for 10 fb-1 (first 5 years)

 $\sigma(\sin \phi_s) \sim 0.010$

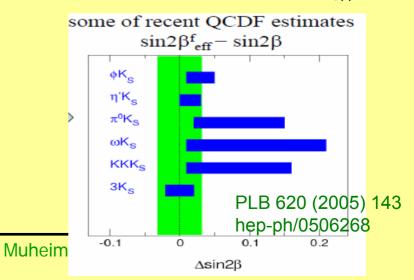

- \sim 3 σ SM evidence for $\phi_s \approx -0.035$
- ϕ_s precision statistically limited
- Theoretically clean
- Historical Aside
 - 1988 NA31 measures ~3 σ from zero $\epsilon'/\epsilon = (3.3\pm1.1)\ 10^{-3}$
 - Community approves NA48 & KTEV
- LHCb Upgrade Sensitivities
 - Based on 100 fb⁻¹ data sample
 - Preliminary estimates by scaling with luminosity
 - Potential trigger efficiency improvements not included
- $B_s \rightarrow J/\psi \phi$ Key channel for LHCb Upgrade
 - ϕ_s Sensitivity with 100 fb⁻¹ data sample
 - ~10 σ SM measurement with 100 fb⁻¹ $\sigma(\sin \phi_s)$ ~ 0.003

$b \rightarrow s$ Transitions in B_d Mesons

$$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \stackrel{\text{HFAG}}{\text{\tiny ICHEP 2006}}$$

Preliminary

Compare $sin2\beta$ measurements


- in $B_d \rightarrow \phi K_S$ with $B_d \rightarrow J/\psi K_S$
- Individually, each decay mode in reasonable agreement with SM
- But all measurements lower than sin2\beta from

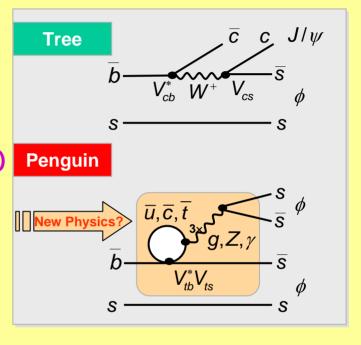
Naïve $b \rightarrow s$ penguin average

- $sin2\beta_{eff} = 0.52 \pm 0.05$
- 2.6 σ discrepancy from SM

Theory models

Predict to increase $sin2\beta_{eff}$ in SM

b \rightarrow s Transitions in B_s $\rightarrow \phi \phi$



B_s→φφ hadronic penguin decay

- In SM weak mixing phase ϕ_s is identical in $B_s \rightarrow \phi \phi$ and $B_s \rightarrow J/\psi \phi$
- Define $\Delta S(\phi \phi) = \sin \phi_s (\phi \phi) \sin \phi_s (J/\psi \phi)$
- Measurement of $\Delta S(\phi \phi) \approx \sin \phi_s (\phi \phi) \neq 0$ is clear signal for New Physics (NMFV)

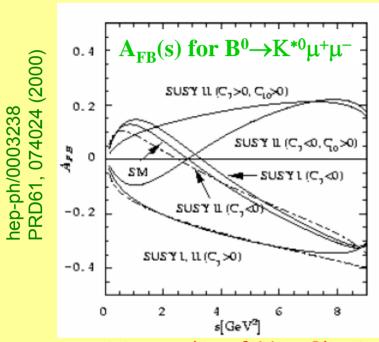
• $\Delta S(\phi \phi)$ Sensitivity

- Best b→s penguin mode for LHCb
- Expect 1.2 k $B_s \rightarrow \phi \phi$ events per 2 fb⁻¹
- Estimate sensitivity by scaling with $B_s \rightarrow J/\psi \phi$
- $\sigma(\Delta S(\phi \phi)) \sim 0.14$ in 10 fb⁻¹

Key channel for LHCb Upgrade

- $\Delta S(\phi \phi)$ precision statistically limited
- With 100 fb⁻¹ estimate precision $\sigma(\Delta S(\phi \phi)) \sim 0.04$ exciting NP probe
- Requires 1st level detached vertex trigger for hadronic decay Expect similar precision for $\Delta S(\phi K_S)$ in decay $B_d \rightarrow \phi K_S$

γ from B⁰ \rightarrow DK*0, B[±] \rightarrow DK[±] & B_s⁰ \rightarrow D_s[∓]K[±] HHCb


- ullet LHCb goals for measuring CKM angle γ
 - $B^0 \rightarrow D^0 K^{*0}$, $B^{\pm} \rightarrow D^0 K^{\pm}$ Two interfering tree processes in neutral or charged B decay
 - Use decays common to D⁰ and anti-D⁰
 Cabbibo favoured self-conjugate D decays
 e.g. $D^0 \to K_S \pi \pi$, $K_S K K$, $K K \pi \pi$ Dalitz analysis
 Cabbibo favoured, single & doubly Cabbibo suppressed D decays
 e.g. $D^0 \to K \pi$, K K, $K \pi \pi \pi$ ADS (GLW) method
 - $B_s \rightarrow D_s^{\mp} K^{\pm}$ two tree decays (b \rightarrow c and b \rightarrow u) of $O(\lambda^3)$ Interference via B_s mixing
- γ Sensitivity
 - Expected precision for ADS and Dalitz $\sigma(\gamma) \sim 5^{\circ}$ -15° in 2 fb⁻¹
- Motivation for LHCb Upgrade
 - Theoretical error in SM is very small $< 1^{\circ}$
 - Large statistics helps to reduce systematic error to similar level
 - With 100 fb⁻¹ estimate precision $\sigma(\gamma) \sim 1^{\circ}$
 - Requires 1st level detached vertex trigger for hadronic decays

Asymmetry A_{FB} in $B_d \rightarrow K^{*0} \mu^+ \mu^-$

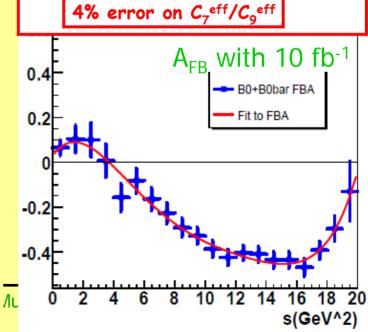
Forward-backward asymmetry $A_{FB}(s)$

Asymmetry angle - B flight direction wrt μ+ direction in μ+μ- rest-frame

Sensitive probe of New Physics

- Deviations from SM by SUSY, graviton exchanges, extra dimensions
- $A_{FR}(s_0) = 0$ predicted at LO without hadronic uncertainties
- Zero point s_0 and integral at high s sensitive to Wilson coefficients

Expected Signal Yield


- 4.4 k events per 2 fb⁻¹
- Large statistics allows to measure additional transversity amplitudes
- Sensitive to right-handed currents

A_{FR} zero point sensitivity

 $s_0 = 4.0 \pm 0.5 \text{ GeV}^2 \text{ in } 10 \text{ fb}^{-1}$

LHCb Upgrade Sensitivity

 $s_0 = 4.00 \pm 0.16 \text{ GeV}^2 \text{ in } 100 \text{ fb}^{-1}$

More Physics with 100 fb⁻¹

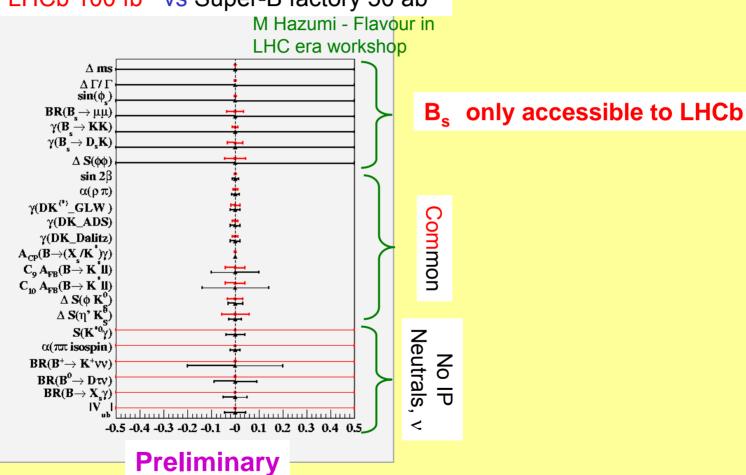
What are key measurements?

- Selection of four discussed above
- Importance of different decays could change again with additional data from LHC, Tevatron and B-factories

LHCb measurements

- Many more are statistics limited
- can be improved with LHCb Upgrade
- many of these are very sensitive to New Physics

Additional LHCb Upgrade measurements


- Semileptonic charge asymmetry A_{SL}
- Very rare decays
 - e.g. observation of $B_d \rightarrow \mu^+ \mu^-$ and precision measurement of $B_s \rightarrow \mu^+ \mu^-$
- Electroweak and radiative penguin decays
 - e.g. $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$
- Other hadronic penguin decays
 - e.g. $B_d \rightarrow \phi K_S B_d \rightarrow \eta' K_S$
- <u>CP violation and mixing in charm meson decays</u>
- Lepton flavour violation in B, charm and tau decays
 - e.g. $B^0 \rightarrow \mu^+ e^-$, $D^0 \rightarrow \mu^+ e^-$, $\tau^+ \rightarrow \mu^+ \gamma$, $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$

Comparison with Super-B factory

Sensitivity Comparison ~2020

LHCb 100 fb⁻¹ vs Super-B factory 50 ab⁻¹

LHCb Upgrade Detector and Trigger

Beauty 2006

F. Muheim

LHCb Performance vs Luminosity

LHCb Luminosity

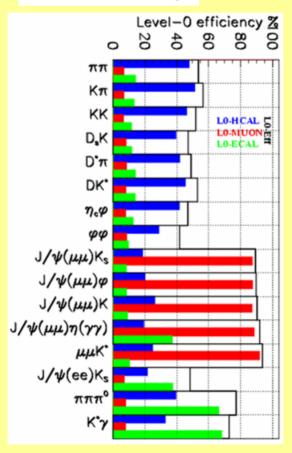
- Running at $\mathcal{L} \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ is default
- Will operate at luminosity up to $\mathcal{L} \sim 5 \times 10^{32}$ cm⁻²s⁻¹
- Make use of learning experience in running LHCb

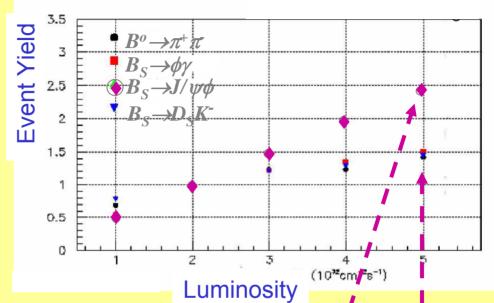
LHCb Detectors

- Detectors able to cope with $\mathcal{L} \sim 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- Vertex detector sensors require replacing after 6 8 fb⁻¹ (~3 years)
- Default replacement same geometry, similar slightly improved sensors

Level-0 Trigger - L0

- High p_T μ , $\mu\mu$, e, γ , hadron + pileup
- Read-out at 40 MHz (synchronised) 4 μs latency
- Existing Front-End electronics limits LO Trigger output to 1.1 MHz
- LO trigger efficiency scales with luminosity for muons but not for hadrons


Higher Level Trigger - HLT


- Full detector readout into CPU farm at < 1.1 MHz
- Possible scope to improve the HLT algorithms

LHCb LO Trigger

L0 efficiency

- LO muon trigger
 - ~90% efficiency
 - scales with luminosity
- LO hadron trigger
 - Only ~40% efficient
 - does not scale with luminosity
 - Required for $B_s \rightarrow \phi \phi$ and $B^{\pm} \rightarrow D^0 K^{\pm}$

LHCb Upgrade Plans

The Big Question

- Can we upgrade LHCb detector such that it can operate at 10 times design luminosity of $\mathcal{L}\sim 2\times 10^{33}$ cm⁻²s⁻¹
- Physics, Detector and Trigger studies have started
- Several approaches possible

LHCb Upgrade - Step-by-Step

- To operate LHCb at luminosities above 5x10³² cm⁻²s⁻¹
- VELO sensors require replacing with radiation-hard sensors
- Add Vertex Detector (VELO) and Trigger Tracker (TT) to LO Trigger
- Requires 40 MHz readout of VELO and TT
- Is Magnetic field in VELO region required?

LO Detached Vertex Trigger

- Implementation in FPGAs
- L0 Trigger algorithms must run in < 2.5 μs (latency)

Additional Considerations

- Other sub-detectors need upgrade due to occupancy and/or irradiation
- Replace inner most region of RICH photo detectors
- Increase (decrease) area of Inner/Outer Tracker
- Replace inner most region of ECAL with crystal calorimeter
- Possibly add other sub-detectors to 40 MHz readout

LHCb Upgrade Plans II

Readout full detector at 40 MHz

- Requires new readout architecture
- Add 1st level displaced vertex trigger
- All trigger decisions in CPU farm
- All Front-end electronics must be redesigned
 All binary or digital, no analogue pipeline, increased radiation hardness

Detectors for 40 MHz Readout

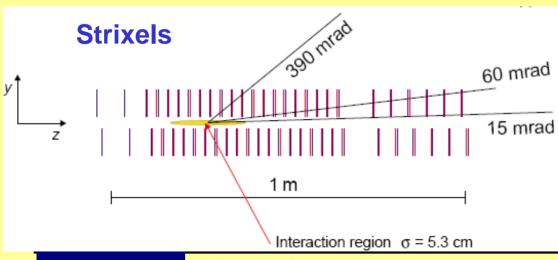
- VELO sensors require replacing with radiation-hard sensors
- Silicon tracker sensors (TT and IT) need to be replaced
- Outer tracker occupancy likely prohibitive Increase (decrease) area of inner (outer) tracker
- RICH photo detectors need to be replaced

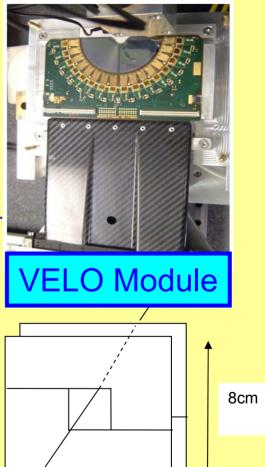
Additional Considerations for LHCb Upgrade Plans

- running LHCb at $\mathcal{L} \sim 2 \times 10^{33}$ cm⁻²s⁻¹
- It will not be cheap, but costs expected to compare favourably with existing infrastructure and complementary approaches
- Electronics R&D can profit from common LHC development

Vertex Detector Upgrade

• Critical for LHCb upgrade physics programme


Radiation Hard Vertex Detector with Displaced Vertex Trigger

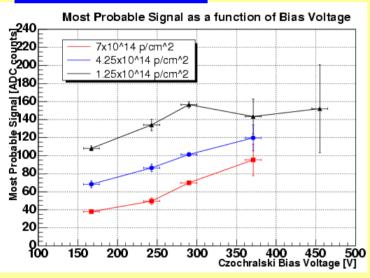


Radiation Hard Vertex Locator

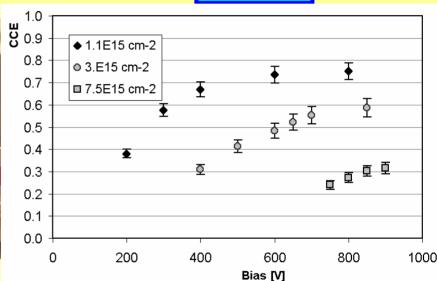
- VELO sensors
 - need to be replaced after 6 8 fb-1
- VESPA for LHCb Upgrade
 - requires high radiation tolerance device
 >10¹⁵ 1 MeV neutron_{ea} /cm²
- Geometry Strixels / Pixels
 - remove RF foil 3% X₀ before 1st measurement
 - move closer to beam from $8 \rightarrow 5$ mm

Z Beam

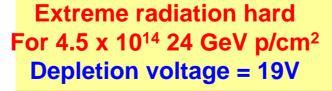
Pixel Stations


Radiation Hard Technologies

25kU 20µm


- Active Technology R&D for LHC upgrades
- Applicable to strixels & pixels

Czochralski



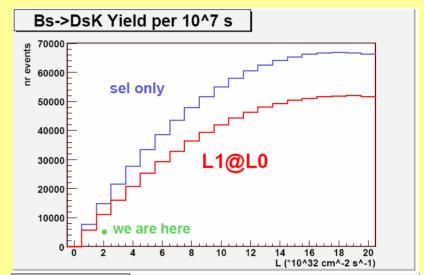
n-on-p

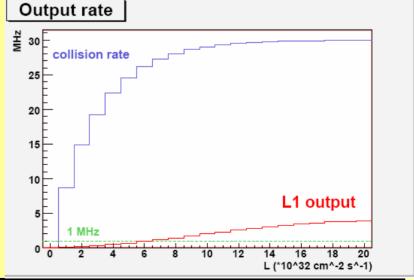


2006

F. Muheim

LHCb Upgrade Trigger Studies



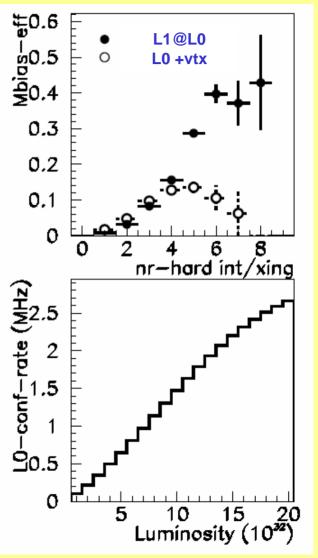

Method

- Run L1 trigger algorithm at LO
- Use $B_s \rightarrow D_s^{\dagger} K^{\pm} MC$ data at luminosities up to L = 6 x 10^{32}
- Performance scales with number of interactions n_r
 → extrapolate to larger L

• Preliminary results

- Selection efficiency flattens above L = 10³³
- L1 trigger efficiency ~ 75%
- L1 min. bias rate is
 1 MHz at L = 6 x 10³²
 saturates bandwidth
- L1 min. bias rate rises strongly with n_r

LHCb Upgrade Trigger Studies II



Method

- Combine LO with detached vertex trigger
- At L = 6 x 10^{32}

Preliminary results

- Min. bias efficiency does not depend strongly on n_r
 LO hadron E_T > 3 GeV
 LO hadron rate: r = 5 MHz
 B_s→D_s[∓]K[±] efficiency ε = 76%
- Add track with largest $p_T > 2 \text{ GeV}$ r = 3.4 MHz $\epsilon = 75\%$
- Add impact parameter |IP| > 50 um r = 0.8 MHz $\epsilon = 66\%$
- Better efficiency than LO trigger at L = 2×10^{32} (baseline) r = 0.7 MHz $\epsilon = 39\%$
- Yield $B_s \rightarrow D_s^{\mp} K^{\pm}$ is 5 times baseline
- Yield scales linearly with luminosity

Conclusions

Standard Model is very successful

 Require precision measurements to probe/establish flavour structure of New Physics

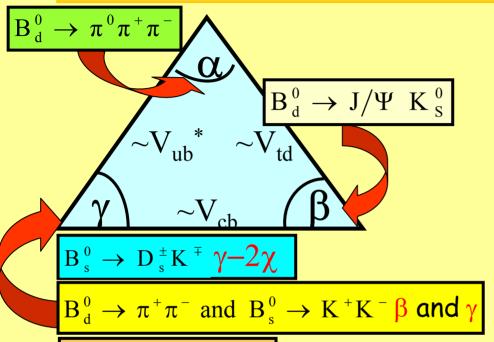
Many LHCb results will be statistically limited

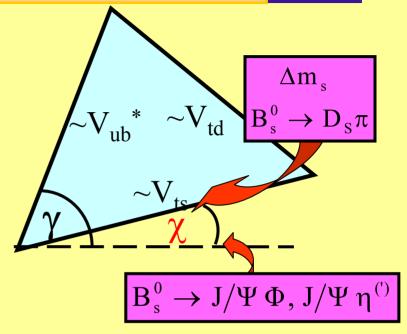
- LHCb plans to run initially for five years at $\mathcal{L} \sim 2 ... 5 \times 10^{32}$ cm⁻²s⁻¹
- 6 10 fb⁻¹ data set will not reach full potential of B physics at hadron colliders

LHCb Upgrade Plans

- Replace VELO with radiation hard vertex detector
- Add first level detached vertex trigger to LHCb experiment to trigger efficiently on hadronic modes at high luminosities
- Readout of all LHCb detectors at 40 MHz
- Requires new front-end electronics, silicon sensors,. RICH photo detectors
- Run five years at $\mathcal{L} \sim 2 \times 10^{33}$ cm⁻²s⁻¹ and collect 100 fb⁻¹ data sample

• LHCb Physics reach with 100 fb-1

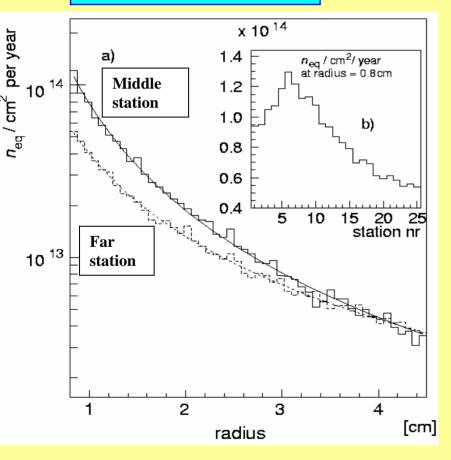

- Perform ~10 σ measurement of SM weak B_s mixing phase ϕ_s = -0.035 in B_s \rightarrow J/ $\psi\phi$
- Probe or establish New Physics by measuring ϕ_s in hadronic penguin decay $B_s \to \phi \phi$ with a precision of $\sigma(\Delta S(\phi \phi))$ = 0.040
- Measure CKM angle γ to a precision of $\sigma(\gamma) \sim 1^{\circ}$
- Probe New Physics in rare B meson decays Measure Wilson coefficient C_7/C_9 to 4% in electroweak decay $B \rightarrow K^{*0} \mu^+ \mu^-$
- Measure $B_d \rightarrow \mu^{\dagger} \mu^{-}$


Backup Slides

LHCb Physics Programme

$$\begin{bmatrix}
B_d^{\pm} \to D^0 K^{\pm} \\
B_d^0 \to D^0 K^{*0}
\end{bmatrix} \gamma$$

B production,
B_c , b-baryon physics
Charm decays
Tau Lepton flavour violation


Rare decays - very sensitive to NP

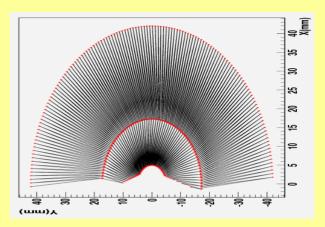
- Radiative penguin e.g. $B_d o K^* \gamma$, $B_s o \Phi \gamma$
- Electroweak penguin e.g. $B_d o K^{*0} \mu^+\mu^-$
- Gluonic penguin e.g. $\mathsf{B}_{\mathsf{s}} o \Phi \Phi$, $\mathsf{B}_{\mathsf{d}} o \Phi \mathsf{K}_{\mathsf{s}}$
- Rare box diagram e.g. $B_s \rightarrow \mu^+ \mu^-$

Radiation Environment

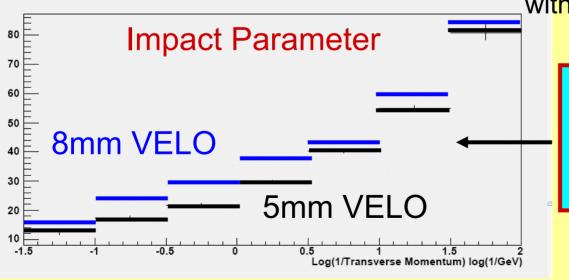
LHCb VELO will be HOT!

- Maximum Fluence
- NIEL 1 MeV n_{eq}/cm²/year
- Strongly non-uniform
- dependence on 1/r² and station (z)

Lumi	Radius	Fluence/ 10 ⁷ s
2x 10 ³²	8 mm	1.3× 10 ¹⁴
2x 10 ³²	5 mm	3.3x 10 ¹⁴
1× 10 ³³	8 mm	6.6x 10 ¹⁴
1× 10 ³³	5 mm	1.7× 10 ¹⁵

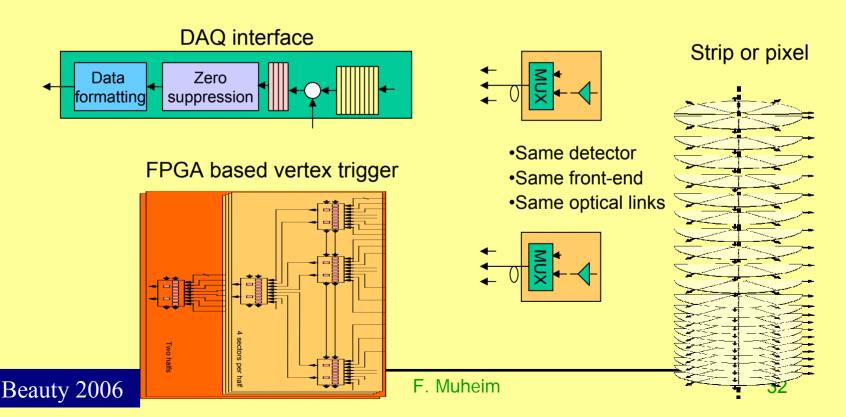

VESPA needs > 10¹⁵ n_{eq}/cm² charged particle tolerance

Resolution (microns)


Move Closer to Beam

- Existing VELO Design
 - safe guard ring 1 mm
- Edgeless technology exits
 - Dope edges
 - etch, laser cut
- LHC Accelerator
 - Limit 5 mm

Sensor Design with 5mm active radius


Simulation

- RF foil removed
- •VELO Inner radius 5 mm
- •36% improvement!

R&D for LHCb Upgrade - Vertex Trigger

- For Vertex trigger, full information must be transported to counting house where FPGA based trigger processing will be located.
 - Assuming no local trigger pre-processing in front-end chips.
 - Assuming no local zero-suppression to keep full synchronous system with short latency.
- For 40MHz readout the option of applying the rate scaler/trigger in DAQ interface also requires full information to be transported to counting house

