Andrey Golutvin ITEP/CERN

NP in CP-violation at LHC(b)

Mean values of angles and sides are in desperate agreement with predictions UT may stay closed for quite some time !!!

To define the apex of UT
$$\bar{\rho} = \rho \left[1 - \frac{1}{2} \lambda^2 \right]$$
; $\bar{\eta} = \eta \left[1 - \frac{1}{2} \lambda^2 \right]$

one needs to know at least 2 independent quantities out of 2 sides:

$$R_{b} = \frac{|V_{ud}V_{ub}^{*}|}{|V_{cd}V_{cb}^{*}|} = \sqrt{\bar{\rho}^{2} + \bar{\eta}^{2}} \; ; \; R_{t} = \frac{|V_{td}V_{tb}^{*}|}{|V_{cd}V_{cb}^{*}|} = \sqrt{(1 - \bar{\rho})^{2} + \bar{\eta}^{2}}$$

and 3 angles: α , β and γ

Straightforward strategy to search for NP contribution:

Extract quantities R_b and γ from the *tree-mediated* processes, that are expected to be unaffected by NP, and compare computed values for

$$R_t = \sqrt{1 + R_b^2 - 2R_b \cos\gamma} \quad ; \quad \cot\beta = \frac{1 - R_b \cos\gamma}{R_b \sin\gamma}$$

with direct measurements in the processes involving loop graphs.

Interpret the difference as a NP signal

Unfortunately such approach has very limited sensitivity to the NP contribution

Due to geometry of UT the dependence of γ on β is rather moderate:

 γ is more constrained by R_t. However NP effects may cancel out: R_t is proportional to the ratio of "identical" loop graphs: boxes or penguins

 $\sigma^{1/2}(R_b)$

 $\sigma(R_b) / R_b$

Alternative approach

Measure the same observable in the processes mediated by different topologies: trees, penguins or boxes

Examples:

- Penguin vs Box

 $|V_{ts}|$ can be extracted either from the measurement of $\Delta(m_s)$ or BR(B $\rightarrow K^*\gamma$). The same applies for |Vtd|

Tree vs Penguin

Extraction of γ from penguins (through α : B $\rightarrow \pi\pi$, $\rho\pi$ and $\rho\rho$) and various tree topologies

Current experimental precision on γ determined in trees and loops leaves the room of ~ 40 for the difference

Finally, the measurement of the ϕ_s is a very sensitive test of SM !!!

In the rest of the talk LHCb sensitivities to the measurement of β , ϕ_s and γ are presented

Slides from LHCb talks at the BEACH (M. Musy) and LHC Physics (J. Rademacker, L.Fernandez and O. Deschamps) conferences

Basic Principle & Tagging.

N events with tagging efficiency ε and mis-tag fraction ω are statistically equivalent to ε_{eff} perfectly tagged events.

 $B_s \to J/\psi \phi$ is the B_s counterpart of $B^0 {\to} J/\psi \ K_S$

- □ In SM $\phi_s = -2arg(V_{ts}) = -2\lambda^2\eta \sim -0.04$
- □ Sensitive to New Physics effects in the $B_s \overline{B_s}$ system if NP in mixing → $\phi_s = \phi_s(SM) + \phi_s(NP)$

 \square 2 CP-even, 1 CP-odd amplitudes, angular analysis needed to separate, then fit to $\phi_{S}, \ \Delta\Gamma_{S},$ CP-odd fraction

Channels used	Yield (10 ³ /2 fb ⁻¹)	B/S	$<\delta_{\tau}>$ (fs)	σ _{mass} (MeV/c ²)
B _s →J/ψ(μ ⁻ μ ⁺)φ(K ⁺ K ⁻)	131	0.12	36	14
B _s →η _c (h ⁻ h ⁺ h ⁻ h ⁺)φ(K ⁺ K ⁻)	3	0.6	30	12
Β _s →J/ψ(μ⁻μ⁺) η(γγ)	8.5	2.0	37	34
B _s →J/ψ(μ⁻μ⁺) η(π⁺π⁻π⁰(γγ))	3.0	3.0	34	20
Β _s →J/ψ (μ⁻μ⁺) η′(π⁺π⁻η (γγ))	2.2	2.0	32	19
$B_{s} \rightarrow D_{s}(K^{+}K^{-}\pi^{-}) D_{s}(K^{+}K^{-}\pi^{+})$	4.0	0.3	56	6

With SM inputs: $\Delta m_s = 17.5/ps$, $\phi_s = -0.04$, $\Delta \Gamma_s / \Gamma_s = 0.15$ and 2/fb stat:

LHCb	Channels	$\sigma(\phi_s)$ [rad]	Weight $(\sigma/\sigma_i)^2$ [%]
	$B_{s} \rightarrow J/\psi \ \eta(\pi^+ \ \pi^- \ \pi^0)$	0.142	2.3
	$B_s \to D_s D_s$	0.133	2.6
	$B_{s} \to J/\psi \ \eta(\gamma \ \gamma)$	0.109	3.9
	$B_{s} o \eta_{c} \phi$	0.108	3.9
	Combined (pure CP eigenstates)	0.060	12.7
	$B_{s} \to J/\psi\phi$	0.023	87.3
	Combined (all CP eigenstates)	0.022	100.0

Atlas will reach $\sigma(\phi_s) \sim 0.08$ (10/fb, $\Delta m_s = 20/ps$, 90k J/ $\psi \phi$ evts)

CMS will reach $\sigma(\phi_s) \sim 0.07$ (10/fb, on J/ $\psi\phi$ evts, no tagging)

 $\sigma(\phi_s)$ vs $\phi_{\rm s}$

$\sigma(\phi_s)$ vs $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$

Very small dependence on ϕ_s value for $B_s \rightarrow J/\psi \phi$

Does not depend on sign of ϕ_s for:

- pure CP eigenstates
- **֎** B_s → J/ $\psi\phi$ and one-angle angular analysis

Not very sensitive to $\Delta\Gamma_s/\Gamma_s$ value Better sensitivity for larger $\Delta\Gamma_s/\Gamma_s$ \rightarrow better separation between Γ_L (short lived, CP even) and Γ_H (long lived, CP odd) eigenstates

from $B_s \rightarrow D^{\pm}_s K^{+}$

□ 2 same order tree level amplitudes $(\infty \lambda^3)$: large asymmetries, *NP components unlikely!*

□ From the measurement 4 rates and 2 time-dependent asymmetries one gets $\gamma+\phi_s$ (with ϕ_s from $B_s \rightarrow J/\psi\phi$)

D_sK asymmetries (5 years, $\Delta m_s = 20 \text{ ps}^{-1}$) D_sK asym

1.5

2.5

2

-0.25

-0.5

0

0.5

<u>Yield</u>: 5.4k signal events in 2/fb, residual contamination from $B_s \rightarrow D_s \pi \sim 10\%$ S/B > 1 at 90% CL <u>Precision</u>: $\sigma(\gamma) \sim 13^{\circ}$ ($\Delta m_s = 17.3/ps$, -20° < Δ_{strong} <20°) Discrete ambiguities in γ can be resolved if $\Delta \Gamma_s$ large enough, or using B⁰ \rightarrow D π and U-spin symmetry

t [ps]

3.5

3

γ from	В								

~	, .																
·γ	1	r	on	1	B	+											
(7																

> 3 observables, 5 parameters (γ , δ_B , r_B , $\delta_D^{K\pi}$, $r_D^{K\pi}$), $r_D^{K\pi} \sim 0.06$ known add more D-decays to constrain further:

 $D \rightarrow K \pi \pi \pi$ (Cabibbo favoured + DCS)

✓ 4 new rates with 2 new parameters, $\delta_D^{K3\pi}$; $r_D^{K3\pi} \sim 0.06$

 $D \rightarrow KK$ (CP eigenstate)

✓ 2 new rates, no new unknown: $r_D^{KK} = 1$; $\delta_D^{KK} = 0$

→ 7 relative rates and 5 unknowns: γ , r_B , δ_B , $\delta_D^{K\pi}$, $\delta_D^{K3\pi}$ from CLEO-C

Precision: $\sigma(\gamma) \sim 4 - 13$ in 1 year, 2/fb depending on $\delta_D^{K\pi}$ (-25 < $\delta_D^{K\pi}$ <25) and on $\delta_D^{K3\pi}$ (-180 < $\delta_D^{K3\pi}$ <180)

Extraction of γ via Dalitz study (D $\rightarrow K_s \pi \pi$) is under investigation.

$B^{\pm} \rightarrow (K_{s}\pi\pi)_{D^{0}}K^{\pm}$ Dalitz analysis.

Distribution of kin. variables...

in data at BaBar:

sample, not

...in our implementation of BaBar's isobar Model, used in sensitivity studies:

Detector/yield studies:

- o Acc ~flat (within stats)
- o ~ 1.3k events/year

Sensitivity study

1.3k events, ignoring backg. and detector effects, for $\gamma=60, \delta=130, r_B = 8\%$: $\sigma(\gamma) \sim 16^{\circ}$ r_B dependence: $\sigma(\gamma) \propto 1/\left(\frac{r_B}{1+r_B^2}\right) \approx 1/r_B$ We use UTFit's global fit result, $r_B = 8\%$. BaBar/BELLE's value from this channel is closer to 15%.

4 body Amplitude Analysis

- What works with $D^0 \to K_s \pi \pi$ should also work with $D^0 \to K^+ K^- \pi^+ \pi^-$.
- Particularly suitable for LHCb: No neutrals, benefits from K/π separation by LHCb RICH.
- 4 body amplitude analyses are a bit trickier than 3 body:
 - Need 5 instead of 2 parameters to describe kinematics, and phase-space is not flat in m_{ij}^2 parameters.
 - Amplitude structure a bit more complex, with several intermediate states in decay chains.
- But can be done. See FOCUS in Phys.Lett. B610 (2005) 225-234 (hep-ex/0411031) (for D's not from B's)

Amplitude analysis of $B_u^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_{D^0}K^{\pm}$.

MC input values: $\gamma = 60^{\circ}$ $\delta = 130^{\circ}, r_B = 8\%$

Fitting 60 toy experiment with 1k events each: mean±rms $63^{o}\pm 21^{o}$ $\delta = 130^{\circ} \pm 17^{\circ}$ $8.4\%{\pm}2.7\%$ r_B $-\log \mathcal{L}$

All preliminary, all without background or detector effects

Assuming LHCb yields of 1.5k/year and $r_B = 8\%$, expect $\sigma(\gamma) \sim 20^o$ in 1 year.

High hopes for for ADS-type 4-body channel $B^{\pm} \rightarrow (K\pi\pi\pi)_{D^{o}}K^{\pm}$, which has stronger interference, i.e. r_{B} closer to 1.

LHCb specific yield and sensitivity studies for both channels pending.

[Snyder,Quinn,1993]

Thanks to the interferences between the transitions $B \rightarrow \rho \pi \rightarrow \pi^- \pi^0 \pi^+$ we can simultaneously extract α with amplitudes and strong phases from the time dependence of the tagged Dalitz plot

*prob. of mirror solutions decreases with stats, down to ~0.2% for 10/fb

C from $B^{\circ} \rightarrow \rho \rho$

Measuring the time dependent asymetry of B $\rightarrow \rho^+ \rho^-$ provide $\alpha_{eff} = \alpha + \Delta \alpha$

 $A_{\rho\rho}^{+-}(t) = S_{\rho\rho}^{+-} \sin(\Delta m_d t) - C_{\rho\rho}^{+-} \cos(\Delta m_d t)$ A+-/√2 with $S_{oo}^{+-} = \sqrt{1 - C_{oo}^{+-2}} \sin(2\alpha_{eff})$ $A^{+0} = A^{-0}$ LHCb is not competitive with current B-factory performance in $\rho^+\rho^-$. The main contribution of LHCb to the $\rho\rho$ analysis could be the measurement of the B $\rightarrow \rho^0 \rho^0$ mode $B \rightarrow \rho \rho$: WA winter 2006 + $B^{00}/C^{00}/S^{00}$ from LHCb ($\sigma(S^{00})=0.4$) Yields in 2/fb: $\alpha = 98.1^{\circ}_{-8^{\circ}}$ $B \rightarrow \rho^+ \rho^-$: 2k (B/S<5, 90%CL) 0.8 - 6 $B^{\pm} \rightarrow \rho^{\pm} \rho^{0}$: 9k (B/S ~ 1) 0.6 $B \rightarrow \rho^{0}\rho^{0}$: ~0.5k, assuming a BR=0.5 10⁻⁶ 0.4 (Babar: $B^{00} = (0.54^{+0.36}_{-0.32} \pm 0.19)10^{-6}$) 0.2 20 40 60 80 100 120 140 160 180

Summary table

 Angle	Channel	Yield*	B _{bb} /S	LHC (2/fb)				
ß	$B_d \rightarrow J/\Psi K_S$	216k	0.8	σ(β) ≈ 0.6°				
 P	$B_d \rightarrow \phi K_S$	0.8k	<2.4	σ(β) ≈ 12 °				
	$B_s \rightarrow J/\Psi \Phi$	125k	0.3					
 φ _s	$B_s \rightarrow J/\Psi \eta$	12k	2-3	σ(φ _s) ≈ 1.2°				
	$B_s \rightarrow \eta_c \Phi$	3k	0.7					
	$B_s \rightarrow D_s K$	5.4k	<1.0	σ(γ) ≈ 13 °				
	$B_d o \pi\pi$	26k	<0.7					
	$B_s \rightarrow KK$	37k	0.3	$\int \sigma(\lambda) \approx 2$				
 γ	$B_d \rightarrow D^0(K^-\pi^+)K^{*0}$	0.5k	<0.3					
	$B_d \rightarrow D^0(K^+\pi^-)K^{*0}$	2.4k	<2.0	σ(γ) ≈ 8°				
	$B_d \rightarrow D_{CP}(K^+K^-)K^{*0}$	0.6k	<0.3	J				
	B ⁻ → D ⁰ (K ⁺ π ⁻)K ⁻	60k	0.5	$(\cdot) \sim 1^{\circ} 12^{\circ}$				
	$B^{-} \rightarrow D^{0}(K^{-}\pi^{+})K^{-}$	2k	0.5	0(γ) ≈ 4 - 13				
 α	$B_d \rightarrow \pi \rho, \rho \rho$	14k	0.8	σ(α) < 10°				

* Untagged annual yield after trigger

Summary

Measurement of ϕ_s with ~1 precision in 1 year

Measurement of γ in trees and loops and check for consistency:

- Many channels for the tree topologies → expect to reach a few degrees sensitivity in 1 year
- -The measurement of γ in loops should be possible in $B \rightarrow \rho \pi$ with <10 precision. For the study of $\rho \rho$ final states, the measurement of $BR(B \rightarrow \rho^0 \rho^0)$ together with the measurements of asymmetries at B factories will further improve precision

If difference is observed we need a model to relate 4 model to relate 4 and 4 masses and couplings of NP !!!