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NORMALISED SYSTEM OF COORDINATES

Calculations are greatly simplified by using normalised
coordinates: the betatron oscillations are represented by a
circular motion in the normalised phase plane, such that their
amplitude and phase can be easily evaluated. The distance
along the equilibrium orbit is denoted by s and the radial or
vertical component of the displacement from the reference

- orbit is denoted by x, the betatron oscillation is expressed by:

x(5) = aJp(s) cos[u(s) + 8]
where P(s) is the betatron amplitude function, and
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"(’)=’Bw

the betatron phase function with a and & arbitrary constants.
This expression is reduced to a harmonic oscillation if we
introduce the normalised variables:




ds

= jl-’v(s)

The emittance is the same in both systems and is given by:

In this new system the betatron oscillation is described by:

jz
E, = ﬁxn =X

X =acos(p + )

and the trajectory in phase space becomes a circle; deriving X The normalising matrix N is expressed by:
with respect to the variable p:

. dX . 1 (1 O
== o L.
X an asin(pL +0) N = \ﬂi(“ ﬂ)
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while its inverse is:
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The matrix for the transformation in the real phase plane
(x, x") from an azimuth s; to an azimuth s, is:

ng(cosu+a,sinp) VBB, sinp
|

- (]mlaz );i[:/%.:.[}&:z-—uﬂcﬂsll] J?I(COSH—Uzsi“u)

B, )

M,

where p=p(s,)-p(s,): B, =P (5,), ctc. The matrix for the
transformation in the normalised phase plane is:

—— in
= [cosu s p)

= —-sinjt cosp
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FIELD IN A SEXTUPOLE

From Maxwell equations, assuming that the magnetic field
has, to a good approximation, only transverse components
and being interested only in the field inside the vacuum pipe,
we can derive the vector potential “A” for a magnet with 2n
poles in Cartesian coordinates:

A= ZAH fn (I.Z)

with f, an homogeneous function in x and z of order n:
Salx,2)=(x +iz)"

The real terms correspond to regular multipoles, the
imaginary ones to skew multipoles as summarised in the
following table.

Vector potential solutions in Cartesian coordinates

Moultipole n Regular Shew

quadrupole 2 x-z! 2xz
sextupole 3 x*-3xz? Ix’z-2
octupole 4 x'-6x2z%+z 4x’z-4xz’
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For our calculations, it is useful to relate A, to the field, for
example, in the median plane using the Taylor expansion:

dA ¢ = 1 [d""8B g
Bz(z=0)=-a—;=zl,nA..x"_'= 5% 4 [ . o] (D)
n= =

so that:

In particular, for a regular sextupole:
A=As(x* -3x2?)

so that:
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Sign conventions

The following diagram shows the conventions adopted, i.e.: .

F-sextupole, if it focuses particle with x positive;
e  D-sextupole, if it defocuses particles with x positive.

Focusing sextupole and coordinate system

‘4 .
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F-sextupole

b

defocusing

X z
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S

A




15

Let us now calculate the kick given by a focusing sextupole to
a particle moving at a distance x from the central orbit on the
median plane supposing the length €, of the sextupole to be
negligible (thin-lens approximation):

B(z 0)¢,

BEEE

Ax =—

where the minus sign is due to the fact that a particle al a
positive x is bent by the B field toward the origin of axis.
Substituting the expression for the field:

2
PN A x,
2Bl &

In normalised coordinates at the sextupole position, we have:

axg =5, 1 L (dx J(Jﬁ?x)

" 2|Bop|

41 €, B
()
2|Bopl dx? :

¥,
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AXS' =SX2

with § being the normalised sextupole strength:

%1 ¢ (d'B % __loy
s=ph-_—|Z %2 =-— R0, me,s =—=PRe, K2
and K2p4p [m"]:
-3y_ 1 {dz Bz] -2
K2 (M 1= 33556 po 1GeV Il a2 ), I 1
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LOCKING ACTION AND ADDITION
OF SEXTUPOLES

Let us go into detail analysing the effect of a sextupole treated
as a thin lens. As shown in the following diagram the phase
shift given by the sextupole is:

Ap,=£cosu=§)(’ cosu=Sacos’|.l=%(cos3u+3msu)
a a

X'a

AX'
..“' : Al.l
3 g ‘)/' ""'
- I -
a
X

Supposing that we are close to a third integer tune, in three
turns the second term in the last equation averages zero, while
the first term is constant, since its phase is an integer multiple
of 2r. From the figure it also appears that:

ﬂ:i‘isinpés-x 2 sinu=£i‘acosz T} sinu=£sin KT
a a a 4

where the last equality is valid close to the resonance. When
the particle is exactly on resonance, the phase advances by an
integral number of 2r and the particle ‘locks’ onto the
resonance, repeating again and again the same trajectory in
phase space. The following figure is a pictorial representation
of the situation, corresponding to the “fixed points - corners”
of the last stable triangle.

Ist sextupole at X=0:
no effect
phase shifts f

R

3rd sextupole at 4nQ \

2nd sextupole at 2nQ
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If we are close to resonance from the expression of phase
shift, we have in the smooth approximation where ¢ is the
azimuthal angie:

Ap =2nAQ= —‘?;(cos3Q¢ )
- A———. g 274 . Q¢
o fars g . af

from which we deduce that the tune of the particle wanders
within a band around the unperturbed tune Qg:

If the third integer tune value is not inside this band, the
particle cannot be locked and it is stable, in other words at a
“tune distance” AQ from Q, the particles with amplitude:

- 8n|AQ]
S

are stable. This fact gives the phase space stable triangles that
will be discussed later. Replacing the inequality by an
equality, we obtain the amplitude of the unstable fixed points
and figure out that in the amplitude-tune space the resonance
Is a straight line as shown in the following picture. The slope
of the resonance line is related to the spread in momentum
through the chromaticity.

#

.
S L
&
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Amplitude

unstable region 4

N

Q at resonance

.

Ap/p, Q@

Now, suppose that we have an azimuth distribution of
sextupoles that can be expressed as a Fourier series in ¢:

S@)=15,e"

introducing it into the equation of phase displacement and
integrating around the machine circumferenge:
grating e iramlerenge;

2

= S,a 1 -
- A=Y [ . cos(30¢)e’™” dé

I% J[ﬂ%s}?f" ;F(S—Sﬂ)jéj JQ{ /Jo (}\..G) ;f ss¥3C

we notice that the integral is large and finite if:

3Q0=s -



S.. -| s®) g - T o

that is in the addition of the sextupoles we have to consider
the third harmonic of the sextupole distribution in betatron
phase around the machine. Actually, since in the expression
of S it also appears as a power of the beta function, and
periodicities in the lattice structure can also drive the
resonance together with multipole field patterns.

Equating the sum of sextupoles to a virtual sextupole we
have:

Sr:rlmll exp(j}p X virtual! ): Z‘S‘I C"I’(J‘}u Xa )

where Jix ; is the betatron phase location of the i-th sextupole.

By separating real and imaginary parts we obtain:

Equivalent sextupole phase and strength

ZS, an(3|.lx J)

larl(3lix.vfmul ;S, cos(3pty ) v

Shonar{ EScoln) JH(Ssomone) | @
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that is betatron phase and- strength of a single equivalent
sextupole in the ring. P
First consideration
From the previous equation (2) it is easy to show that for a
distribution of sextupoles of equal strength and spaced by Ap
we have:

e  cancellation of the driving term if Ap = n/3;

e  reinforcement of the driving term if Ap = 25/3.

Second consideration

If the sextupoles are placed in a region of finite horizontal
dispersion (D,) they also affect the chromaticity AQ',, of the

machine:

' NF ND
00,22 - Ll 1o, $0, 0,), + k28 56,0, | O

d P L n=|
.9 ¢ NE 2
AQ: - 5% =_ﬁ[xzﬁjm Z'(Dz D-l’)u + Kziab Z'(B! Dl )n] (4)
P = =
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In general, it would be better to have the possibility of acting
on the resonance and the chromaticity independently:

® (o drive the resonance, without affecting the chromaticity
¢ put the sextupoles in a zero dispersion region;
e to act on the chromaticity, without driving the resonance

¢ arrange the correction sextupoles with a phase
difference Ap = /3 between two consecutive ones.

Third consideration

Consider a lattice with a superperiodicity of 2 and with two
sextupoles with the same absolute strength (S or K2,,p), but
diametrically opposing [Au = On = (n £ 1/3) =] each other:

from (2) we have:
S3omuat =(S1c05(0) + 5; cos(3gn )’ +(5; sin(0) + S, sin(3gn ))*
nevern: Syma =S —52
nodd: S =S+S52

from (3) and (4) we have:

"I . : :
AQ, = 2=, D, [ K2jup +K2ifw

AQ, =‘zt;'gpz D, [ K24rp +K22{z40
so that if n Is even:
e §=-5; ====> only driving the resonance
e §;=5; ====> only correcting chromaticity

no independent action is possible with n odd.

24
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PHASE SPACE TRAJECTORIES

Let us consider the effect of a single sextupole supposing that
the unperturbed fractional tune is close to one-third of an
integer and that the sextupole represents a small perturbation
so that we can add up the effects turn by turn independently.
We calculate the increments AX and AX' on three turns
starting from the exit of the sextupole.

The total displacement and deflection after three turns:

(&)

are the sum of:

e 3 unperturbed turns plus a kick:

cos3u® sin3p’ Xq)
—sin3pn°® cos3p® | Xo
+

0
[S(cosJu'Xo + siu3|1'X6)2)

26

e 2 unperturbed turns, a kick and another turn:

cos2pt’ sin2p’ [ X
—sin2p* cos2p”’ | Xo

+

0
[s(ooszu‘x., + .u'uzu'x.',)’)

+

(cosu' sinp® cos2t " Xo + sin2n° Xg
~sinp* cosp’ | ~sin2j1" Xo + cos2pn* Xg + S{cos2pn” Xo + sin2pn° Xo)*

e | unperturbed turn, a kick and 2 other turns:

cosp’® sinp’ Xo)
—sinp® cosp’ | Xo
.'.

(S(cos u'Xog sin u‘X&)z)

+

cos2p’® sin2p’ cos u* Xg +sin u* X
~sin2p* cos2p* | —sin p° Xo + cos p* Xo + S(cos pu* Xo + sin . Xg)?
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Adding the contributions for:
. 1
p =2n (n;t3+BQ]

with n integer and [5Q << %, we gel:

Spiral step and spiral kick
;. 3 ;
AX =€ XD + 2‘SXan

AX =-¢ X0+35(X§—X52)

where e = 6z 5Q.

Along the separatrices, for ¢ = 0, from the above equations,
we can calculate the increase in amplitude of oscillation

R=1ﬂX2 +X") in 3 turns:

AR=33R’
4

Indicating with Rgg the position of the electrostatic septum
along the separatrix, we find a relation that connect position
of the septum, spiral step AR and strength of the sextupole:
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Rgs Reg+AR 4

To identify the trajectories in phase space, we deduce from
the above expressions the invariant of motion choosing the
time taken by a particle to make three revolutions as unit
time:

JH (1)

dX . ‘
I=AX=BX0 +ESX0X0=5)—{='

dX _ v 3yt _y2)=9H ¢
—-=AX _-—ex,,+zs(x. X )%

with:

Hamiltonian

=§ (x2 +x“)+§(3xx" -x°)
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The above expressions (1) and (2) identify the invariant H as
the Hamiltonian in the conjugate variables X and X’.
Different values of H comrespond to different trajectories in
the phase space.

IfS=0:

the expression of H becomes the equation of a circle, as it
should be in normalised coordinates having eliminated the
source of perturbation.

IfS#0:

e the trajectories are symmetric with respect to the X-axis,
since X' appears only in quadrature;

o for small values of X and X', the trajectories are slightly
deformed circles;

e from expression (1) and (2) equating to zero we derive the
coordinates of the fixed points:

¢ O(0; 0) fixed point of first order (it repeats itself in one
turn);

¢ P, -:—%;O)

po{2529)

. 35" V3§

p,{_z_&_z__e_)
35'V3S
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fixed points of order three (repeat themselves in three
turns). '

The lines connecting the points P; define a triangle that limits
the stable, phase-space region (inside) from the unstable
region (outside). These are called separatrices. The next
figure shows the triangle for /S > 0.

particles in triangle X
are stable e p
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The equations of the separatrices and the area of the triangle General equation of the separatrix
are easily calculated for the present configuration at the #

sextupole position.
The equations of the separatrices (A), (B) and (C), deduced

earlier, are valid at the sextupole (single or virtual) position in
Equation of separatrices the lattice. Let us generalise these equations with the help of
the following picture.

x | X ?
o 4¢
X=plX"35 separatrix i
_ a
H
X ] X
@ ﬁ( 3§ Xae
>
X
Distance of side of triangle to origin of axis i
H=%%=5§’:—8Q ! The line equation is given by taking into consideration the

following points:

o the anticlockwise rotation of the line by an angle o

Stable emittance = (area triangle nTmra .
(ar gle)/n [ d] i e the displacement of the equilibrium orbit due to the

3.3 2 dispersion (D,, D,") in the machine and induced by the
_£H 2‘ﬂ—E(SQ)2 48J-E(Q, Ap] : momentum deviation of the particle (Ap/p).
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Applying the above transformations we get the general
expression of the separatrix:

(X—D,, %}:osa +(X'—D; %’}rinu =H

It is more useful to express the equations of the separatrices
(A), (B) and (C) as a function of the phase advance (Ap)
between the sextupole position and the observation point,
remembering that the phase advance determines a clockwise
rotation. The separatrices at the sextupole position are
obtained from the preceding equation inserting:

(A) ====> o= 180°
(B) ====> oa=300°
C) === a=420°

and, rotating by A, we have at the observation point:

(A):
-(x-n,%}:;dmh(x'-o; éﬁ)ﬁn(du) =H

(B}(x_o,. %}os(muw)«»(x'-p; épﬂ)xin(ﬂp-i-%ﬂ’): H

(Ciz(x_p,, é}};os(apmmh(x'—p; %)m (Ap+120°) = &
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Particle dynamics

We want to analyse the movement of the particles along the

separatrices; for this purpose we substitute their expressions
in the equations (1) and (2):

[FETR 8
Cal™m

m ——eXo+ s(x x(,’)

s ¥ 4e ]
H(x-35)
X 3., | 4 e?
g @ =2 SX -ﬁex—m—sr
%=Ex +%SXOX{|

dX _ NB 9., | 4 ¢g?
> > SX +73-8 X-l-m'g'
ax
dt

=€ X, +3 5XoXq
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First consideration

The following figures show the sense of rotation of the
particles in three turns and the direction of the outgoing
separatrices at the sextupole position, depending on the sign
of e and S.

Al sextupole position

8Q>0 Q<0

Above resonance Below resonance

o | Nl

S<0 pd [w
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Second consideration

The parabolic expressions obtained so far become zero i
correspondence to the point P;, thus showing that they are
indeed fixed points.

Third consideration

The parabolic behaviour also shows that the movement of the
particles on the separatrices in between the fixed points
becomes slower and slower as we come close to them, thus
giving a concentration of particles in the comers of the
triangle. On the contrary, the spiral step is increasing
quadratically as the particle move away from the fixed points
along the separatrices, as shown in the following picture
where a stable orbit and the movement on the outgoing
separatrices in unit time are indicated.

Ot
X'y
) el e 0.0% -
| | \- v /
d1 208 0 X[m"’ . U

m_«u 0.4
€=0.01257 =:
§=0.9639 [m*?) : J
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