PHASE DISPLACEMENT ACCELERATION

Small empty buckets are created at the resonance energy.

The buckets are decelerated through the stack, that is swept to higher energy ($\Delta W = A_{bucket}/2\pi$). During the sweep, a $\Delta P/P$ increase occurs (stack dilution).

The particles are extracted in small micropulses (not continuous process) with a $\Delta P/P = 0.1$ %.

The speed of the sweep (i.e. of the acceleration) is limited by the synchrotron frequency.

The bucket dimensions are kept small in comparison with the stack to limit disturbancies to a small portion of the stack.

The enaction stops if the RF power is switched off.

FEASIBILITY OF A PHASE-DISPLACEMENT

ACCELERATION SYSTEM AND A

MICRO-BUCKET TRANSFER SYSTEM

FOR 'FEEDING' THE RESONANCE

presented by M. Crescenti

February 13th and 14th 1996

PS, CERN

ACCELERATION STARTING FROM THE BOTTOM OF THE STACK.

The beam is trapped in small buckets created at the bottom of the stack.

The buckets are accelerated through the stack until the particles are extracted.

The number of particles extracted at each sweep is proportional to the bucket area.

The stack is swept down by $\Delta W = A_{bucket}/2\pi$, stack dilution is not avoided.

The frequency swing is constant.

ACCELERATION STARTING FROM THE TOP OF THE STACK.

The beam is trapped in small buckets created at the top of the stack. The buckets do not traverse the stack, thus avoiding stack dilution. The frequency swing is variable.

stationary bucket height [eV]:

$H_{bs} =$	$(2 \times \sqrt{2} \times \beta)$	$h \times e \times V_{q} \times W$		
	^h	$\pi \times \eta $		

stable phase and related parameters:

$$\phi_{s}, \Gamma = \sin \phi_{s}, \alpha(\Gamma) = \frac{A_{b}(\Gamma)}{A_{b}(0)}, \Upsilon(\Gamma)$$

bucket area [eV x s]:

$$A_b = \alpha(\Gamma) \times A_{bs}$$

bucket height [eV]:

$$H_{b} = Y(\Gamma) \times \frac{H_{bs}}{\sqrt{2}}$$

synchrotron frequency [Hz]:

TENTATIVE PARAMETERS

• AP/Pbeen = 0.5 %

Feb. 1996

limited by the dimensions of the vacuum chamber.

• h = 10/100

tentative to provide an as much as possible uniform "feeding" of the resonance.

• • • = 15 deg

usually chosen between 10/20 to keep constant bucket area during the frequency swing.

• Vr less than 3 kV

need to keep it as small as possible to reduce the RF system requests.

number of sweeps < 100

need to limit stack dilution to a max $\Delta P/P_{tet} = 0.7$ %.

spill time = 250 ms

need to limit the treatment time.

- · nr of particles per micropulse ~ 1E9 protons, ~ 1E7 lons.
- nr of particles per pulse ~ 1E11 protons, ~ 1E9 lons.

tenta....e to cope with voxel scanning specifications.

ACCELERATION

frequency sweep [Hz]:

$$\Delta f_{sweep} = \frac{\Delta P}{P} \times \eta \times f_{rev} \times h$$

kinetic energy increase per sweep [eV]:

number of sweeps (theoretically):

$$N = \frac{\Delta W_{lol}}{\Delta W_{sweep}}$$

maximum speed of the sweep [Hz/s]:

176

TENTATIVE CHOICES FOR A PHASE DISPLACEMENT ACCELERATION INTO THE RESONANCE (b=10)

linetis energy per susies	- CEMOV B'	SOOMoV p*	1 1200 WAL	400000V/u C
		1		
Y	1.034	1.32	1.120	1.425
ß	0.342	0.653	0.453	0.713
ד (גבאר) ד	0.772	0.433	0.675	0.39
	1.540	2.575	1,026	2,015
April (40/0 000000 015) [55]	0.7	0.7	0.7	0.7
AL_ADTO I LIBIT (CH2)	73	89.5	65.3	74.9
h	10	10	10	10
BUCKETS				
é. (deg)	15	15	15	15
Г=золо,	0.259	0.259	0.250	0.259
V _e [V]	25	170	700	2700
FalHz)	1.35E+07	2.585+07	1.03E+07	2.82E+07
Abuciat [eV*rad]	1.245+04	1.78E+05	4.655+05	3.42E+05
Hbuckst (oV)	4.03E+03	7.145+04	1.055+05	1.37E+05
Synchrotron Frequency [Hz]	7.005+03	6.325+03	2455+04	1.08E+04
Ap/p increase per sweep [%]	3.67E-06	2.23E-05	8.602-05	3.02E-05
PHASE DISPLACEMENT				
meen current (nA)	32	32	3.05	3.05
totsinparticles	1.008+11	1.005+11	1.005+00	1.00E+09
AWtotal [eV]	7.39E+04	7.005+05	2.47E+05	1.41E+07
AWsweep [eV]	1971	2.04E+04	7.405+04	6.45E+05
neweeps	39	20	34	25
PULSED FASHION				
Tsweep [µs]	5616	7091	3260	0605
Tmicropulse (µs)	702	806	407	103
nperticlespersweep	>1c0	>1@	>107	>107
Tapili (s)	0.21	0.217	0.243	0.224
maxspeedofsweep [Hz/sec]	1,30E+08	1.05E+03	2.65E+05	8.63E+05
Ap/p of extracted beam [%]	0.1	0.1	0.1	0.1

Feb. 1996

177

TENTATIVE CHOICES FOR A PHASE DISPLACEMENT ACCELERATION INTO THE RESONANCE (h=100)

kinetic energy per nucleon	60MeV p*	300MeV p*	120MoV/u "C"	400MeV/u 12C*6
ĩ	1.054	1.32	1.128	1.426
β	0.342	0.653	0.463	0.713
ד (ד=3)	0.772	0.453	0.675	0.38
Inv (MHz)	1.348	2.576	1.826	2.815
Δp/p total (Δp/p beam=0.5%) [%]	0.7	0.7	0.7	0.7
Δtammap/p x tam x η x h [KHz]	730	835	863	749
h	100	100	100	100
BUCKETS				
e, (deg)	15	15	15	15
F=sens,	0.259	0.359	0.259	0.259
V. [V]	50	350	1400	5500
F,(Hz)	1.35E+08	2.58E+08	1.83E+00	2.82E+03
Abucket (eV'red)	5.54E+03	8.09E+04	2.08E+05	1.55E+06
Hbucket (eV)	2.22E+03	3.24E+04	8.34E+04	6.19E+05
Synchrotron Frequency (Hz)	3.13E+04	2.57E+04	1.105+05	8.93E+04
Ap/p increase per sweep [%]	4.34E-06	1.00E-05	3.58E-06	1.36E-05
PHASE DISPLACEMENT			1	
meen current (nA)	3.2	3.2	3.05	3.85
totalnoarticles	1.00E+11	1.00E+11	1.005+00	1.005+09
AWtotal (eV)	7.305+04	7.805+05	2.47E+05	1.41E+07
AWawaap (eV)	801	1.205+04	3.31E+04	2.46E+05
newceps	64	61	75	57
PULSED FASHION				
Teweep [us]	2000	2032	3260	4264
Tmicropulae (us)	250	480	407	633
mantiplessoreweed	>1c9	>100	>107	>107
Tapili (s)	0.225	0.232	0.243	0.244
maxepeedateweep [Hz/sec]	2.005+03	2.18E+00	2.05E+00	1.76E+00
Ap/p of entracted beam [%]	0.1	0.1	0.1	0.1

TENTATIVE CHOICES FOR A MICROBUCKETS ACCELERATION TO FEED THE RESONANCE (b=10, proton case considered)

ACCELERATION PRO	DM THE BOTTOM	OF THE STACK	ACCELERATION	ROM THE TO	P OF THE STA	CK
	Constant at 1	CREMAN of	Citile V a*		20014oV p*	
tinote energy	COMPA D.	200mmov p	COMPANY P			
totalagarticipa	1.002+11	1.005+11	1.00E+11		1.002+11	
nperticlespersweep	>109	>169	>100		>109	
h	10	10	10		10	
¢, (deg)	15	16	15		15	
V _{rt} [V]	20	140	20		140	1
(F.(Hz)	1.255+07	2.005+07	1.205+07		2.585+07	1
Ap/p incr. due to trav. bucket[%]	1.47E-05	9.058-03	1		1	
Synchrotron Prequency (Hz)	6.265+03	5.745+03	6.25E+03		5.74E+03	
(atzh)qoewatobeeqazam	1.04E+07	8.705+05				
			Mith towage	MAX toweep	MIN toweop	MAX toweep
AlAp/p I L I J I h [HI]	6.255.04	7.105+04	1.045+04	6.2555+04	1.195+04	7.16E+04
AWistai (eV)	6.24E+04	6.005+05	6.248+04		6.09E+05	
AWeweep (eV)	1783	2.576+04	1703		25741	
numberofsweeps	35	25	35		25	
Teweep [µs]	6017	0213	1002	6017	1269	8213
Tmicropulse (µ8)	752	1025	752		1026	
Teplii (ms)	216	213	216		213	
Ap/p of entracted beam(%)	0.1	0.1	0.1		0.1	

Feb. 1996

1**79**

TENTATIVE CHOICES FOR A MICROBUCKETS ACCELERATION TO FEED THE RESONANCE (h=100, proton case considered)

ACCELERATION FROM THE BOTTOM OF THE STACK			ACCELERATION FROM THE TOP OF THE STACK			
kinetic energy	60MeV p	300MeV p*	60MeV p*		300MeV p*	
totainparticles	1.00E+11	1.00E+11	1.00E+11		1.00E+11	
nparticlespersweep	>109	>109	>109		>109	
h	100	100	100		100	
¢, (deg)	15	15	15		15	
Vr [V]	40	200	40		200	
F _r (Hz)	1.35E+08	2.58E+08	1.35E+08		2.58E+08	
Ap/p incr. due to trav. bucket[%]	1.47E-06	9.05E-06			1	
Synchrotron Frequency [Hz]	2.80E+04	2.57E+04	2.00E+04		2.57E+04	
maxspeedotsweep[Hz/s]	2.08E+08	1.74E+08			1	
			MIN teweep	MAX faweep	MIN foweep	MAX teweep
Δf	6.25E+05	7.16E+05	1.04E+05	6.25E+05	1.195+05	7.105+05
AWtotal [eV]	6.34E+04	6.00E+05	8.348+04		6.68E+05	
∆₩sweep [eV]	765	1.16E+04	788		11511	
numberateweeps	60		80			
Taweep (µs)	3008	4103	601	2003	694	4103
Tmicropulse (µs)	376	513	378		513	
Teplii (ms)	242	223	242		220	
Ap/p of extracted beam [%]	0.1	0.1	0.1		0.1	

Phase Displacement and Unstacking from Bottom.

Example: a pill-box cavity.

.

REFERENCES:

POINTS IN FAVOUR

CONCLUSION

• very few parameters to vary: RF voltage, frequency swing.

- unstacking from the top good estimation of the number of particles extracted per micropulse (+ A_b).
- pulsed extraction (possible treatment with voxel scanning?)
- · easy and quick to stop: RF power off.

.

POINTS NOT IN FAVOUR

- · slow micropulse extraction (hundreds of microseconds).
- not continuous beam pulse extraction (not possible treatment with raster scanning?).
- · if high harmonic number a "small" dedicated RF system is needed.
- lattice constraints: additional ~ 0.2/0.3 m needed for the additional cavity in a low dispersion region.

1) E.J.N. Wilson, Proton Synchrotron Accelerator Theory, CERN 77/07.

2) E. Ciapaia, Stacking and Phase Displacement Acceleration, CERN 85/19 CAS.

3) C. Bovet et al., A Selection of Formulae and Data Useful for the Design of Alternating Gradient Synchrotrons, CERN MPS-SI, Int. DL/70/4.

4) P. Bryant, E. Ciapala, W. Pirki, private communications.