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NORMALISED SYSTEM OF COORDINATES 

Calculations are greatly simplified by using normalised 
coordinates: the betatron oscillations are represented by a 
circular motion in the normalised phase plane, such that their 
amplitude and phase can be easily evaluated. The distance 
along the equilibrium orbit is denoted by s and the radial or 
vertical component of the displacement from the reference 
orbit is denoted by x, the betatron oscillation Is expressed by: 

x(s) = a.Jp(s)cos[p(.r)+ 8] 

where P(s) is the betatron amplitude function, and 

d.r 
Jl(S) = J IJ(.r) 

the betatron phase function with a and a arbitrary constants. 
This expression is reduced to a hannonic oscillation If we 
introduce the normalised variables: 

..t(s) 
X(.t) = ~p(s} 



J 
ds 

J.l(s) = P<s) 

In this new system the betatron oscillation is described by: 

X= acos(J.l + 0) 
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and the trajectory in phase space becomes a circle; deriving X 
with respect to the variable J.l: 

. dX 
X =-=-asin(J.l+O) 

dJ.L 

Real phase space 

x' 

X 

Normalised phase space 

X' 

X 

The emittance is the same in both systems and is given by: 

I 
The normalising matrix N is expressed by: 

while its inverse is: 

I (I 0) N=.Jjia. p 

N-' =-1 ( p 0) 
.Jii -a. I 
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The matrix for the transformation in the real phase plane 
(x, x') from an azimuth s,to an azimuth .r2 is: 

.JP1P2 sinJ.L 

J~.!_ ( COSJ.l-U 2 S j rtJ.l) 
P2 I 

where J.l=J.l(s2 )-~t(J 1 ) : fl 1 = n (J1). rtc . The matrix for the 
transfonnation in the nornwli.,cd phase plnnc is: 

M =( cosJ.l sinJ.l) 
12 -sin J.l cos J.1. 
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FIELD IN A SEXTUPOLE 

From Maxwell equations, assuming that the magnetic field 
has, to a good approximation, only transverse components 
and being interested only in the field inside the vacuum pipe, 
we can derive the vector potential ''A" for a magnet with 2n 
poles in Cartesian coordinates: 

A= l::A,. /,. (x,l) ,. 

with/" an homogeneous function in x and t of order n: 

f,.(x,z.) = (x+it)" 

The real tenns correspond to regular multipolea. the 
imaginary ones to skew multipoles as summarised In the 
following table. 

Vector potential solutions in Cartesian coordinate• 

Multlpole n Regular Skew 

quadrupoje 2 x2
-7.2 2u 

sextupole 3 x3-3xz2 3x2z-z1 

oclupole 4 x4-6x2z2+z4 4x,i:-4u, 
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For our calculations, it is useful to relate A,. to the field, for 
example, in the median plane using the Taylor expansion: 

:l A - - I (d(rt-l) Bl u rt-1 l (n-1) 
Bz:(z=O)=-;-= LnA"x = L(-~-i)• ·dx(n-h- x 

u X n=l n=l · 

so that: 

In particular, for a regular sextupole: 

so that: 

Sign conventions 

The following diagram shows the conventions adopted, i.e.·:·. 

• F-sextupole, if it focuses particle with x positive: 
• D-sextupole, if it defocuses particles with x positive. 

Focusing sextupole and coordinate system 

focusing 

s 

defocusing 

z t 
s 

N 

z 

F-sextupole 

X 

s 

... 

z 
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Let us now calculate the kick given by a focusing sextupole to 
a particle moving at a distance x from the central orbit on the 
median plane supposing the length t .. of the sextupole to be 
negligible (thin-lens approximation): 

where the minus sign is due to the fact that a particle at a 
positive x is bent by the B field toward the origin of ads. 
Substituting the expression for the field: 

In normalised coordinates at the sextupole position, we have: 

16 

. l 
llX5 =SX I 

with S being the normalised sextupole strength: 

and K2MAD (m"3]: 

K2 [ -3] I (d2 ~~ ) (T -2 J 
MAD m = 333556· p

0 
[OeV I c) dx 

0 
m • 



LOCKING ACfiON AND ADDITION 
OFSEXTUPOLES 
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Let us go into detail analysing the effect of a sextupole treated 
as a thin lens. As shown in the following diagram the phase 
shift given by the sextupole is: 

AX. S 2 , Sa 
AJ.t = -cosJ.l=- X cosJ..L =Sa cos · J..l = -(cos3J.1 + 3cosJ.l) 

a a 4 

Supposing that we are close to a third integer tune, in three 
turns the second tenn in the last equation averages zero, while 
the first tenn is constant, since its phase is an integer multiple 
of 2Jt. From the figure it also appears that: 

&J AX' . sx2 . =S 2 • Sa . -=-smJl=- smJ.l- acos J.1SIDJ.1=-san)J.1 
a a a 4 
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where the last equality is valid close to the resonance. When 
the particle is exactly on resonance, the phase advancro.s by ·an 
integral number of 2Jt and the particle 'locks' onto the 
resonance, repeating again and again the same trajectory in 
phase space. The following figure is a pictorial representation 
of the situation, corresponding to the "fixed points - comers" 
of the last stable triangle. 

X' 

phase shifts 

3rd sextupole at 4JtQ 

1st sextupole at X=O: 
rnoeffect 

X 

2nd sextupole at 2JtQ 
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If we are close to resonance from the expression of phase 
shift, we have in the smooth approximation where ~ is the 
azimuthal angle: 

Sa 
6J.L = 2n6Q= 4(cos3Q~) 

~(>, ~W"""st;, ,#I J: L:Q.f5 • '1 
from which we deduce that the tune or the particle wanders 
within a band around the unperturbed tune Qo: 

So So 
<.A - - < Q<(!,+ ·· 1 8n 8n 

If the third integer tune value is not inside this band, the 
particle cannot be locked and it is stable, in other words at a 
.. tune distance" AQ from Qo the particles with amplitude: 

are stable. This fact gives the phase space stable triangles that 
will be discussed later. Replacing the inequality by an 
equality, we obtain the amplitude of the unstable fixed points 
and figure out that in the amplitude-tune space the resonance 
Is a straight line u shown In the following picture. The slope 
of the resonance line is related to the spread in momentum 
through the chromaticity. 
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Amplitude 

unstable region 

-- --~ 

beam 

f1Pip, Q 

Now, suppose that we have an azimuth distribution of 
sextupoles that can be expressed as a Fourier series in +: 

S(+ )= rs. tJtt 

introducing it into the equation of phase displacement and 
integrating around the machine~irc_u!Jifere~:-,..) 

~(T "6~ -t <iQ ~ 

S a ~l.Jit 
Ap.= l:J-• cos(3Q+)t ti+ :$ 

~ • 4 ~ :. f j~C ,_oru•sj-~- /(s-30),.>j Jcl fo ~>--~ ·f ss:Ba. 

we ~~lice that the integral is large and finite ir: 

3Q= s .::--, 
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that is in ~h~ addition of the sextupoles we have to consider 
the third harmonic or the sextupole distribution in betatron 
phase around the machine. Actually, since in the expression 
of S it also appears as a power or the beta function, and 
periodicities in the lattice structure can also drive the 
resonance together with multipole field patterns. 

Equating the sum or sextupoles to a virtual sextupole we 
have: 

S,m,,,1 exp(f'P .'< _,,,, ,, )= L_s, exp(j1J..l x .• ) 
' 

where J.lx.t is the betatron phase location or the i-th sextupole. 

By separating real and imaginary parts we obtain: 

Equivalent se.xtupole phase and strength 

(I) 

(2) 
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that is betatron phase and· strength of a single equivalent 
sextupole in the ring. 

First consideration 

From the previous equation (2) it is easy to show that for a 
distribution of sextupoles of equal strength and spaced by t\p 
we have: 

• cancellation of the driving term if L\f.1 = Jt/3; 

• reinforcement of the driving term if L\f.1 = 2Jt/J. 

Second consideration 

If the sextupoles are placed in a region of finite horizontal 

dispersion (Dx) they also affect the chromaticity i1Q'.,. of the 

machine: 

' i)Qx t, [ SF ~ /R ) SD ~{A ) ] (3) 
AQx a :l~ = 4 K2MAD .L,\Px Dx ,. + K2MAD .L,~x D. " 

u p 1t ""'' -· . 
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In general, it would be better to have the possibility of acting 
on the resonance and the chromaticity independently: 

• to drive the resonance, without affecting the chromaticity 

• put the sextupoles in a zero dispersion region; 

• to act on the chromaticity, without drivirr~ the re.wrrance 

• arrange the correction sextupoles with a phase 
difference .1J..l = n/3 between two consecutive ones. 

Third consideration 

Consider a lattice with a superperiodicity of 2 and with two 
sextupoles with the same absolute strength (S or K2MAo), but 
diametrically opposing [l\J! = QJt = (n ± l/3) Jt] each other: 

from (2) we have: 

from (3) and (4) we have: 
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• l, p [ Sl . S2 ] 
l\Q,=-4Jt 'D~ K2MAD +K2MAD 

so that if n Is even: 

• Sa=· Sz > only driving the resonance 

• Sa= Sz > only correcting chromaticity 

no independent action is possible with n odd. 
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PHASE SPACE TRAJECTORIES 

Let us consider the effect of a single sextupole supposing that 
the unperturbed fractional tune is close to one-third of an 
integer and that the sextupole represents a small perturbation 
so that we can add up the effects turn by turn independently. 
We calculate the increments M and M' on three turns 
starting from the exit of the sextupole. 

The total displacement and deflection after three turns: 

(~·) 

are the sum of: 

• 3 unperturbed turns plus a kick: 

(
cos3J1. sin3Jl:rx~) 
-sin3J1• cos3J1 Xo 

+ 
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• 2 unperturbed turns. a kick and another tum: 

+ 

( s(cos2J1• Xo ~ sin2J1• X0)2
) 

+ 

( . 
COSJ.l 

• • -srn Jl 

. . 
Sin J1 
COSJ.l • 

cos2J1• X0 + sin2Jl• X0 
-.sln2Jl.Xo+cos2J1• Xo+ s(cos2p• Xo+ .sin2p• x0)2 

• 1 unperturbed tum. a kick and 2 other turns: 

+ 

( s{cos tl• Xo ~sin Jl• Xo)2 ) 

+ 

(
cos2Jl• sin2J1•I cos Jl• Xo +sin Jl·Xo ) 
-sin2J.l• cos2J1• -sin tl• Xo +cos Jl• Xo + S(cos tl• Xo +sin p• XC,}l 
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Adding the contributions for: 

with n integer and j5QI << ~, we get: 

Spiral step and !ipiral kick 

. 3 ( 2 •2) LU' = -E X o + 4 S X 0 - X o 

where E = 6K SQ. 

Along the separatrices, for £ = 0, from the above equations, 
we can calculate the increase in amplitude of oscillation 

R = ~(X2 + X' 2
) in 3tums: 

Indicating with Res the position of the electrostatic septum 
along the separatrix, we find a relation that connect position 
of the septum, spiral step M and strength of the sextupole: 
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3 
·---a-S 

RES RF.S +AR 4 

To identify the trajectories in phase space, we deduce from 
the above expressions the invariant of motion choosina the 
time taken by a particle to make three revolutions u unit 
time: 

with: 

dX . 3 · iJH -=IJ.X=eX +-SX0X0 =--:-
~ o 2 ax 

Hamiltonian 

(I) 
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The above expressions (I) and (2) identify the invariant H as 
the Hamiltonian in the conjugate variables X and X'. 
Different values of H correspond to different trajectories in 
the phase space. 

lfS = 0: 

the expression of H becomes the equation of a circle, as it 
should be in nonnalised coordinates having eliminated the 
source of perturbation. 

lfS ~0: 

• the trajectories are symmetric with respect to the X-axis, 
since X' appears only in quadrature; 

• for small values of X and X', the trajectories are slightly 
deformed circles; 

• from expression (l) and (2) equating to zero we derive the 
coordinates of the fixed points: 
+ 0(0; 0) fixed point of first order (it repeats itself in one 

tum); 

• P J4e·o) 
'\.Js' 

p =( 2£ 2 £) 
2 · 3S; .JJs 

pl{ !;;~~) 
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fixed points of order three (repeat themselves in three 
turns). · 

The lines connecting the points P1 define a triangle that limits 
the stable, phase-space region (inside) from the unstable 
region (outside). These are called separatrices. ~ next 
figure shows the triangle for EIS > 0. 

particles in triangle 
are stable 

Phose spac~ at sutupole 
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The equations of the separatrices and the area of the triangle 
are easily calculated for the present configuration at the 
sextupole position. 

Equation of separatrices 

· I( 4E) X =Jj X-js 

x·=JJ -x~) J3\ 3S 

Distanc~ of side of triangl~ to origin of axis 

Stable emittance= (area triangle)!ft [7t m rad] 
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General equation of the separatrix 

The equations of the separatrices (A), (B) and (C), deduced 
earlier. are valid at the sextupole (single or virtual) position In 
the lattice. Let us generalise these equations with the help of 
the following picture. 

x· x·.., 
separatrix 

o,.· Aplp 

1 
X 

The line equation is given by taking into consideration the 
following points: 

• the anticlockwise rotation of the line by an angle a; 

• the displacement of the equilibrium orbit due to the 
dispersion (D,., D,. ') in the machine and Induced by the 
momentum deviation of the particle (Ap/p). 
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Applying the above transformations we get the general 
expression of the separatrix: 

It is more useful to express the equations of the separatrices 
(A), (8) and (C) as a function of the phase advance (L\J.l) 
between the sextupole position and the observation point, 
remembering that the phase advance determines a clockwise 
rotation. The separafrices at the sextupole posi tion are 
obtained from the preceding equation inserting: 

(A) ===> (l = 180° 

(B) ===> (l = 300° 

(C) ==> a= 420° 

and, rotating by AJ.l, we have at the observation point: 

(A): 

-(X -I\~ }os(t\tl)+( x·-v: ~ }in(t\tl)= H 

(8): 

-(X -D,.~ }os(AJ1+24<r)+( x·-v: ~ };n(t\t1+24<r) = H 

(C): 

-(X - D,. ~ }os(L\p.+l2<r)+( x· -o: ~}in (t\tl+l2<r) = H 
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Particle dynamics 

We want to analyse the movement of the particles along the 
separatrices; for this purpose we substitute their expressions 
in the equations (I) and (2): 

2£ 
X=-:Ls 

. I ( 4£) X--,;: X---- v3 3S 

dX • 3 . 
di=£ X0 +2SXoXo 
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First consideration 

The following figures show the sense of rotation of the 
particles in three turns and the direction of the outgoing 
separatrices at the sextupole position, depending on the sign 
ofE and S. 

S>O 

S<O 

I At sextupole position I 
BQ>O 

Above re~onnnce 
BQ<O 

Below resonance 

~----~------------------L------------------~ 
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Second consideration 

The parabolic expressions obtained so far become zero ·m 
correspondence to the point P1, thus showing that they are 
indeed fixed points. 

Third consideration 

The parabolic behaviour also shows that the movement of the 
particles on the separatrices in between the fixed points 
becomes slower and slower a.c; we come close to them. thus 
giving a concentration of particles in the corners of the 
triangle. On the contrary, the spiral step is increasing 
quadratically as the particle move away from the fixed points 
along the separatrices, as shown in the following picture 
where a stable orbit and the movement on the outgolna 
separatrices in unit time are indicated. 

... , 
···~ -~···· · · · 

• V' 

. I ... ., ,.,.. '·" Xlm1111 
I I 

&Q=O.OOI .0. ' 

t=iJ.OI2S7 . 
5=0.9639 (m' 111) 

. 
-. ·-------------.e-t....L----------.. -
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