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The ALICE Collaboration has measured inclusive J/ψ production in pp collisions at a center-of-mass en-
ergy

√
s = 2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y| < 0.9

and 2.5 < y < 4 and have been obtained by measuring the electron and muon pair decay channels, re-
spectively. The integrated luminosities for the two channels are Le

int = 1.1 nb−1 and Lμ
int = 19.9 nb−1, and

the corresponding signal statistics are Ne+e−
J/ψ = 59 ± 14 and Nμ+μ−

J/ψ = 1364 ± 53. We present dσJ/ψ/dy

for the two rapidity regions under study and, for the forward-y range, d2σJ/ψ/dy dpt in the transverse
momentum domain 0 < pt < 8 GeV/c. The results are compared with previously published results at√

s = 7 TeV and with theoretical calculations.
© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Almost forty years after the discovery of charmonium, its pro-
duction in hadronic collisions still remains not completely under-
stood, and charmonium production data represent a complex and
severe test for QCD-inspired models [1].

Recently, first results from the Large Hadron Collider (LHC) on
J/ψ production in pp collisions at

√
s = 7 TeV became available

[2–6], significantly extending the energy reach beyond that of the
Tevatron and RHIC hadron colliders [7–9]. A reasonable descrip-
tion of the transverse momentum spectra has been obtained by
theoretical models [10–13], and first results on J/ψ polarization,
a crucial testing ground for theory [14–16], are also available [17]
at LHC energy.

At the beginning of 2011, the LHC delivered pp collisions at√
s = 2.76 TeV. The main goal of this short run was to provide a

reference for the Pb–Pb data which were taken at the same
√

s per
nucleon–nucleon collision. On the other hand, these data offer the
possibility of studying J/ψ production at an intermediate energy
between Tevatron and the present LHC top energy, and represent
therefore an interesting test for models.

In this Letter, we present results on inclusive J/ψ production
at

√
s = 2.76 TeV as obtained by the ALICE experiment [18]. J/ψ

particles were measured, down to zero transverse momentum, via
their decay into e+e− at mid-rapidity (|y| < 0.9) and into μ+μ−
at forward rapidity (2.5 < y < 4). Results from ALICE on J/ψ pro-
duction at

√
s = 7 TeV were recently published [5,17]. Since the

experimental apparatus and the data analysis procedure are basi-
cally the same for the two data samples, they will be concisely
described, referring where necessary to our previous publications.

✩ © CERN for the benefit of the ALICE Collaboration.

Results will then be shown for dσJ/ψ/dy at central and at for-
ward rapidity. For the region 2.5 < y < 4 the differential cross
section d2σJ/ψ/dy dpt will also be given, for the transverse mo-
mentum range 0 < pt < 8 GeV/c. A comparison with the previous
results at

√
s = 7 TeV will be carried out and next-to-leading order

Non-Relativistic QCD (NLO NRQCD) theoretical calculations will be
compared to the experimental data.

2. Experimental apparatus and data analysis

The main elements of the ALICE experiment at the CERN LHC
are a central rapidity barrel (covering the pseudo-rapidity range
|η| < 0.9) for the detection of hadrons, electrons and photons and
for the measurement of jets, and a forward muon spectrometer
(−4 < η < −2.5). The experimental set-up is described in detail
in [18]. For the analysis described in this Letter, the relevant detec-
tor systems for tracking and electron identification in the central
barrel are the Inner Tracking System (ITS) [19], based on six layers
of silicon detectors, and the Time Projection Chamber (TPC) [20].
The ITS covers the |η| < 0.9 range and, together with two small
forward scintillator detectors (VZERO, covering 2.8 < η < 5.1 and
−3.7 < η < −1.7), is used to define the Minimum-Bias (MB) inter-
action trigger. In particular, the MB condition requires a logical OR
between at least one fired read-out chip in one of the two inner
layers of the ITS (Silicon Pixel Detector), and a signal in at least
one of the VZERO detectors. Muons are tracked and identified in
the muon spectrometer [5], which consists of a front absorber to
remove hadrons, a 3 T m dipole magnet and a tracking system. It
also includes a triggering system with a programmable pt thresh-
old. With this trigger, the collected data sample was enriched with
events where, in addition to the MB condition, at least one muon
was detected in the spectrometer acceptance. The threshold for
the muon trigger was set to its minimum value, pt = 0.5 GeV/c.
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With this choice the acceptance for J/ψ → μ+μ− detection ex-
tends down to pt = 0. Further details on the detectors relevant for
this analysis and on the trigger definitions can be found in Ref. [5].

The dielectron analysis is based on a sample of 65.4 · 106

MB triggers, corresponding to an integrated luminosity Le
int =

1.1 nb−1. Out of the total sample, 47.4 · 106 events have a re-
constructed vertex which lies within ±10 cm, along the beam
direction, from the nominal interaction point and are retained for
the following analysis steps. The analysis strategy is briefly de-
scribed below. It is the same as applied in case of the analysis at√

s = 7 TeV, small differences are explained in the text. For details
we refer to [5].

Reconstructed tracks are required to have a hit in one of the
two innermost or in the fifth ITS layer (layers three and four were
excluded from the reconstruction). This choice makes the track
cuts somewhat less stringent as compared to the analysis of the√

s = 7 TeV data where a hit was required in one of the two in-
nermost layers. As a result, the signal increases by ∼12%, whereas
the significance for the two cuts is comparable within the uncer-
tainties. The choice to use the looser cut was motivated by the
fact that it provides a central cross section value of the systematic
variations using different cuts. The number of TPC clusters for each
track must be larger than 70 (out of a maximum of 159), with the
χ2 per space point of the momentum fit lower than 4. The kine-
matic cuts pt > 1 GeV/c and |η| < 0.9 are applied to each track.
The electron identification is based on the correlation between the
specific energy loss dE/dx and the momentum measured in the
TPC, requiring a ±3σ inclusion cut around the electron line corre-
sponding to the Bethe–Bloch expectation and an exclusion cut of
±3.5σ (±3σ ) for pions (protons). Finally, a rapidity cut |y| < 0.9
is applied to J/ψ candidates to remove pairs at the edge of the
acceptance.

The signal extraction is based on the like-sign (LS) subtracted
invariant mass spectrum of e+e− pairs. The LS spectrum is ob-
tained as the sum of positive–positive and negative–negative spec-
tra. The scale factor on the LS background, applied in [5] to
account for various non-combinatorial effects, was found to be
negligible in this analysis. Fig. 1 (top panel) shows the opposite-
sign (OS) dielectron mass spectrum together with the LS spectrum.
After subtraction, the number of J/ψ is estimated by bin counting
in the invariant mass range 2.92 < me+e− < 3.20 GeV/c2, resulting
in 59 ± 14(stat.) counts with a significance of 5.4 ± 0.6. The sig-
nal fraction in the mass range defined above is estimated from a
Monte Carlo (MC) simulation, and included in the acceptance. In
Fig. 1 (bottom panel) the LS-subtracted spectrum is overlaid with
the MC signal shape, normalized to the data points in the invari-
ant mass range 2.5 < me+e− < 3.5 GeV/c2. In addition to the LS
method, the background estimated using a track rotation (TrkRot)
technique1 is also shown in Fig. 1. The differences between the
number of J/ψ obtained with the TrkRot and LS methods is used
in the estimate of the systematic uncertainty on the signal extrac-
tion.

The dimuon analysis is based on 8.8 · 106 muon-triggered
events, corresponding to an integrated luminosity Lμ

int = 19.9 nb−1.
Out of this sample, 1.0 · 105 events contain a reconstructed OS
muon pair. It is required that each event contains at least one re-
constructed vertex. Events are retained for the analysis if both can-
didate muon tracks exit the front hadron absorber (z = −503 cm)

1 In the TrkRot method one track of the OS pair is rotated around the z-axis. The
procedure is repeated several times randomly varying the rotation angle. In this
way,one removes the correlation between the two electrons of the pair. The TrkRot
invariant mass spectrum is scaled to match the integral of the OS spectrum in the
region 3.2 < me+e− < 5 GeV/c2.

Fig. 1. Top panel: invariant mass distributions for opposite-sign (OS) and like-sign
(LS) electron pairs (|y| < 0.9, all pt). The background estimate from the TrkRot
method (see text for details) is also shown. Bottom panel: the difference of the
OS and LS distributions with the normalized MC signal shape superimposed.

at a radial coordinate 17.6 < Rabs < 89.5 cm, a cut roughly corre-
sponding to the angular acceptance of the muon spectrometer. It
is also required that at least one of the two muons satisfies the
muon trigger condition. Finally, the cut 2.5 < y < 4 is applied to
the pairs in order to reject dimuons at the edge of the spectrome-
ter acceptance.

The signal is extracted by a fit to the invariant mass spectrum
over the range 2 < mμμ < 5 GeV/c2. The signal is parameterized
with a Crystal Ball (CB) function [21] with a background described
by the sum of two exponentials. The position (mJ/ψ ) of the peak
of the CB function, as well as its width (w J/ψ ), are kept as free
parameters in the fit. The obtained values are mJ/ψ = 3.129 ±
0.004 GeV/c2 (a value larger by ∼1% than the world average [22])
and w J/ψ = 0.083 ± 0.004 GeV/c2. The J/ψ width is only slightly
larger (by ∼0.006 GeV/c2) than that obtained in the MC, which in-
cludes the effect of the misalignment of the muon tracking system.
The tails of the CB function are fixed to their MC value, since with
the available statistics and signal to background ratio they cannot
be reliably extracted from the fitting procedure. Finally, the con-
tribution of the ψ(2S) signal is included in the fit, although its
influence on the number of detected J/ψ is negligible. In Fig. 2 the
dimuon invariant mass spectrum is presented, together with the
result of the fit (χ2/ndf = 1.3). By integrating the CB function, one

gets a total number of J/ψ Nμ+μ−
J/ψ = 1364 ± 53(stat.).

The J/ψ statistics in the dimuon channel permit a differential
study of the production cross sections using six y or seven pt
intervals. The fitting technique is the same as for the integrated in-
variant mass spectrum, except for the value of the CB width which
was fixed for each bin i to the value wi

J/ψ = w J/ψ · (wi,MC
J/ψ /wMC

J/ψ ),
i.e., by scaling the measured width for the integrated spectrum
with the MC ratio between the widths for the bin i and for the
integrated spectrum. The sum of the signal events for both pt and
y bins agrees well (within 0.3% and 1.2% respectively) with the
result of the fit to the integrated mass spectrum. In Fig. 3 the
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Fig. 2. Invariant mass distribution for opposite-sign muon pairs (2.5 < y < 4, all pt),
in the mass region 2 < mμμ < 5 GeV/c2, with the result of the fit (see text for
details). The fitted J/ψ and ψ(2S) contributions, as well as the background, are
also shown.

invariant mass spectra corresponding to the various pt bins are
shown, together with the results of the fits. The J/ψ signal is well
visible also in the spectra with lower statistics and the quality of
the fits is similar to the one obtained for the integrated mass spec-
trum.

For both the dielectron and dimuon analyses the number of
signal events is corrected by the product of acceptance times effi-
ciency (A ×ε). The A ×ε values are obtained using MC simulations
which include a description of the status of the detector as a func-

tion of time. Details on the procedure are given in Ref. [5]. For this
analysis, the MC input distributions in transverse momentum and
rapidity are obtained by interpolating between the LHC results for√

s = 7 TeV and lower energy collider measurements [23]. It was
verified a posteriori that the interpolated input spectra are in good
agreement with those obtained from this analysis. The results are
A × ε = 0.120 for the dielectron analysis and A × ε = 0.346 for the
dimuon analysis. These values refer to J/ψ production for pt > 0
in the analyzed rapidity ranges, |y| < 0.9 and 2.5 < y < 4, respec-
tively.

The inclusive J/ψ production cross section for the leptonic
channel �+�− is calculated as:

σJ/ψ = Ncor,�+�−
J/ψ

BR( J/ψ → �+�−)
× σMB

NMB
× R�+�−

(1)

where Ncor,�+�−
J/ψ = N�+�−

J/ψ /(A × ε)�
+�−

is the number of sig-
nal events corrected for acceptance times efficiency, BR( J/ψ →
�+�−) = (5.94 ± 0.06)% [22] is the leptonic branching ratio for
the J/ψ decay, NMB is the number of MB-triggered events and
σMB = 55.4 ± 1.0(total) mb is the absolute cross section for the
occurrence of the MB condition [24], derived from the result
of a van der Meer scan (see [5] for details). The R�+�−

fac-
tor is 1 for the e+e− analysis, whereas for the dimuon channel
Rμ+μ− = 0.0326 ± 0.0002 represents the inverse of the enhance-
ment factor of the muon trigger with respect to the MB trigger [5].
An equivalent formula is used for the differential cross sections
in y and pt.

The sources of systematic uncertainties are exactly the same
as for the corresponding

√
s = 7 TeV analysis and have been esti-

mated in a similar way (see [5] for details). In Table 1 we quote
their values for the integrated cross sections in the dielectron
and in the dimuon channel. The uncertainty on signal extraction
for the electron analysis (14%) is larger than the 8.5% quoted at
Fig. 3. Invariant mass spectra for OS muon pairs (2.5 < y < 4), in bins of pt . The results of the fits are also shown.
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Table 1
Systematic uncertainties (in percent) contributing to the measurement of the in-
tegrated J/ψ cross section. The uncertainties related to the J/ψ polarization were
calculated for both Collins–Soper and helicity reference frames.

Channel e+e− μ+μ−

Signal extraction 14 4
Acceptance input 1.5 4
Trigger efficiency – 2
Reconstruction efficiency 11 4
R factor − 3
Luminosity 1.9 1.9
B.R. 1
Polarization λ = −1 λ = 1 λ = −1 λ = 1
CS +19 −13 +32 −16
HE +21 −15 +24 −12

√
s = 7 TeV [5]. This increase mainly comes from the difference in

Ncor,e+e−
J/ψ obtained by requiring various conditions in the ITS: a hit

in the first layer, in any of the first two layers (as was done for the√
s = 7 TeV analysis), or the less stringent condition adopted from

the present analysis, described earlier in this section. For the muon
analysis, the uncertainty on signal extraction (4%) is now smaller
with respect to the 7.5% quoted at

√
s = 7 TeV [5]. The present

value was calculated as the average absolute deviation on the
number of signal events obtained with alternative parameteriza-
tions of the signal and background shapes. At

√
s = 7 TeV the more

conservative, but also more prone to statistical effects, approach of
using the larger deviation obtained in the various fits was adopted.
Finally, the decrease of the systematic uncertainty on the trigger
efficiency for the muon analysis (from 4% at

√
s = 7 TeV [5] to 2%

at
√

s = 2.76 TeV) is due to a different approach, the present one
being based on the study of the variation of the J/ψ triggering ef-
ficiency when the efficiency of the trigger detectors is changed by
an amount slightly larger than the uncertainty on this last quan-
tity.

The total systematic uncertainties, excluding those related to
the unknown degree of polarization of the J/ψ , are 18.0% and 8.1%
for the dielectron and the dimuon channel, respectively. For the
differential cross sections measured in the dimuon channel, the
same sources of systematic uncertainties quoted in Table 1 apply
to each y and pt bin. For the uncertainties relative to the choice
of the MC inputs, their values may in principle vary with either
rapidity or transverse momentum. However, no clear trend as a
function of these two variables is observed. So, the relative sys-
tematic uncertainty calculated for the integrated cross section is
assigned to each point and considered as uncorrelated between
the bins. The uncertainty on signal extraction is also considered
as bin-to-bin uncorrelated. The limited signal statistics for most
of the bins prevents a direct study of the systematic uncertainty,
therefore the relative systematic uncertainty assigned to the inte-
grated cross section was attributed to each point.

3. Results

The analysis described in the previous section gives the follow-
ing results for the integrated inclusive J/ψ cross sections in the
two rapidity ranges investigated at

√
s = 2.76 TeV:

σJ/ψ
(|y| < 0.9

) = 7.75 ± 1.78(stat.) ± 1.39(syst.)

+ 1.16(λHE = 1) − 1.63(λHE = −1) μb

and

σJ/ψ (2.5 < y < 4) = 3.34 ± 0.13(stat.) ± 0.27(syst.)

+ 0.53(λCS = 1) − 1.07(λCS = −1) μb.

Fig. 4. Double differential J/ψ production cross section at
√

s = 2.76 TeV compared
to previous ALICE results at

√
s = 7 TeV [5]. The vertical error bars represent the

statistical errors while the boxes correspond to the systematic uncertainties. The
systematic uncertainties on luminosity are not included. The results are compared
with a NLO NRQCD calculation [26] performed in the region pt > 3 GeV/c.

The polarization-related systematic uncertainties were esti-
mated in the helicity (HE) and Collins–Soper (CS) reference
frames [25]. The uncertainties are quoted in the frames where
they are larger. Existing polarization results for

√
s = 7 TeV at

forward rapidity [17], tend to exclude a significant degree of polar-
ization for the J/ψ . However, in absence of clear predictions for the√

s-dependence of the effect, we prefer to quote systematic uncer-
tainties relative to fully longitudinal (λ = −1) or transverse (λ = 1)
degree of polarization. With respect to the

√
s = 7 TeV measure-

ment, the
√

s = 2.76 TeV cross sections are smaller by a factor
1.59 ± 0.50 (1.89 ± 0.31) for the |y| < 0.9 (2.5 < y < 4) rapidity
ranges. The quoted uncertainty on the ratios is obtained by propa-
gating the quadratic sum of statistical and systematic uncertainties
(excluding the polarization-related contribution) of the two cross
section values.

Fig. 4 presents the differential cross section d2σJ/ψ/dpt dy, av-
eraged over the interval 2.5 < y < 4, for the transverse momentum
range 0 < pt < 8 GeV/c. The results are compared with those pre-
viously published by ALICE for

√
s = 7 TeV, as well as, for the

range 3 < pt < 8 GeV/c, with the predictions of a NRQCD calcu-
lation [26], which includes both colour singlet and colour octet
terms at NLO. The model satisfactorily describes both sets of ex-
perimental data.

Using the results shown in Fig. 4, the mean transverse momen-
tum for inclusive J/ψ production at forward rapidity is computed
by fitting d2σJ/ψ/dpt dy with the function

d2σ

dpt dy
= C

pt

[1 + (
pt
p0

)2]n
(2)

with C , p0 and n as free parameters, as done in [9]. The result, rel-
ative to the range 0 < pt < 8 GeV/c, is 〈pt〉 = 2.28 ± 0.07(stat.) ±
0.04(syst.) GeV/c. A similar analysis carried out on the

√
s =

7 TeV data published in [5] gives 〈pt〉 = 2.44 ± 0.09(stat.) ±
0.06(syst.) GeV/c for 2.5 < y < 4 and 〈pt〉 = 2.72 ± 0.21(stat.) ±
0.28(syst.) GeV/c for |y| < 0.9 (for that data sample d2σJ/ψ/dpt dy
was also calculated for the dielectron analysis, in the range 0 <

pt < 7 GeV/c). The quoted systematic uncertainties are related to
the uncorrelated systematic uncertainties for d2σ/dpt dy.
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Fig. 5. The
√

s-dependence of 〈pt〉 for inclusive J/ψ production, for various fixed-
target and collider experiments. For the ALICE points the error bars represent the
quadratic sum of statistical and systematic uncertainties. The points for

√
s = 7 TeV

have been slightly shifted to improve visibility.

Table 2
The 〈pt〉 and 〈p2

t 〉 values for inclusive J/ψ production measured by ALICE. Statistical
and systematic uncertainties are quoted separately.

〈pt〉 (GeV/c) 〈p2
t 〉 (GeV/c)2

√
s = 2.76 TeV, 2.5 < y < 4 2.28 ± 0.07 ± 0.04 7.06 ± 0.40 ± 0.22√
s = 7 TeV, |y| < 0.9 2.72 ± 0.21 ± 0.28 10.02 ± 1.40 ± 1.80√
s = 7 TeV, 2.5 < y < 4 2.44 ± 0.09 ± 0.06 8.32 ± 0.50 ± 0.35

Fig. 5 presents the
√

s-dependence of the inclusive J/ψ 〈pt〉,
for various fixed-target and collider experiments [3,5–7,9,27]. The
results show a roughly linear increase of 〈pt〉 with ln(

√
s ), with

slightly larger 〈pt〉 values at central rapidity. The numerical values
for both 〈pt〉 and 〈p2

t 〉 are quoted in Table 2.
In Fig. 6 we present the results for dσJ/ψ/dy at

√
s = 2.76 TeV,

compared with the previously published
√

s = 7 TeV results. The
numerical values corresponding to the results presented in Fig. 4
and Fig. 6 are shown in Table 3, together with the number of signal
events and with the values for A × ε . Most sources of systematic
uncertainty are common or strongly bin-to-bin correlated, except,
as outlined before, the ones related to the signal extraction and to
the MC inputs that are therefore quoted separately in Table 3.

The kinematic coverage of the ALICE experiment is unique
among the LHC experiments due to the very good acceptance
down to pt = 0 at central rapidity. This feature allows a compar-
ison of the pt-integrated mid-rapidity cross sections with those
from lower energy collider experiments. The result is displayed in
Fig. 7, where the dσJ/ψ/dy values from ALICE for the two energies
are shown together with results from RHIC [9] and Tevatron [7]
experiments, as a function of

√
s.

4. Conclusions

The ALICE experiment has measured the inclusive J/ψ produc-
tion cross section for proton–proton collisions at

√
s = 2.76 TeV, in

the rapidity ranges |y| < 0.9 and 2.5 < y < 4, down to pt = 0.
The measured values are σJ/ψ (|y| < 0.9) = 7.75 ± 1.78(stat.) ±
1.39(syst.) + 1.16(λHE = 1) − 1.63(λHE = −1) μb and σJ/ψ(2.5 <

y < 4) = 3.34 ± 0.13(stat.) ± 0.27(syst.) + 0.53(λCS = 1) −
1.07(λCS = −1) μb. Differential cross sections in y and pt have
also been measured for the forward rapidity region. These results

Fig. 6. Differential J/ψ production cross section at
√

s = 2.76 TeV compared to pre-
vious ALICE results at

√
s = 7 TeV [5]. The vertical error bars represent the statistical

errors while the boxes correspond to the systematic uncertainties. The systematic
uncertainties on luminosity are not included.

Fig. 7. The
√

s-dependence of the inclusive J/ψ production cross section dσ/dy, at
central rapidity for various collider experiments.

provide an important intermediate point between top Tevatron en-
ergy and the current maximum LHC energy. They also represent a
crucial reference for the measurement of nuclear effects on J/ψ
production in Pb–Pb interactions carried out at the same center-
of-mass energy per nucleon–nucleon collision [28].
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