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We compute the coefficient of the potential three-loop four-point ultraviolet divergence in pureN ¼ 4

supergravity and show that it vanishes, contrary to expectations from symmetry arguments. The recently

uncovered duality between color and kinematics is used to greatly streamline the calculation. We

comment on all-loop cancellations hinting at further surprises awaiting discovery at higher loops.
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Recent years have seen a resurgence of interest in the
possibility that certain supergravity theories may be ultra-
violet finite. This question had been carefully studied in the
late 1970s and early 1980s in the hope of using super-
gravity to construct fundamental theories of gravity. The
conclusion of these early studies was that nonrenormaliz-
able ultraviolet divergences would almost certainly appear
at a sufficiently large number of quantum loops, though
this remains unproven. Although supersymmetry tends to
tame the ultraviolet divergences, it does not appear to be
sufficient to overcome the increasingly poor ultraviolet
behavior of gravity theories stemming from the two-
derivative coupling. The consensus opinion from that era
was that all pure supergravity theories would likely diverge
at three loops (see, e.g., Ref. [1]), though with assumptions,
certain divergences are perhaps delayed a few extra loop
orders [2].

More recently, direct calculations of divergences in
supergravity theories have been carried out [3–6], shedding
new light on this issue. From these studies we now know
that through four loops maximally supersymmetric N ¼
8 supergravity is finite in space-time dimensions, D<
6=Lþ 4 for L ¼ 2, 3, 4 loops. These calculations also
tell us that the bound is saturated. In D ¼ 4, E7ð7Þ duality
symmetry [7] has recently been used to imply ultraviolet
finiteness below seven loops [8], also explaining the ob-
served lack of divergences. In a parallel development,
string theory and a first quantized formalism use super-
symmetry considerations to arrive at similar conclusions
[9]. The latter approach leads to D-dimensional results
consistent with the explicit calculations through four loops,
but predicts a worse behavior starting at L ¼ 5. At seven
loops, the potential four-graviton counterterm of N ¼ 8
supergravity [10] appears to be consistent with all known
symmetries [8,11]. (See Ref. [12] for a more optimistic
opinion.) More generally, 1=N -BPS operators serve as
potential counterterms for N ¼ 4, 5, 6, 8 supergravity at
L ¼ 3, 4, 5, 7 loops, respectively, suggesting that in D ¼ 4
ultraviolet divergences will occur at these loop orders in
these theories [11]. It therefore might seem safe to

conclude that N ¼ 4 supergravity [13] in particular will
diverge at three loops.
On the other hand, studies of scattering amplitudes

suggest that additional ultraviolet cancellations will be
found beyond these. We know that even pure Einstein
gravity at one loop exhibits remarkable cancellations as
the number of external legs increases [14]. Through uni-
tarity, such cancellations feed into nontrivial ultraviolet
cancellations at all loop orders [15]. In addition, the pro-
posed double-copy structure of gravity loop amplitudes
[16] suggests that gravity amplitudes are more constrained
than symmetry considerations suggest. In this Letter we
show that the ultraviolet properties ofN ¼ 4 supergravity
are indeed better than had been anticipated.
To motivate the possibility of hidden cancellations in

N ¼ 4 supergravity, consider the unitarity cut displayed
in Fig. 1 isolating a one-loop subamplitude in a three-loop
amplitude. As noted in Refs. [14,17], at one loop a
five-point diagram in an N ¼ 4 supergravity amplitude
effectively can have up to five powers of loop momenta in
the numerator, similar to the power counting of pure
Yang-Mills theory. There are also three additional powers
of numerator loop momentum coming from the tree am-
plitude on the right-hand side of the cut, giving a total of at
least eight powers of numerator loop momentum. Taking
into account three loop integrals and ten propagators
suggests that this amplitude should diverge at least loga-
rithmically in D ¼ 4. (The power counting analysis of this
cut performed in Ref. [17] assumed that additional powers
of numerator loop momenta coming from the tree ampli-
tude in the cut can be ignored, contrary to our analysis.)

FIG. 1 (color online). A sample cut at three loops displaying
cancellations inN ¼ 4 supergravity special to four dimensions.
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However, this type of power counting is too naı̈ve and
does not account for the special property that no one- and
two-loop ultraviolet divergences are present in D ¼ 4 [18].
Thus in D ¼ 4 there are additional cancellations of the
loop momenta in one-loop subdiagrams, effectively
removing powers of loop momenta from the numerators
of the loop integrands once all pieces have been combined
and integrated. These additional cancellations can affect
the higher-loop effective overall power counting. We show
this occurs by computing the coefficient of the potential
three-loop four-point divergences in N ¼ 4 supergravity.

To make the calculation of the potential three-loop diver-
gence feasible, we use the duality between color and
kinematics uncovered by Carrasco, Johansson and one of
the authors (BCJ) [16,19]. According to this conjecture, we
can reorganize a (super) Yang-Mills amplitude into graphs
where the numerators satisfy identities in one-to-one corre-
spondence with color Jacobi identities. Whenever this is
accomplished, we obtain corresponding gravity amplitudes
simply by replacing color factors with kinematic numerators
of a corresponding second gauge-theory amplitude. That is,
gravity loop amplitudes are given by [16]

ð�iÞLþ1

ð�=2Þn�2þ2L
Mloop

n ¼X
j

Z YL
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dDpl
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1
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�j
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where nj and ~nj are kinematic numerator factors from

gauge-theory amplitudes and � is the gravitational coupling.
The factors Sj are the usual combinatoric factors associated

with the symmetries of the graphs. The sum runs over all
distinct graphs with cubic vertices, such as the ones appear-
ing in Fig. 2. The propagators appearing in Eq. (1) are the
ordinary propagators corresponding to the internal lines
of the graphs. Depending on the particular theory under

consideration, we use different component gauge-theory
numerators in Eq. (1).
In our study of pureN ¼ 4 supergravity with no matter

multiplets [13], we take one component gauge theory to be
N ¼ 4 super-Yang-Mills (sYM) theory and the second
component to be nonsupersymmetric pure Yang-Mills
theory. This construction was used in earlier one- and two-
loop studies of N � 4 supergravity amplitudes [20]. The
main differences in our case are that integrated gauge-theory
expressions are not known and that the N ¼ 4 sYM
numerators are not all independent of loop momenta.
As explained in Refs. [16,21], only one of the two

component gauge-theory amplitudes needs to be in a form
manifestly satisfying the duality for the double-copy prop-
erty (1) to hold. The other gauge-theory amplitude can be
any convenient representation arranged into diagrams with
only cubic vertices. We note that our construction applies
immediately to all four-point amplitudes of pure N ¼ 4
supergravity, since these are constructed simply by consid-
ering all possible external states on theN ¼ 4 sYM side of
the double copy; at four-points this information is entirely
encoded in an overall tree-amplitude prefactor. At three
loops, we take theN ¼ 4 sYM copy from Ref. [16], since
it has BCJ duality manifest. This representation of the
N ¼ 4 sYM amplitude is described by the 12 graphs in
Fig. 2. For the pure Yang-Mills copy, we use ordinary
Feynman diagrams in Feynman gauge, including ghost
contributions. The contact contributions are assigned to
diagrams with only cubic vertices according to their color
factor. In this construction, most Feynman diagrams are
irrelevant because in the double-copy formula they get
multiplied by vanishingN ¼ 4 sYM diagram numerators.
This construction gives the complete three-loop four-point
integrand of N ¼ 4 supergravity. We have also applied
these ideas to reproduce the absence of one- and two-loop
divergences in pureN ¼ 4 supergravity, starting from the
one- and two-loop four-point sYM amplitudes [22,23].
To prove the correctness of our construction, we use the

unitarity method [3,24]. The generalized unitarity cuts
decompose the constructed integrand into sums of products
of tree amplitudes, which match against the values
obtained using the double-copy property at tree level
[16,21]. Since all cuts automatically have the proper values
in D dimensions, the amplitude so constructed is correct.
Inserting the numerators of pure Yang-Mills amplitudes

generated by the Feynman rules into the double-copy
formula (1) leads to tens of thousands of high-rank tensor
integrals, from which we must extract the ultraviolet
divergences. We do so by expanding in small external
momenta. This gives vacuum diagrams containing both
infrared and ultraviolet divergences. To deal with ultravio-
let divergences, we use the four-dimensional-helicity regu-
larization scheme [25], since it preserves supersymmetry
and has been used successfully in analogous multiloop
pure gluon and supersymmetric amplitudes. In this

FIG. 2. The 12 graphs appearing in the three-loop N ¼ 4
sYM amplitude [16] and in gravity amplitudes obtained from
these using the double-copy formula.
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scheme, the number of states remain at their four-
dimensional values. Then at the level of the vacuum inte-
grals, we introduce a uniform mass m to separate the
infrared divergences from the ultraviolet ones. Although
ultimately there are no one- and two-loop ultraviolet di-
vergences in N ¼ 4 supergravity, individual integrals
generally do contain subdivergences due to their poor
power counting. To deal with this, we make extensive
use of the observations of Marcus and Sagnotti [26] to
subtract subdivergences integral by integral. Extractions of
ultraviolet divergences in higher-dimensional N ¼ 8
supergravity were discussed recently in Refs. [6,27].

At two or higher loops, the introduced mass regulator
induces unphysical regulator dependence in individual in-
tegrals. However, at least for logarithmically divergent
integrals, the regulator dependence comes entirely from
subdivergences, which we systematically subtract [26]. We
therefore introduce the mass regulator before subtracting
subdivergences, but after reducing all integrals to logarith-
mic by series expansion in small external momenta. To
implement the subtractions, we recursively define the sub-
tracted divergence S½. . .� of an integral,

S
�Z YL
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dpiI

�

� Div

�Z YL
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�
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where Div½. . .� is the complete divergence of an integral, I
is the integrand, and dpi is shorthand for d

Dpi=ð2�ÞD. The
sum over subloops must include all subloops of the dia-
gram where a subdivergence could occur—not just the
loops that are manifestly parametrized by pi—and here
we have indicated this by changing variables to p0

i in each
subtraction, such that the l-loop subintegral under consid-
eration is parametrized by p0

1; . . . ; p
0
l. For example, graph

(e) in Fig. 2 has seven one-loop subintegrals and six two-
loop subintegrals to consider, and each two-loop subinteg-
ral has three one-loop subintegrals of its own.

By the time we apply Eq. (2), each integral has a single
scale given by the mass regulator m. We are left with the
task of calculating the divergences Div½. . .� of single-scale
vacuum integrals. To evaluate these integrals, we first
eliminate tensors composed of loop momenta from the
numerators by noticing that the integrals must be linear
combinations of products of metric tensors ���. (See
Ref. [6] for a recent discussion of evaluating tensor vacuum
integrals.) Then we reduce the resulting scalar integrals to a
basis using integration by parts, as implemented in FIRE

[28]. The resulting basis is given by the scalar vacuum
integrals shown in Fig. 3 (along with products of lower-
loop integrals), with a single massive propagator corre-

sponding to each line. As cross checks we also used MB

[29] and FIESTA [30]. We evaluated all but the last of these
integrals to the required order in � by Mellin-Barnes inte-
gration with resummation of residues using the methods
presented in Ref. [31]. The last integral can be evaluated by
making a two-loop subintegral massless and integrating it
first. This does not affect the ultraviolet divergence because
there are no subdivergences in this case. (The value of the
two-loop subintegral can be found in Ref. [32].) The results
are rational linear combinations of the transcendental num-

bers �2, �3, and
ffiffiffi
3

p
Im½Li2ðei�=3Þ�.

At two loops only the first two integrals shown in Fig. 3
are needed. Adding together the contributions reproduces
the fact that there are no two-loop divergences in pure
supergravity theories. At three loops all vacuum integrals
in Fig. 3 contribute. In Table I, we have collected the
derived divergences of the three-loop four-graviton ampli-
tude for each graph in Fig. 2. The results shown in the table
are summed over the independent permutations including
symmetry factors. The individual graphs are not gauge
invariant and are valid only for the indicated choice of
spinor-helicity reference momenta (see, e.g., Ref. [33]).
We have divided out a prefactor depending on the four-
point color-ordered super-Yang-Mills tree amplitude,
spinor inner products and the usual Mandelstam invariants

FIG. 3. The basis of vacuum integrals for one through three
loops.

TABLE I. The graph-by-graph divergences for the four-
graviton amplitude with helicities (1�2�3þ4þ) (up to an overall
normalization). Each expression includes a permutation sum
over external legs, with the symmetry factor appropriate to the
graph. These quantities are not individually gauge-invariant, and
here we use spinor helicity with the choice of reference momenta
q1 ¼ q2 ¼ k3 and q3 ¼ q4 ¼ k1. The sum over the diagram
contributions vanishes.

Graph ðdivergenceÞ=ðh12i2½34�2stAtreeð�2Þ8Þ
(a)–(d) 0

(e) 263
768

1
�3
þ 205

27648
1
�2
þ

�
� 5551

768 �3 þ 326317
110592

�
1
�

(f) � 175
2304

1
�3
� 1

4
1
�2
þ

�
593
288 �3 � 217571

165888

�
1
�

(g) � 11
36

1
�3
þ 2057

6912
1
�2
þ

�
10769
2304 �3 � 226201

165888

�
1
�

(h) � 3
32

1
�3
� 41

1536
1
�2
þ

�
3227
2304 �3 � 3329
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�
1
�

(i) 17
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1
�3
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1
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þ

�
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�
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�
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1
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1
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(k) 5
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1
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1
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�
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�
1
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1
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s and t. We note that the transcendental numbers except �3
cancel within each graph.

In the sum over all contributions (obtained by adding the
rows in the Table I), not only do the 1=�3 and 1=�2

divergences cancel, as required because there are no diver-
gent subamplitudes, but the 1=� singularity also cancels.
This proves that the three-loop amplitude is ultraviolet
finite. As a rather nontrivial check, we confirmed that the
sum over all contributions is independent of reference
momentum choices. As another nontrivial confirmation,
we found that by introducing a uniform mass in the ampli-
tude at the start of the calculation, all ultraviolet divergen-
ces cancel without the need for subdivergence subtraction.
This matches expectations that all ultraviolet subdivergen-
ces should cancel out from the total amplitude (although
there may be potential regulator dependence issues with
this approach). Since all nonvanishing four-point ampli-
tudes in the theory are proportional to four-graviton ones,
our calculation demonstrates that there are no divergences
in any three-loop four-point amplitude of the theory.

In summary, we used the recently uncovered duality
between color and kinematics to streamline the calculation
of the coefficient of the potential three-loop ultraviolet
divergence of N ¼ 4 supergravity, proving that it van-
ishes. Might cancellations persist beyond this? It is inter-
esting to note that the D ¼ 4 cancellations found in one-
and two-loop subamplitudes and used to motivate our
three-loop computation can be used just as well to argue
for higher-loop cancellations. Moreover, the double-copy
property of gravity amplitudes shows there is more struc-
ture than captured by the known symmetries. Our three-
loop calculation provides a concrete example showing that
power counting based on known symmetries can be mis-
leading. The results of this paper strongly motivate further
high-loop explorations of the ultraviolet divergence struc-
ture of supergravity theories. In particular, they emphasize
the importance of explicitly computing the ultraviolet
properties of N ¼ 8 supergravity at five loops.
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