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Abstract

Some time ago, an accurate phenomenological approach, the BSW model,
was developed for proton-proton and antiproton-proton elastic scattering
cross sections at center-of-mass energies above 10 GeV. This model has been
used to give successful theoretical predictions for these processes, at succes-
sive collider energies.

The BSW model involves a combination of integrals that, while com-
putable numerically at fairly high energies, require some mathematical anal-
ysis to reveal the high-energy asymptotic behavior. In this paper we present
a high-energy asymptotic representation of the scattering amplitude at mod-
erate momentum transfer, for the leading order in an expansion parameter
closely related to the logarithm of the center-of-mass energy.

The fact that the expansion parameter goes as the logarithm of the energy
means that the asymptotic behavior is accurate only for energies greatly
beyond any foreseeable experiment. However, we compare the asymptotic
representation against the numerically calculated model for energies in a less
extreme region of energy. The asymptotic representation is given by a simple
formula which, in particular, exhibits the oscillations of the differential cross
section with momentum transfer. We also compare the BSW asymptotic
behavior with the Singh-Roy unitarity upper bound for the diffraction peak.
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1 Introduction

Forty years ago, it was found theoretically, on the basis of quantum field
theory, that, contrary to the general belief at the time, the total cross sections
for hadronic scattering increases monotonically without limit at high energies
[1]. In order to make predictions that could be verified by later experiments,
it was essential to develop an accurate phenomenology with the following
characteristics:
(i) - it agrees with the above theoretical asymptotic result at high energies,
(ii) - it describes the experimental data at energies available at that time.

Such a phenomenological model, termed the BSW model, was formulated
by three of us [2, 3, 4].

Our model belongs to a class of models attempting to describe with dif-
ferent approaches in the eikonal formalism the high energy behavior of p p
elastic scattering, let us mention a non exhaustive list [5]-[9].

In this paper, after reviewing the BSW phenomenological model for the
elastic scattering amplitude, we present our predictions for LHC energies
and derive an asymptotic representation for the scattering amplitude for
extremely high center-of-mass energies.

In section 2 we recall the basic features of the impact picture approach
(BSW), with its phenomenological parameters, and the expression of the
scattering amplitude used in the next sections. In section 3 we present our
predictions for the LHC energies at

√
s = 7, 14GeV and make a compari-

son with the TOTEM preliminary results. The opacity function involves the
evaluation of the function F (x⊥), we discuss in section 4 a detailed decom-
position of its expression in view of an asymptotic representation. In section
5 we obtain the high-energy asymptotic representation of the BSW ampli-
tude in terms of a simple expression. This derivation involves a number of
mathematical steps and the consideration of two different kinematic regions.
Some technical details are collected in the Appendix. Numerical calculations
are presented in section 6, where we discussed some features of the real and
imaginary parts of the scattering amplitude, generating some oscillations in
the differential cross section. The comparison of the asymptotic representa-
tion and the exact BSW result is done at the LHC energy and also at a much
higher center-of-mass energy of 6000TeV. In section 7, we also compare the
asymptotic representation with the Singh-Roy unitarity upper bound for the
diffration peak and we give our concluding remarks.
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2 The BSW model

To describe the experimental data taken at the relatively low energies avail-
able to experiments forty years ago, the BSW model was proposed, including
Regge backgrounds. Both for the energies of the present-day colliders and
for the purpose of studying the asymptotic behavior of the model at high
energies, all the Regge backgrounds can be neglected. The BSW model is
given by the following matrix element for elastic scattering

M(s,∆) =
is

2π

∫

dx⊥e
−i∆·x⊥D(s,x⊥) , (1)

where s is the square of the center-of-mass energy, ∆ is the momentum
transfer, x⊥ is the impact parameter and all spin variables have been omitted.
For this model we take the simplest form that we can use for the opacity

D(s,x⊥) = 1− e−Ω(s,x⊥) , (2)

with
Ω(s,x⊥) = S(s)F (x⊥) , (3)

where x⊥ ≡ |x⊥| . The function S(s) is given by the complex symmetric
expression, obtained from the high energy behavior of quantum field theory
[1]

S(s) = sc

(ln s)c′
+

uc

(lnu)c′
, (4)

with s and u in units of GeV2, where u is the third Mandelstam variable. In
this Eq. (4), c and c′ are two dimensionless constants given below in Table
1. That they are constants implies that the Pomeron is a fixed Regge cut
rather than a Regge pole. For the asymptotic behavior at high energy and
modest momentum transfers, we have to a good approximation

ln u = ln s− iπ , (5)

so that

S(s) = sc

(ln s)c′
+

sce−iπc

(ln s− iπ)c′
. (6)

Because F depends on x⊥ only through x⊥, the Fourier transform in Eq. (1)
simplifies to

M(s,∆) = is

∫

∞

0

dx⊥ x⊥ J0(x⊥∆)
[

1− e−S(s)F (x⊥)
]

, (7)
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c = 0.167, c′ = 0.748
m1 = 0.577 GeV, m2 = 1.719 GeV
a = 1.858 GeV, f = 6.971 GeV−2

Table 1: Parameters of the BSW model [4].

where ∆ ≡ |∆|. The function F (x⊥) is taken to be related to the electro-
magnetic form factor G(t) of the proton, where t = −∆2 is the Mandelstam
variable for the square of the momentum transfer. Specifically, F (x⊥) is
defined as in [2] via its Fourier transform F̃ (t) by

F̃ (t) = f [G(t)]2
a2 + t

a2 − t
, (8)

with

G(t) =
1

(1− t/m2
1)(1− t/m2

2)
. (9)

The remaining four parameters of the model, f , a, m1 and m2, are given in
Table 1.
The task is to study the asymptotic behavior of M for large ln s and modest
momentum transfers. Before considering the asymptotic behavior we present
a summary of our predictions for the LHC energies.

3 Predictions at LHC energies

Two experiments are running at the nominal LHC energy
√
s = 7TeV,

TOTEM [10] and ATLAS-ALFA [11] to measure p p elastic scattering, but
so far only TOTEM has released preliminary data. In view of a comparison
with these experiments we present here the predictions of BSW compared to
TOTEM. TOTEM forward slope BT = 20.1± 0.2± 0.3 GeV−2 for |t| (0.02-
0.33)GeV2, an extrapolation to t = 0 gives σT

tot = 98.3 ± 0.2 ± 2.8 mb, our
model gives a continuous variation of the slope with t (see [12]) but an average
slope over the previous t interval gives B = 19.4 GeV−2, and σtot = 92.7±0.8
mb, also ρ = 0.126± 0.01. Elastic cross section σT

el = 24.8± 0.2± 1.2 mb our
prediction is 24.25 ±0.3mb, finally for the dip position |tTdip| = 0.53±0.1±0.1
GeV2, we obtain the same value.
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The predicted BSW differential cross section is shown in Fig. 1 with un-
certainties calculated with a 68% CL,1 we cannot make an exact comparison
with experiment since no final data are available, qualitatively we observe
that the BSW differential cross section is above TOTEM at the second max-
imum by a factor around 1.7.

In view of a future experiment at
√
s = 14TeV we give our predictions:

σtot = 103.63 ± 1.0 mb, ρ = 0.122 ± 0.02, the slope B near the forward
direction gives 20.15GeV−2, σel = 28.76± 0.2 mb, and the elastic differential
cross section is shown in Fig. 7 where |tdip| = 0.45 GeV2.

4 The evaluation of F (x⊥) and its consequences

The purpose of this section is to find the exact expression of F (x⊥), entering
in Eq. (7), in order to determine the most relevant region in x⊥ for the
calculation of the asymptotic limit of M(s,∆), for large s.
Noting that F̃ depends only on ∆2, the Fourier transform that defines F
simplifies to an integral over one variable, so that we have

F (x⊥) =

∫

∞

0

d∆∆ F̃ (−∆2)J0(x⊥∆) , (10)

where J0 denotes the Bessel function of zero order. From Eq. (8), we have
explicitely

F̃ (−∆2) = f
1

(1 + ∆2/m2
1)

2(1 + ∆2/m2
2)

2

a2 −∆2

a2 +∆2
, (11)

which is a rational fraction, symmetric in m1, m2, whose decomposition into
simple elements, allows the direct calculation of F (x⊥). As expected, the
final result can be expressed in terms of modified Bessel functions K0 and
K1. We have the decomposition

F (x⊥) = F1(x⊥) + F2(x⊥) + F3(x⊥) , (12)

1In the following all the BSW differential cross sections are calculated with a 68% CL.
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where

F1(x⊥) =
fm4

1m
4
2

2(m2
2 −m2

1)
3

{

m2
2 −m2

1

m2
1

a2 +m2
1

a2 −m2
1

(m1x⊥)K1(m1x⊥)

−4

[

a2 +m2
1

a2 −m2
1

+
(m2

2 −m2
1)a

2

(a2 −m2
1)

2

]

K0(m1x⊥)

}

(13)

F2(x⊥) =
fm4

1m
4
2

2(m2
2 −m2

1)
3

{

m2
2 −m2

1

m2
2

a2 +m2
2

a2 −m2
2

(m2x⊥)K1(m2x⊥)

+4

[

a2 +m2
2

a2 −m2
2

− (m2
2 −m2

1)a
2

(a2 −m2
2)

2

]

K0(m2x⊥)

}

(14)

F3(x⊥) =
2fm4

1m
4
2a

2

(a2 −m2
1)

2(a2 −m2
2)

2
K0(ax⊥) , (15)

which is clearly symmetric in m1, m2. The arguments of the modified Bessel
functions K1 and K0 arem1x⊥ for F1, while m2x⊥ for F2 and ax⊥ for F3. The
function F is real, positive, bounded, and monotonically decreasing toward
0 as x⊥ increases without bound. Because ReS is large and positive for large
values of ln s, the only contribution to M comes from x⊥ fairly near ln s,
so that the large argument asymptotic expressions for the modified Bessel
functions are applicable. Since as seen from Table 1, m1 < m2 < a, F2 and
F3 are exponentially smaller than F1, only F1 contributes to the asymptotic
behavior of M(s,∆). For the moment we keep the exact expression for
F (x⊥), but we change variables to emphasize the role of F1 as follows. Let
us define two dimensionless variables

x = m1x⊥, (16)

α = ∆/m1. (17)

With this change of variables, Eq. (7) becomes

M(s,∆) =
is

m2
1

∫

∞

0

dx x J0(αx)
[

1− e−S(s)F̂ (x)
]

, (18)

where F̂ (x) = F̂1(x) + F̂2(x) + F̂3(x) and F̂j(x) ≡ Fj(x/m1) = Fj(x⊥),
for j = 1, 2, 3. We note that for x ≫ 1 the asymptotic representation of
F̂ , implied by Eqs. (13) and (16) and the asymptotic representation of the
modified Bessel function [13], is

F̂ (x) ∼ fm2
1m

4
2(a

2 +m2
1)

2(m2
2 −m2

1)
2(a2 −m2

1)
xK1(x) (19)

∼ b
√
x e−x, (20)
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where b is the real coefficient

b =
fm2

1m
4
2(a

2 +m2
1)

2(m2
2 −m2

1)
2(a2 −m2

1)

√

π/2. (21)

5 High-energy asymptotic behavior

Some additional approximations make it possible to obtain an expression
of the scattering amplitude in the high energy limit. The integrand of the
integral in Eq. (7) is complex. From the definition of S(s) in Eq. (4) and
the explicit expression in Eq. (6), we notice that for sufficiently high values
of s, namely

ln s ≫ π , (22)

the second denominator in Eq. (6) can be approximated by the first denom-
inator, so that

S(s) ∼ 2sc

(ln s)c′
cos

(πc

2

)

e−
1
2
iπc . (23)

Thus the phase of S(s) is found to be a constant, namely, −1
2
πc ≈ −0.26

and when ln s is large one has

ReS(s) > ImS ≫ 1. (24)

The function F̂ (x) is positive for all real x and decreasing exponentially with
large x as stated in Eq.(20). Because of these properties of F̂ (x) and the
large value of ReS, the opacity is essentially 1 for values of x, well below a
transition value, and drops exponentially to zero as x increases well above this
transition value. From this, it follows that the asymptotic representation of
the scattering amplitude can be obtained by replacing F̂ (x) by F̂ (z0)e

−(x−z0),
where z0 is a complex transition value chosen in such a way to make S(s)F̂ (z0)
real and of order 1.
By means of a translation in the complex plane from x to x′ = x − z0, the
scattering amplitude of Eq. (18) becomes asymptotically

M(s,∆) ∼ is

m2
1

∫

∞

−z0

dx′(x′ + z0)J0[α(x
′ + z0)]

[

1− e−S(s)F̂ (z0)e−x
′
]

(25)

=
is

m2
1

[
∫ 0

−z0

dx′(x′ + z0)J0[α(x
′ + z0)] + A(s, z0)

]

(26)

=
is

m2
1

[z0
α
J1(αz0) + A(s, z0)

]

, (27)
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where we define

A(s, z0) =

∫

∞

0

dx′(x′ + z0)J0[α(x
′ + z0)]

[

1− e−S(s)F̂ (z0)e−x
′
]

−
∫ 0

−z0

dx′(x′ + z0)J0[α(x
′ + z0)]e

−S(s)F̂ (z0)e−x
′

. (28)

It remains to determine z0 and then to evaluate the asymptotic representa-
tion of A(s, z0). In order to find z0 we use the following relation derived in
Appendix A (see Eq. (A.7))

0 =

∫

∞

0

dx
[

1− e−e−γe−x]

−
∫ 0

−∞

dx e−e−γe−x
, (29)

which suggests defining z0 as solution of the equation

S(s)F̂ (z0) = e−γ , (30)

where γ ≈ 0.5772 is the Euler’s constant. While z0, as a function of s, is best
obtained by solving Eq. (30) numerically, one can see its approximate value
by using the asymptotic representation for F̂ , so that

S(s)b√z0 e
−z0 ≈ e−γ. (31)

By taking logarithms one finds

z0 ≈ ln[b
√
z0S(s)] + γ, (32)

showing how Re z0 grows with Re ln[S(s)] and how Im z0 = arg(S(s)) ap-
proaches −0.26, as ln s becomes very large (see Fig. 1). Then the fact that
Re z0 is large can be used twice. First, in Eq. (28), one can safely replace the
lower limit −z0 in one of the integrals by −∞, so that

A(s, z0) ∼
∫

∞

0

dx(x+ z0)J0[α(x+ z0)]
[

1− e−e−(x+γ)
]

−
∫ 0

−∞

dx(x+ z0)J0[α(x+ z0)]e
−e−(x+γ)

. (33)

Secondly, since the important regions of integration are where x is of the order
of 1, to determine the leading order behavior of the scattering amplitude it
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suffices to replace the factors (x+ z0) by z0, so Eq. (33) reduces to

A(s, z0) ∼ z0

{
∫

∞

0

dx J0[α(x+ z0)]
[

1− e−e−(x+γ)
]

−
∫ 0

−∞

dx J0[α(x+ z0)]e
−e−(x+γ)

}

. (34)

To determine the asymptotic behavior of A(s, z0), we have to study the
Bessel function which depends upon the parameter α, and there are two re-
gions to consider.

i) Small α region

By assuming that α is small, but not αz0, we keep only the first three terms
of the Taylor series to obtain:

J0[α(z0 + x)] = J0(αz0)− αxJ1(αz0)−
(αx)2

2
J0(αz0) + higher order terms.

(35)
By substituting Eq. (35) into Eq. (34), one obtains after some integration by
parts

A(s, z0) ∼ z0

[

I1(e
−γ)J0(αz0)−

α

2
I2(e

−γ)J1(αz0)

−α2

6
I3(e

−γ)J0(αz0)

]

= −z0

[

π2α

12
J1(αz0) +

α2

3
ζ(3)J0(αz0)

]

, (36)

where the In are defined in Appendix A and ζ is the Riemann Zeta function,
and therefore ζ(3) ≈ 1.2021.

ii) Large α region

In this region the large argument asymptotic expansion of the Bessel function
[13] allows one to write, for large |z0| and the contributing values of x which
are O(1),

J0[α(z0 + x)] =

√

2

πz0
cos[α(z0 + x− π/4)] + higher order terms

=
1√
2πz0

[

eiα(z0−π/4)eiαx + e−iα(z0−π/4)e−iαx
]

+ .... (37)
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By substituting Eq. (37) into Eq. (34), this yields for this region of α

A(s, z0) ∼
√

z0
2π

[

ei(αz0−π/4)J (iα) + e−i(αz0−π/4)J (−iα)
]

(38)

= z0

√

2

πz0
[cos(αz0 − π/4)ReJ (iα)− sin(αz0 − π/4)ImJ (iα)] ,

where it follows from Eq. (A.11) of Appendix A that

J (iα) =
i

α
− e−iγαΓ(−iα) . (39)

Comparison with Eq. (37) and the similar expression for J1 shows that to
leading order, this result can be expressed in terms of Bessel functions

A(s, z0) ∼ z0 [J0(αz0)ReJ (iα)− J1(αz0)ImJ (iα)]

= −z0

[(

1

α
+ Im

[

eiγαΓ(iα)
]

)

J1(αz0)+
(

Re
[

eiγαΓ(iα)
])

J0(αz0)

]

.(40)

iii) Uniform approximation

Expanding the Gamma function for small α, one obtains Eq. (36), showing
that Eq. (40) gives a uniform approximation including both regions of the
parameter α. Then from Eq. (27) it follows that for 0 ≤ α ≪ |z0|, the
asymptotic representation of the scattering amplitude is

M(s,∆) ∼ −isz0
m2

1

{[

Im(eiγαΓ(iα))
]

J1(αz0) +
[

Re(eiγαΓ(iα))
]

J0(αz0)
}

.

(41)

6 Numerical results

In this section we present some numerical results to illustrate the asymptotic
formulas obtained on the physical quantities of interest for different energy
values. First let us come back to the determination of the complex parameter
z0(s) which plays an essential role in the solution of the high energy asymp-
totic behavior of the scattering amplitude. As we said earlier, z0 is obtained
by solving numerically Eq. (30) and the results are shown on Fig. 2, for
Rez0(s) and Imz0(s), versus ln (s). As expected, Rez0(s) rises rapidly with
ln (s), whereas Imz0(s) remains small and almost energy independent. It is

11



worth noting that the asymptotic regime requires the validity of Eq. (22), for
example for ln (s) = 10π, corresponding to the center-of energy

√
s of about

6000TeV.
The asymptotic representation of the forward scattering amplitude is ob-

tained from Eq. (41) by taking the limit as α → 0

M(s, 0) ∼ isz20
2m2

1

. (42)

From this formula we calculate the ratio of the real to the imaginary parts
of the forward amplitude defined as

ρ(s) =
ReM(s, 0)

ImM(s, 0)
. (43)

In Fig. 3 (top) we display this result compared to the exact BSW result. We
see that ρ(s) decreases for increasing energy, in agreement with the expecta-
tion that ρ(s) → 0, when s goes to infinity.
The total cross section is obtained from the optical theorem as follows,

σtot =
4π

s
ImM(s, 0), (44)

and we recall that M(s, 0) is dimensionless. It is plotted in Fig 4 (top) com-
pared to the exact BSW result.
In Figs. 3, 4 (top), a gap can be noticed between the asymptotic representa-
tion and the BSW model. The gaps extend to the end of the plotted energy
range of s1/2 = 105 TeV, where ln (s) ≈ 37. To show that the asymptotic
representation actually approaches BSW at sufficiently large values of ln s,
we carried out the first three terms of an asymptotic expansion to obtain

M(s, 0) ∼ is

2m2
1

(

z20 +
π2

6

)

+O(1/z0) . (45)

With this expression in place of (42), the gaps largely close, as seen in Figs. 3,
4 (bottom). This shows indeed that the gaps visible in Figs. 3, 4 (top) are due
to the neglect of non-leading terms in the asymptotic representation. In Fig.
5 we display the ratio of the leading order of the asymptotic representation
to the exact BSW result, which goes to 1 for very, very large s, as expected.
Now let us move from the forward direction to look at the behavior of the
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real and imaginary parts of the scattering amplitude as functions of t. For√
s = 14TeV, Fig. 6 displays the exact BSW amplitude along with its

asymptotic representation. In both cases the imaginary part dominates the
real part and its zeros will produce oscillations in the differential cross section,
as shown in Fig. 7. The differential cross section is given by

dσ

dt
=

π

s2
|M(s,∆)|2 , (46)

where for the asymptotic representation one uses Eq. (41). For both the
BSW amplitude and its asymptotic representation, the real part has a lo-
cal maximum near each zero of the imaginary part, and vice versa. When
the maximum of the real part near a zero of the imaginary part is rela-
tively low, as in the case near |t| = 0.5GeV2, one gets a sharp dip, but if
not, like near |t| = 2GeV2, one gets instead a smooth oscillation. Clearly
the asymptotic result is larger than the exact BSW result, except near the
diffraction peak, where they are hardly distinguishable. At a much higher
energy

√
s = 6000TeV, the number of zeros increases, as shown in Fig. 8

and the low maximum of the real part near the zero of the imaginary part
around |t| = 0.2GeV2, generates a very sharp dip in the cross section, as seen
in Fig. 9, followed by another dip and some smooth oscillations.

7 Concluding remarks

After recalling the basic features of the BSW model, we have presented our
predictions for the LHC energies and compared them with preliminary re-
sults from TOTEM. We have obtained the asymptotic representation of the
BSW model in terms of a simple formula. The existence of several zeros for
both the real and the imaginary parts of the scattering amplitude, generates
oscillations in the differential cross section. The exact BSW result tends to
coincide with this asymptotic representation, as the energy increases. This is
even more striking near the forward direction, in particular for the diffraction
peak of the differential cross section. In connection with this, let us mention
now the following interesting feature of the asymptotic representation. A
unitarity upper bound for the imaginary part of the scattering amplitude for
very high energy and small momentum transfers was derived a long time ago
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by Singh and Roy [14]. It reads 2

ImM(s, t)

ImM(s, 0)
≤ 2J1(

√
r)√

r
, if r < 3.46 , (47)

with r = |t|σtot(s)/4π. For s very large, from Eq. (41), we see that this

variable is simply η = αRez0. The ratio ImM(s,t)
ImM(s,0)

has been plotted in Fig.

10, versus η, for
√
s = 14TeV. We compare the exact BSW result with the

asymptotic representation and also with the Singh-Roy upper bound limit
s → ∞. We observe that the validity of the bound is, indeed, limited to
η < 3.46. Fig. 11 displays the situation at

√
s = 6000TeV and in this case

the upper bound, whose validity is still limited to the diffraction peak, be-
comes much closer to the other two curves.

Acknowledgments We thank J.M Richard for drawing our attention to
the old bound of Singh and Roy. One of us (T.T.W) is greatly indebted to
the CERN Theory Group for their hospitality.

A Appendix

For the small α region, we define

In(β) =

∫

∞

−∞

dx xn d

dx
e−βe−x

(A.1)

= β

∫

∞

−∞

dx xn e−xe−βe−x
(A.2)

=

∫

∞

0

dt[ln(β/t)]ne−t (A.3)

=

[(

ln β − d

dν

)n ∫ ∞

0

dt tνe−t

]
∣

∣

∣

∣

ν=0

(A.4)

=

[(

ln β − d

dν

)n

Γ(1 + ν)

]
∣

∣

∣

∣

ν=0

, (A.5)

where t = βe−x and Γ is the Gamma function. The results for n = 0, 1, 2, 3
are given in Table 2. Here γ ≈ 0.5772 is the Euler’s constant and ζ is the

2One should remember that the Singh-Roy amplitude is twice the BSW amplitude.
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n In(β)
0 1
1 ln β + γ
2 (ln β + γ)2 + π2/6

3 (ln β + γ)3 + π2

2
(ln β + γ) + 2ζ(3)

Table 2: Values of In(β)

Riemann Zeta function. The choice of z0 made in Eq. (30) draws on the fact
that

I1(e
−γ) = −γ + γ = 0, (A.6)

hence Eq. (29) follows as

0 =

∫ 0

−∞

dx x
d

dx
e−e−γe−x

−
∫

∞

0

dx x
d

dx

[

1− e−e−γe−x]

(A.7)

=

∫

∞

0

dx
[

1− e−e−γe−x]

−
∫ 0

−∞

dx e−e−γe−x
. (A.8)

For the large α region one needs J (iα) and J (−iα) where we define

J (iα) =

∫

∞

0

dx eiαx
[

1− e−e−(x+γ)
]

−
∫ 0

−∞

dx eiαxe−e−(x+γ)
(A.9)

=
1

iα

[

−1 +

∫

∞

−∞

eiαx
d

dx
ee

−(x+γ
]

(A.10)

=
1

iα

[

−1 + e−iγαΓ(1− iα)
]

. (A.11)

From Eq. (A.11) and the properties of the Gamma function [15], it follows
that J (−iα) is the complex conjugate of J (iα).
For small values of α one finds

J (iα) ≈ iπ2α

12
− α2

3
ζ(3) . (A.12)
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Figure 1: BSW prediction of the differential cross section versus |t| for √s =
7TeV, uncertainties are calculated with a 68% CL.
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Figure 2: The real and imaginary parts of z0(s) as a function of the energy,
obtained by solving numerically Eq. (30).
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Figure 3: The ratio of the real to the imaginary parts of the forward am-
plitude versus

√
s. Top using Eq. (42) and bottom using Eq. (45) dashed

curves, BSW solid curves.
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Figure 4: The total cross section σtot versus
√
s. Top using Eq. (42) and

bottom using Eq. (45) dashed curves, BSW solid curves.
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Figure 5: The ratio of the leading order of the asymptotic representation to
the exact BSW result, versus the energy.
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Figure 6: The absolute value of the real and imaginary parts of the elastic
scattering amplitude, as a function of |t| for √s = 14TeV, for the exact BSW
result (Real: dashed, Im: solid) and the asymptotic representation (Real:
dotted, Im: dash-dotted).
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Figure 7: The elastic differential cross section versus |t| for √
s = 14TeV

calculated using Eq. (46) dashed curve, BSW solid curve.
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Figure 8: The absolute value of the real and imaginary parts of the elastic
scattering amplitude, as a function of |t| for √s = 6000TeV, , for the exact
BSW result (Real: dashed, Im: solid) and the asymptotic representation
(Real: dotted, Im: dash-dotted).
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Figure 9: The elastic differential cross section calculated using Eq. (46)
dashed curve, BSW solid curve.
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Figure 10: The normalized imaginary part of the elastic scattering amplitude
for

√
s = 14TeV. BSW solid, asymptotic dashed, lim s → ∞ dash-dotted.
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Figure 11: The normalized imaginary part of the elastic scattering amplitude
for

√
s = 6000TeV (same legend as in Fig. 10).
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