Search of CPV in the charm sector at LHCb Silvia Borghi On behalf of the LHCb collaboration #### Outline - Introduction - 1st evidence CP violation in the charm sector at LHCb \rightarrow ΔA_{CP} measurement - Other measurements of direct and indirect CPV - Prospects on 2011 data - Conclusion ## DO mixing - D mesons give exclusive access to up-type dynamics - D⁰ mixing - observed for the first time in 2007 by BaBar and Belle [arXiv:hep-ex/0703020; arXiv:hep-ex/0703036] - well established at >10 σ in HFAG average [HFAG arXiv:1010.1589] - No single measurement at 5σ LHCb potentially can provide the 1st 50 measurement [not covered in this talk] #### CP violation in charm - CP violation contributions: - Direct contribution → in decay - Indirect contributions → in mixing and in interference - In the SM CP violation is conserved to first approximation (dominance of 2 generations) - New Physics can enhance CP violating observables - Cabibbo-favoured modes not interesting - Tree-level SM contribution swamps everything else - Singly-Cabibbo-suppressed modes with gluonic penguin diagrams very promising - Interference between Tree and Penguin can generate direct CP asymmetries - Several classes of NP can contribute - but also non-negligible SM contribution LHCb-PAPER-2011-023; arXiv:1112:09838 submitted to PRL • The time-integrated CP asymmetry is defined as: $$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$ where f is the final state K^-K^+ or $\pi^-\pi^+$ - Two contributions due to direct and indirect CPV - The D⁰ flavour is determined by the sign of the slow pion in the decays $D^{*+} \rightarrow D^{0}(f)\pi_{s}^{+}$ • The measured asymmetry is $$A_{RAW}(f)^* = \frac{\mathbf{N}(D^{*+} \to D^0(f)\pi_s^+) - \mathbf{N}(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}{\mathbf{N}(D^{*+} \to D^0(f)\pi_s^+) + \mathbf{N}(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}$$ $$A_{RAW}(f)^* = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_s) + A_{P}(D^{*+})$$ At first order expansion with the assumption of small individual asymmetries O(%) • The measured asymmetry is: $$A_{RAW}(f)^* = \frac{N(D^{*+} \rightarrow D^0(f)\pi_s^+) - N(D^{*-} \rightarrow \overline{D}^0(\overline{f})\pi_s^-)}{N(D^{*+} \rightarrow D^0(f)\pi_s^+) + N(D^{*-} \rightarrow \overline{D}^0(\overline{f})\pi_s^-)}$$ $$A_{RAW}(f)^* = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_s) + A_{P}(D^{*+})$$ Physics CP asymmetry $$Production asymmetry$$ Detection asymmetry of D⁰ and of slow pion - Detection asymmetry $A_D(f)$ for self-conjugate final states is 0 - D*+/D*- production asymmetries need to be taken into account in proton-proton interaction at LHC • The measured asymmetry is: $$A_{RAW}(f)^* = \frac{N(D^{*+} \to D^0(f)\pi_s^+) - N(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}{N(D^{*+} \to D^0(f)\pi_s^+) + N(D^{*-} \to \overline{D}^0(\overline{f})\pi_s^-)}$$ $$A_{RAW}(f)^* = A_{CP}(f) + A_{M}(f) + A_{D}(\pi_s) + A_{P}(D^{*+})$$ Physics CP asymmetry Production asymmetry Detection asymmetry of slow pion • Taking $A_{RAW}(f)^* - A_{RAW}(f')^*$ the **production** and **slow pion detection** asymmetries will cancel. $$A_{RAW}(K^-K^+)^* - A_{RAW}(\pi^-\pi^+)^* = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \Delta A_{CP}$$ → CP asymmetry difference very robust against systematics ## Experimental Status: individual A_{CP} | Year | Experiment | CP Asymmetry in the decay mode $D^0{ o}\pi^+\pi^-$ | | | |------|----------------------|------------------------------------------------------------------------|---------------------------|--| | 2010 | CDF | T. Aaltonen, et al(CDF Collab.), arXiv:1111.5023 (2011) | +0.0022 ± 0.0024 ± 0.0011 | | | 2008 | BELLE | M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 2008). | +0.0043 ± 0.0052 ± 0.0012 | | | 2008 | | B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008). | -0.0024 ± 0.0052 ± 0.0022 | | | 2002 | / I - / I | S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002). | +0.019 ± 0.032 ± 0.008 | | | 2000 | FOCUS | J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000). | +0.048 ± 0.039 ± 0.025 | | | 1998 | E791 | E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998). | -0.049 ± 0.078 ± 0.030 | | | | | COMBOS average | +0.0020 ± 0.0022 | | | Year | Experiment | CP Asymmetry in the decay mode $D^0 \rightarrow K^+K^-$ | | |------|------------|------------------------------------------------------------------------|---------------------------| | 2011 | CDF | T. Aaltonen, et al(CDF Collab.), arXiv:1111.5023 (2011) | -0.0024 ± 0.0022 ± 0.0010 | | 2008 | BELLE | M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 (2008). | -0.0043 ± 0.0030 ± 0.0011 | | 2008 | BABAR | B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008). | +0.0000 ± 0.0034 ± 0.0013 | | 2002 | CLEO | S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002). | +0.000 ± 0.022 ± 0.008 | | 2000 | FOCUS | J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000). | -0.001 ± 0.022 ± 0.015 | | 1998 | E791 | E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998). | -0.010 ± 0.049 ± 0.012 | | 1995 | CLEO | J.E. Bartelt et al. (CLEO Collab.), Phys. Rev. D 52, 4860 (1995). | +0.080 ± 0.061 | | 1994 | E687 | P.L. Frabetti et al. (E687 Collab.), Phys. Rev. D 50, 2953 (1994). | +0.024 ± 0.084 | | | | COMBOS average | -0.0023 ± 0.0017 | Dominated by CDF, especially for $D^0 \to \pi^+\pi^ A_{CP}(K^+K^-)$ and $A_{CP}(\pi^+\pi^-)$ values consistent with zero but have opposite sign ## ΔA_{CP} extraction strategy - ΔA_{CP} robust against systematics, however detector effect could induce different fake asymmetries for KK and $\pi\pi$ - Dependence of $A_P(D^*)$ and $A_D(\pi_s)$ on kinematics - Different kinematic distribution for KK and $\pi\pi$ - → Kinematic binning needed to suppress second-order effects of correlated asymmetries: - \rightarrow Divide data into kinematic bins of (p_T and η of D*±, p of slow pion, left and right hemisphere) 11 - → Treat each bin independently - Along similar lines: - Split by magnet polarity (B field up/down) - Split into two run groups - \rightarrow 216 independent measurement of ΔA_{CP} #### Event selection - Offline selection - Track fit quality for all the tracks - $D^{*\pm}$ and D^{0} vertex fit quality - Transverse momentum of D⁰: p_T > 2 GeV/c - Kaon and pion ID cuts imposed with RICH information - Proper lifetime of D⁰: ct_{min}= 100 μm - Helicity angle of of D⁰ decay: |cosθ|<0.9 - D⁰ must point back to primary vertex: $\chi^2(IP) < 9$ - D⁰ daughter track must not point back to the primary vertex - D⁰ mass window: 1844 < m(D⁰) <1884 MeV/c² - Fiducial cuts to exclude edges where the B-field caused large $D^{*\pm}$ and D^0 acceptance asymmetry 12 ### Fiducial cut - Magnetic field induces a left/right differences between the D*+ and D*- due to the slow pion acceptance - Two effects: - Acceptance at edges of the detector - Beam-pipe downstream of the magnet ## Fiducial cut - Magnetic field induces a left/right differences between the D*+ and D*- due to the slow pion acceptance - Two effects: - Acceptance at edges of the detector - Beam-pipe downstream of the magnet - There are regions of phase space where on D*+ or D*- are reconstructed → large raw asymmetries (up to 100%) - Fiducial cut to exclude the edge regions with cuts in the slow pion (p_x,p₎ plane • Total signal yield with an integrated luminosity of 0.6 fb⁻¹: 1.4M tagged D⁰→K⁻K⁺ and 381k tagged D⁰→ π ⁻ π ⁺ Fit the $\delta m = m(D^{*+}) - m(D^{\circ}) - m(\pi^{+})$ Silvia Borghi ## Fit procedure Use 1D fits to mass difference: $$\delta m = m(D^{*+}) - m(D^{0}) - m(\pi^{+})$$ - Signal model: double Gaussian convolved with a function accounting for the asymmetric tail - Background model: $$h(\delta m) = B \left[1 - \exp\left(-\frac{\delta m - \delta m_0}{c}\right) \right]$$ • Consistency for ΔA_{CP} among 216 kinematic bins: $$\chi^2$$ /ndof =211/215 (χ^2 prob. 56%) 16 A weighted average of the kinematic bins yields the results: $$\Delta A_{CP} = -0.82 \pm 0.21$$ (stat) % #### Cross-checks - Several cross-checks, e.g. - Stability of result vs data taking runs - Stability vs kinematic variables - Tightening of PID cuts on D^o daughters - Internal consistency between subsamples (splitting left/right, field up/ field down, etc.) No evidence of dependence and consistent with the baseline results ## Systematic errors - Fit procedure: 0.08% - Evaluated as change in ΔA_{CP} between baseline and not using any fitting at all (just sideband subtraction in δm for KK and $\pi\pi$ modes) - Multiple candidates: 0.06% - Evaluated as mean change in ΔA_{CP} when removing multiple candidates, keeping only one per event chosen at random. - Peaking background: 0.04% - Evaluated with toy studies injecting peaking background with a level and asymmetry set according to D⁰ mass sidebands (removing signal tails). - Kinematic binning: 0.02% - Evaluated as change in ΔA_{CP} between full 54-bin kinematic binning and "global" analysis with just one giant bin. - Fiducial cuts: 0.01% - Evaluated as change in $\triangle A_{CP}$ when cuts are significantly loosened. - Sum in quadrature: 0.11% ## ΔA_{CP} measurement • Result with L=0.6 fb⁻¹ of data collected in 2011: $$\Delta A_{CP} = -0.82 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (sys)} \%$$ • First evidence of CP violation in charm with significance 3.50 (incl. statistical and systematic uncertainties) ## ΔA_{CP} interpretation \bullet A_{CP} of each final state may be written at first order as $$A_{CP} \approx a_{CP}^{dir} \left(1 + y \cos \phi \frac{\langle t \rangle}{\tau} \right) + a_{CP}^{ind} \frac{\langle t \rangle}{\tau}$$ where $\langle t \rangle$ is the average decay time \Rightarrow experiment dependent and τ is the D⁰ lifetime - To good approximation the indirect asymmetry is universal, i.e. independent of the final state. - \bullet ΔA_{CP} may be written as $$\Delta A_{CP} \approx \Delta a_{CP}^{dir} \left(1 + y \cos \phi \frac{\overline{\langle t \rangle}}{\tau} \right) + \left(a_{CP}^{ind} + \overline{a_{CP}^{dir}} y \cos \phi \right) \frac{\Delta \langle t \rangle}{\tau}$$ $$\Delta X = X \left(K^{+}K^{-} \right) - X \left(\pi^{+}\pi^{-} \right) \text{ and } \overline{X} = \frac{X \left(K^{+}K^{-} \right) + X \left(\pi^{+}\pi^{-} \right)}{2}$$ • Interpretation of ΔA_{CP} depends on the experiment Y. Grossman et al., Phys. Rev. D75, 2007 M. Gersabeck et al., arXiv:1111.6515 CDF Collaboration arXiv:1111.5023 20 ## Lifetime acceptance - Lifetime acceptance differs between $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$ - e.g. smaller opening angle \Rightarrow short-lived $D^0 \rightarrow K^-K^+$ more likely to fail cut requiring daughters not to point to PV than $D^0 \rightarrow \pi^-\pi^+$ - Background-subtracted average decay time of D⁰ candidates passing the selection is measured for each final state, and the fractional difference with respect to world average D⁰ lifetime is obtained: $$\Delta \langle t \rangle / \tau = [9.83 \pm 0.22(stat.) \pm 0.19(syst)]\%$$ - Systematics: - World-average D⁰ lifetime 0.04% - Fraction of charm from B-hadron decays 0.18% - Background-subtraction procedure 0.04% - \rightarrow indirect CP violation contribution to ΔA_{CP} mostly cancel ## Comparison with the world average LHCb measurement is consistent with HFAG averages based on previous results (1.1 sigma) ## Comparison with the world average Consistent with no CP violation at 0.13% C.L. Central value: $$a_{CP}^{ind}$$ = (-0.019 ± 0.232)% and Δa_{CP}^{dir} = (-0.645 ± 0.180)% ## Prospect of ΔA_{CP} measurement - \bullet Current measurement of ΔA_{CP} performed with 60% of 2011 recorded sample - work in progress on the full 2011 data sample with 1.1 fb⁻¹ of integrated luminosity - Expected precision 0.1 0.2 % - Measure ΔA_{CP} with D⁰ from B semileptonic decays #### Charm Physics with semileptonic B decays - LHCb is an experiment dedicated to study the decays of beauty and charm hadrons - High rate of B hadrons decays into DX - Collect large sample thanks to LHCb trigger - Selection of B semileptonic decays B→DµvX: - $B \rightarrow D^0 X \mu v$, $B \rightarrow D^+ X \mu v$, $B \rightarrow D_s^+ X \mu v$ - Charge of μ is used to tag the D⁰ flavour - Different data samples for studies in the charm sector: - Evaluation of ΔA_{CP} ; CPV searches in K_shh , K_sh , $hh\pi^0$ etc. ## Secondary from B decays #### ΔA_{CP} measurement with semileptonic B decays The measured asymmetry is: $$A_{RAW}(f)^* = \frac{N(B \to D^0(f)\mu^+\nu_\mu) - N(B \to \overline{D}^0(\overline{f})\mu^-\overline{\nu}_\mu)}{N(B \to D^0(f)\mu^+\nu_\mu) + N(B \to \overline{D}^0(\overline{f})\mu^-\overline{\nu}_\mu)}$$ $$A_{RAW}(f)^* = A_{CP}(f) + A_{D}(f) + A_{D}(\mu) + A_{P}(B) + A_{CP}(B)$$ Physics CP asymmetry $$Detection asymmetry of D^0 and of muon$$ $$B CP asymmetry$$ - Taking $A_{RAW}(f)^* A_{RAW}(f')^*$ all the detection, production and B CP effects cancel - Measurement of $\Delta A_{CP} = \Delta A_{RAW}$ - Expected statistical precision with the semileptonic sample $\sim 0.3\%$ with $1.1.~\text{fb}^{-1}$ 12 January 2012 Silvia Borghi 26 ## Other searches of CPV: Measurement of A_{Γ} LHCb-PAPER-2011-032; arXiv:1112.4698 submitted to JHEP #### Search of CPV: y_{CP} and A_{Γ} measurements - A measurement of CP violation in D⁰ mixing can be evaluated by the asymmetry of the proper-time of flavour-tagged decays: - Decays to CP eigenstates: $f=K^-K^+$, $\pi^-\pi^+$ $$A_{\Gamma} = \frac{\tau(\overline{D}^{0} \to K^{-}K^{+}) - \tau(D^{0} \to K^{-}K^{+})}{\tau(\overline{D}^{0} \to K^{-}K^{+}) + \tau(D^{0} \to K^{-}K^{+})} \approx \frac{A_{M}}{2} y \cos \phi - x \sin \phi + \frac{A_{D}}{2} y \cos \phi$$ $$A_{\Gamma} \approx -a_{CP}^{ind} - a_{CP}^{dir} y \cos \phi$$ Including Direct CPV contribution [M. Gersabeck et al., arXiv:1111.6515] where ϕ is a weak (CP violating) phase, x and y are the mixing parameters A_m represents a CP violation contribution from mixing and A_d from direct CP violation \rightarrow A non-zero value of A_{Γ} would be a clear measurement of CP violation and a sign of new physics contribution. ## measurement: Method - Unbinned likelihood fit m_{DO} for the determination of signal yield - Main background due to secondary D^o - Dangerous background \Rightarrow bias the lifetime measurement Not distinguishable by the invariant mass distribution - Difference direction: large IP wrt PV and large angle between p_{DO} and dir. pointing to - Need statistical separation by $ln(\chi^2_{TP})$ - Simultaneous fit of proper time and $\ln(\chi^2_{IP})$ to distinguish between prompt and secondary - Acceptance evaluated by a data driven method, the so called "swimming method" - Evaluation of the mis-tag rate from $\Delta m(D^*-D^0(hh))$ 29 ## A_{Γ} measurement - Data sample of $D^0 \rightarrow K^+K^-$ with 0.03 fb⁻¹ - ~15k events of each flavour tag. $$A_{\Gamma}$$ =(-0.59 ± 0.59 ± 0.21) % - The main systematic is due to the secondary and the combinatorial background - Already competitive to existing measurements #### Other searches of CPV: Search for direct CPV in three-body singly Cabibbo suppressed decay $D^+ \rightarrow K^-K^+\pi^+$ LHCb-PAPER-2011-017; arXiv:1110.3970 submitted to PRD #### Search of CP violation in $D^+ \rightarrow K^-K^+\pi^+$ - Search of direct CP violation in three-body decays - Dominated by many resonant states visibled in Dalitz plot - Look for local asymmetries in Dalitz plots of singly Cabibbo suppressed decay $D^+ \rightarrow K^-K^+\pi^+$ - The asymmetry can vary across the Dalitz plot - Local asymmetries can vanish in the integrated measurement Model independent method based on a direct comparison on a binby-bin basis between D⁺ and D⁻ Dalitz plots #### Search of CP violation in D $^+\rightarrow K^-K^+\pi^+$ Method based on Miranda approach: [Phys. Rev. D80 (2009) 096006] the local asymmetry significance is defined for each bin: $$S_{CP}^{i} = \frac{N^{i}(D^{+}) - \alpha N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + \alpha^{2}N^{i}(D^{-})}} \quad \text{where} \quad \alpha = \frac{N_{tot}(D^{+})}{N_{tot}(D^{-})}$$ • Evaluation of the $\chi^2 = \Sigma (S^i_{CP})^2$ and of the probability value obtained under the assumption of no CPV - The method is model independent - Different binning schemes used (sensitive to range of CPV scenarios) - Data sample with L~0.04 fb⁻¹ of data collected in 2010 - ⇒10 and 20 times more signal events than in previous BaBar and CLEO-c results #### Control channels - Investigation of no CP asymmetries (due to detector, production or background asymmetries) by data-driven method - Control channel $D_s^+ \rightarrow K^-K^+\pi^+$ - Sidebands $D^+ \rightarrow K^-K^+\pi^+$ - Control channel D+ \rightarrow K- π + π + - Combine the two magnet polarities to cancel various small left-right asymmetries - ✓ No evidence of fake asymmetries in the control mode - ✓ Sidebands around the D⁺ signal peak look fine - Method very robust against systematic effects | Window | p-value | | |------------------------------------|---------|--| | D _s ⁺ window | 34.4% | | | Left sideband | 8.7 % | | | Middle sideband | 50.8% | | | Right sideband | 36.5% | | ### Results for $D^+ \rightarrow K^-K^+\pi^+$ | Binning scheme | p-value | |------------------------|---------| | Adaptive I (25 bins) | 12.7 % | | Adaptive II (106 bins) | 10.6 % | | Uniform I (199 bins) | 82.1 % | | Uniform II (530 bins) | 60.5 % | S_{CP} distributions consistent with standard Gauss distribution No evidence for CP violation in the 2010 dataset of 0.04 fb⁻¹ Other searches of CPV: Search of CP violation in $D_{(s)}^{\pm} \rightarrow K_{s}^{0} h^{\pm}$ ## Search CPV in $D_{(s)}^{\pm} \rightarrow K_{s}^{0}$ h[±] - CPV requires at least 2 different diagrams with different strong and weak phases - Measurement of direct CP asymmetry in $D_{(s)}^{\pm} \rightarrow K_s^0 h^{\pm}$: - $D^{\pm} \rightarrow K^{0}_{s} \pi^{\pm}$; in $D^{\pm}_{s} \rightarrow K^{0}_{s} K^{\pm}$ mixture of CA and DCS decays - $D^{\pm} \rightarrow K^0_s K^{\pm}$; in $D^{\pm}_s \rightarrow K^0_s \pi^{\pm}$ SCS decays $D^{\pm} \rightarrow K^{o}_{s} \pi^{\pm}$ $D_{s}^{\pm} \rightarrow K_{s}^{o} K_{s}^{\pm}$ #### Cabibbo Allowed #### Doubly Cabibbo Suppressed 37 ## Search CPV in $D_{(s)}^{\pm} \rightarrow K_s^0$ h[±] The asymmetry, including DCS contribution $$A_{q} = \frac{\Gamma\left(D_{q}^{-} \to K_{s}h_{q}^{-}\right) - \Gamma\left(D_{q}^{+} \to K_{s}h_{q}^{+}\right)}{\Gamma\left(D_{q}^{-} \to K_{s}h_{q}^{-}\right) + \Gamma\left(D_{q}^{+} \to K_{s}h_{q}^{+}\right)} \approx \delta_{K} + \frac{2R_{a} \tan^{2}\theta_{C} \sin\phi \sin\delta_{a}}{CPV \text{ in K system}}$$ where θ_{c} is Cabbibo angle, ϕ is the weak phase, R_{q} and δ_{q} the amplitude ratio and strong phase difference of DCS/CA decays - SM prediction $A_q = \delta_k = (3.32 \pm 0.06) \cdot 10^{-3}$ - New Physics affecting the DCS channels might cancel this asymmetry or enhance it up to the percent level Lipkin and Xing, Phys. Lett. B450 (1999) 405 ### Current Measurements | Year | Experiment | CP Asymmetry in the decay mode $D^+ \rightarrow K^0_s \pi^+$ | | |------|------------|----------------------------------------------------------------------------|---------------------------| | 2011 | BABAR | P. del Amo Sanchez et al. (BABAR Collab.), Phys. Rev. D 83, 071103 (2011). | -0.0044 ± 0.0013 ± 0.0010 | | 2010 | BELLE | B.R. Ko et al. (BELLE Collab.), hep-ex arXiv:1001.3202v1 (2010). | -0.0071 ± 0.0019 ± 0.0020 | | 2007 | CLEO-c | S. Dobbs et al. (CLEO Collab.), Phys. Rev. D 76, 112001 (2007). | -0.006 ± 0.010 ± 0.003 | | 2002 | FOCUS | J.M. Link et al. (FOCUS Collab.), Phys. Rev. Lett. 88, 041602 (2002). | -0.016 ± 0.015 ± 0.009 | | | | COMBOS average | -0.0052 ± 0.0014 | | Year | Experiment | CP Asymmetry in the decay mode $D_s^+ \rightarrow K^o_s K^+$ | | | 2010 | BELLE | B.R. Ko et al. (BELLE Collab.), Phys. Rev. Lett. 104, 181602 (2010) | +0.0012 ± 0.0036 ± 0.0022 | | 2002 | CLEO-c | J.P. Alexander et al. (CLEO Collab.), Phys. Rev. Lett. 100, 161804 (2008) | +0.049 ± 0.021 ± 0.009 | | | | COMBOS average | -0.0028 ± 0.009 | | Year | Experiment | CP Asymmetry in the decay mode $D^+ \rightarrow K^0_s K^+$ | | | 2010 | BELLE | B.R. Ko et al. (BELLE Collab.), Phys. Rev. Lett. 104, 181602 (2010) | -0.0016 ± 0.0058 ± 0.0025 | | 2002 | FOCUS | J.M. Link et al. (FOCUS Collab.), Phys. Rev. Lett. 88, 041602 (2002) | +0.071 ± 0.061 ± 0.012 | | | | COMBOS average | -0.0009 ± 0.0063 | | Year | Experiment | CP Asymmetry in the decay mode $D_s^+ \rightarrow K^0_s \pi^+$ | | | 2010 | BELLE | B.R. Ko et al. (BELLE Collab.), Phys. Rev. Lett. 104, 181602 (2010) | +0.0545 ± 0.0250 ± 0.0033 | | 2007 | CLEO-c | G.S. Adams et al. (CLEO Collab.), Phys. Rev. Lett. 99, 191805 (2007) | +0.27 ± 0.11 | | | | COMBOS average | -0.0653 ± 0.0246 | ## Prospects and conclusions ## Expected precision with 1.1 fb⁻¹ \bullet A_{Γ} and ΔA_{CP} are discovery modes ## Expected precision with 1.1 fb⁻¹ #### Conclusion - First evidence of CPV at 3.5 σ by LHCb with ΔA_{CP} measurement - Other searches of CPV in the charm sector - The 1.1 fb⁻¹ data sample collected in 2011 allows 10⁻³ precision - New results on CPV in the charm sector are expected in the coming months - Many other results to follow maybe new surprise in the charm sector ## Backup ## Measurement of A_{CP} The measured asymmetry is: $$A_{RAW}(f)^* = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_s) + A_{P}(D^*)$$ • To extract the A_{CP} it is needed to evaluate the production asymmetry of D^* and the detection asymmetry of slow pion #### Current status of LHCb Measurements Current LHCb measurements Time-integrated RS/WS ratio $(0.55\pm0.63_{\text{stat}}\pm0.41_{\text{syst}})\%$ $(-0.59\pm0.59_{\text{stat}}\pm0.21_{\text{syst}})\%$ $(-0.82\pm0.21_{\text{stat}}\pm0.11_{\text{syst}})\%$ ## Acceptance evaluation - Determine trigger & selection acceptance on an eventby-event basis, the so called 'Swimming method' - Evaluate the event acceptance as function of lifetime: - \longrightarrow move the PV along the D $^{\circ}$ momentum - Evaluate the trigger & selection decision: accepted or not accepted 12 January 2012 Silvia Borghi 47