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ABSTRACT

The total cross=section for the production of
hadrons in vy scattering, and its breakdown into
flavour contributicns, arecalculated asa function
of the invariant mass of one of the photons, the
other being con-shell, in a vector meson dominance
model. Knowledge of the vector meson mass spec-
trum is not required, although when available it
may be used to further check the over-all consist-
ency of the model. The predicted cross=section is
compared with data from PETRA.
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1. - INTRODUCTION

We would like to reconsider in this paper the behaviour of the total cross-
section for the production of hadrons in photon-photon collisions, as a function
of the invariant mass of cone of the photonsl}“B). Hadron production in vy

scattering

'?f(qr)“"b/(l‘)“é X W

is observed indirectly through the annihilation processﬁ)-e)

++€a—->€’,++€-+7< (2)
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In the type of experiments considered in this paper, one of the photons is arranged
to be nearly on-shell (k% = 0) and the other, with a large virtual mass, Q? =
- /257, is in the deep inelastic limit, i.e., Q%, kegq > @, with x = Q%/2k<qg
finite. In the usual interpretation, the high mass photeon is said to probe
the structure of the quasi-real photon.

The first set of results from experimentsé)‘B) of this sort suggests that a

photen has an underlying quark-constituent structure which shows up and is do-
minant at high energies, as well as a vector meson-like structure which dominates
at low energiesZ). The first structure characteristic can be understood within
the context of QCD while the second follows immediately from a vector meson

dominance assumption. "

There is a theoretical necessity to unify these two descriptions, especially
in view of the fact that vector mesons themselves are understood to be composites
of quarks and antiquarks. It is the purpose cof this paper to show that this is
possible within the sowcalled generalized vector mescn dominance modelT). In
this model the information that vector mesons are made up of quarks and anti-
quarks is taken approximately into account through the assumption that their
couplings to the photon are given by local averages, about the corresponding
vector meson masses, of the imaginary part of the photon vacuum polarization am-

plitude, whose form is taken from QCD. In formulae
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where mﬁ/fn is the photon vector meson coupling in units of the electric charge
€, M., the mass of the nth vector mescen and Im JI{s) the imaginary part of

the photon vacuum polarization amplitude Ti(s).

It will be shown that with the help of this assumption, =z vector meson do-
minance model (VMD) is able tc interpolate smoothly betwen the low and high energy
regions, in agreement both with QCD, asymptotically, and with experiment for all

Q2 3

values of We give predictions for the total <y <c¢ross-section into

hadrons, averaged over the variable x, i.e., ¢ (Q%), as well as for the

various flavour components contributing to it.

The paper is organized as follows: in Section 2, we state the input assump-
tions and define our mocdel; in Section 3, we exhibit our results and compare
them with experiment; Section 4 is slightly more theoretical and in it we try
to motivate the scaling assumption used in Section 2 and indispensable for cb-

taining our results.

2. - THE VMD MODEL FOR o, Q%)
H
Let OYY(v,QZ), with v = (k+q)? = Q*(i/x - 1), be the total cross-section
for the process in Eg. (1) at total centre-of-mass energy /9. According to the

vector meson dominance model, Oyy(v’Qz) -is given by

o0 2z L 2 \2 o ( )
0. (vQ") = Z e [ - r 4)
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where onn.(v) is the toftal cress-section for the scattering of a vector meson
of mass m, against another of mass Wy at centre-of-mass energy Jv. A4n
important simplifying assumption has been used in Eq. {(4) to reduce a four-fold
summation to two. The assumption is that of dominance of diffractive scattering
in hadron-hadron collisions, In the VMD framework it assures that in the forward
direction the same vector meson couples to the same incoming and cutgeing photeon.
The assumption of dominance of diffractive scattering also allows one to replace

ind ent cr - ticn .
ann,(v) by a v independ Cross=-sec Oyt

Substituting for ezm;/f; from Eq. (3) into Eg. (4) allows one to rewrite
the latter as a double integral3’
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where we use va,(s,s') for the continuum version of Cont The v dependence
will be neglected from now on. Note that since Im Ii{s) may be supposed to be
given by QCD, the integrals in Eq. (5) may be evaluated without knowledge of

the vector meson mass spectrum. va,{s,s') will now be defined. We shall assume

that ovv,(s,s') haz the form

B
(5,5 = (6)
5/ 5+5'+ ME

and refer to Section &4 for its theoretical justification. The parameters B,

and Mi are determined by comparing our results for UYY(QZ) with QCD, for
Q? » «, and with the experimental value cof UYY(QZ) at % = 0, respectively.

This way we find
3
Bo = 4qar (0

and

M: = 5.? GeVz (8)

It is interesting to note that if we fit a mass spectrum of the form

{1+ A,

2 Z

m- . = m.(4+nb,¢) (9)
4 o4

to experiment, for each of the vector meson families (i = %,w,9,¥,T,...), then

l+k m?. HNote further in this connection that the

Mﬁ is numerically equal to 2b
p family makes the dominant contrlbution to UYY(Qz)' This observation will
allows us, when we come to consider the flaveur contributions to © (Qz), to put

for the correspending parameter Méi in the cross-section OV V,(s,s'),
ivi
2 4-#‘ Z

M. = ,2,19 m . (10)

04

To complete the definition of our model we give the QCD expression for Im Il{s)

which is to be used in Eq {5):

In 76 = £ <3 4 e(s AM)(MM)U «__,)
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Mi and q; are, respectively, the mass and charge {in units of e) of the guark

172 8)

of flavour i vi(s) = (1 ~ 4M;/s) and h(v) 1is Schwinger's function '. It

is well approximated by

~ T _ 3+ T o_ .é_ (
l’L(U') = ‘_2.;_ ___71___, (2 lm') 12}

With the help of the equaticns given in this section, the determination of

on(Qz} from Eq. (5) and of its various flavour contributions,

¢ IMT(5) Tm TT (59
s' (s+ Q¥

20 500
(Qz) = — dsds

S 0 s,s')
Vv (s, (13)

is a matter of integration. We carried this out numerically for various values
of quark masses, varying from typical current to typical constituent gquark mass

values. The results are reported in the next section.

3. - PREDICTIONS AND COMPARISON WITH EXPERIMENT

It is convenient both theoretically and for the case of numerical computa-~

tion to rewrite Eq. (13) [or Eq. (5)] as a single integral

o0

; T.(s) T (-s-M;)
(<) 2y _ _ 2 dS S IM € 4 1 04
O-TT (Q) = [le' A (s+ 6% (5+M:¢;)

We have made use of Egs. (6) and (7) as well as the dispersion integral

representation of the photon vacuum polarization amplitude

2 b
2 Im T (s)
Ht( ) = E j ds t (15)
P ™ Yo S(S—Pz7

It is clear that, apart from the method described in the last section of evaluating
Gii)(QZ) using the QCD expression for Im Hi(s) [see Eq. (ll)], we can check
further the consistency of our approach by using the VMD expression for Im Hi(s),

i.e.,
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and the mass spectrum in Eq. (9) fitted to experiment in order to determine the
parameters (bi,ki}. We have used both methods and found that they agree for

a limited range of quark masses. This is shown in Fig. 1 for the case of the sum
of the contributions of the u and d quarks, corresponding, in the second method,
to the sum of the contributions of the p and w families. The corresponding
value of the quark mass is Mu = Md = 125 MeV. We note that O(i)(QZ) depends
strongly on the value of the quark mass only in the first, but not in the second,
method of calculation. The dependence arises essentially from the much lower
threshold, AME <m§i, in the first method. For comparison, we have also ploted in
Fig. 1 the resut of the quark model calculation using a quark mass Mu :Md’:8 MeV.
Figure 2, on the cther hand, illustrates the weak dependence on the quark mass

of the VMD calculation for the cases of the ¢ and 1§ families, as examples.

Using the second method of calculation, (i.e., VMD inputs) we compare in
Fig. 3 the various flavour contributions Oii)(Qz) with themselves, as well as
with their sum, o (@?). The contribution of the T family is negligible, being
of the order of 10 2t for Q% 0, and is therefore not shown in this figure.
The contribution indicated as p-w interference arises from the crossed term

q;qi in the sum of the 40 power of quark charges for the p and w families

9" = L (g veqigieal) = alvey

where {qp,qw) = (1//2,1/3/2) and (q ,q4) = (2/3,-1/3). The data points are
from Refs. 4). Note that the interference term is necessary in order to get

agreement with experiment.

We should perhaps state that the method of determining the parameters {bi,hi)
for the | and T families is different from that used for the p, w and ¢
families. For the ¢ and T families one simply fits Eq. (9} to experiment.

For the p, w and ¢ families, on the other hand, we assume the existence of
the first excited states o' (1.57) 9), w' (1.57) and ¢' (1.68) lO). With
these values for 5 (i = p,w,$! and with foi calculated from the experimental

leptonic widths using the formula

(e ee) = 5T
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one obtains from Egs. (3) and (9) two equations for determining (bi,ki) for
these families, for given values of the u, d and s quark masses. However,
as stated previcusly, and as can be seen from Fig. 2, the dependence of oii)(Qz)

on the quark mass is not strong when one uses VMD inputs.

Finally, some comments on the effects of QCD radiative corrections; they
contribute in the order of 10 - 15% to the cross-sections oii)(az), more for
the lighter guark families than for the heavier cnes. We did not include these

corrections in the plots of Figs. 1-3.

The important feature of the model discussed in this paper is its unified
nature. The simple addition of a VMD YY cross-section, valid at low energies,
te one calculable from QCD, and valid only at high energies, is claimed to invelve
double counting and is to be avoided. Instead, a QCD quark structure, underlying
both the small and large Q2 behaviour of UYY(QZ)' is implemented through the
properties of vector mesons considered as bound states of quarks and antiquarks.
Consequently, although the formula for o Y(QZ] is derived entirely within the
VMD model, one can use in its computation QCD inputs throughout. Knowledge of
the vector mescn mass spectrum is not required. However, in the case where the
mass spectrum is available, as for instance in the case of the vV and T fami-
lies, che can also employ VMD inputs and further check in this way the over-all
consistency of the entire approach. Alternatively, if the spectrum is only
poorly known, as in the case of the p, w and ¢ families, one has here a means

of checking the viability of an ansatz for it.

4. - ASYMPTOTIC SCALING AND THE VMD REPRESENTATION

We wish to return in this section to Eq. (6) which we rewrite here for

ease of reference

B,
o '
vy (5,5) = ' ) (6}
S+ S+ M,

and comment both on its effect on our predictions and more generally on its
relation to the generalized VMD model. Our first observation is about the inputs
and M2 respectively. B, is
(Q%), for large Q2, with the

which allow us to determine the parameters B?
determined by comparing our prediction for oyi)

QcD expressionl)’z)

. 2
(TM (6] — 43 ?_’:‘2( {-"“—-C-Pz (18)
L Qcp > o0 T Q*

L e e T L L T e T T L B T T T YT R e S PO VPR



This asymptotic is obtainable in the VMD model3), as will be shown later, under
certain specific assumptions about asymptotic scaling of total cross-sections of
photon induced hadronic processes. In fact, if all that is required is the
agreement with the leading QCD behaviour, one can set Mﬁ = 0 in Egq. (&) and

obtain the following acaling law

(o) ! o
O_W. (s,8') = O;V‘(st))Mz = j——— (6")
0o =0

S + 5!
(o)

vor (818"). The role of M2 is thus that of a fixed

mass scale which is used to break the above scaling law and to parametrize the

for the cross-section o

contributions of non-leading terms by means of the expansion "
=0 2
(0} ¢ o E (.. Mo
Oyy: (s,s') = JVV’ (s,s') s+s'
n=0
T5 (6™)
o .

s+s'+ M>

——
-

We stress that while Eq. (6') is crucial and absolutely necessary if one wants to
reproduce the QCD asymptotics, the particular model of breaking of the scaling
law in Eq. {6") was adopted for the sake of simplifying the numerical computa~
tions only. A logarithmic modification of Eq. (6') seems more realistic but

leads to rather complicated formulae. The essential fact is that with Eq. {(6")
alone, that is with the neglect of non-leading terms, it is not possible to
reproduce the low @? behaviour of o Y{QZ). The asymptcotically non-leading
terms actually turn over to dominate when Q% > C. The parameter Mﬁ essentially

sets the dimensional scale of the real photon cross-section o (@% = Q).

Our next observation is that the properties of scaling in mass of GYY(QZ)
and ovv,(s,s') are not ad hoc assumptions in the VMD meodel, introduced to re-
obtain known QCD results. On the contrary, the VMD representation of photon-
induced hadronic cross-sections is itself an exact representation of the action
of the scale operator in momentum space, D = 0? d4/dQ*, in the limit when mass
thresholds and QCD radiative corrections are neglected. In fact, Eq. (5) may
also be written as the product of the action of two representations of the scale

transformation coperator
o0 —
Oy (S)
4 77
O;ar(Qz)z (41+D) _£d5

S + Qz

{19)



o (s) = ImIl{(s) 'fj IMTT(S’) W,(ss) (20)

The integral in Eq. (19) is a Hilbert transform which, in the space of homogeneous

functions fk{s) = const, slnl, 0 < [x] <1, acts just like the scale operator

p 1)

e, (9) = £ & 2 rey pa-n g,

Consequently, if EYY(S) were of the special form

—_ A~A
O_’O'(S) = Q_A S (22)

for some fixed A, with O < |A] <1, then GYY(QZ) would be proporticnal to

o (@Y = ["(1+2) ['(1-1) 5;-3 (Q%) (23)

In the A plane, the point X = 0 is therefore of special significance for the
VMD transformation in Eg. {19). Only for this value of A 1is the transforma-
tion exactly self-reproducing. Note that for A = O, Eq. (22) says that g (s)
scales with the square of the mass, a result of which Eq. (6') is the obvious

generalization.

The important peint is now that even when this scaling law is broken and

0. (s) is a sum
Y

y A, +4 08 s
(S) = 2 m4 dA & (3) 5 ) )°>O (24)
Ap— L od

with the simultaneous eigenfunctions of D and H as basis, the equality
between GYY(QZ) and EYY(QZ) holds asymptotically if X = O is the leading
singularity of a{)). This is easy to see, for, by substituting (24) into (19}

one gets

SR T I T R T T T o ot R T S



A, +4 a0

2 {
"%v(@)=5;: 2 a(X) (4+2) (4- J)(Q) A>0
A, -4k

th order pole at X = 0 [i.e., alix) > ao/AN],

and assuming that a(A) has an N
A0

one finds for large Q?

(n0?)

2 ~ 2
77r ((? ) y]r (GD.) c? s o0 (h’ |)' -——ESE_—-

(26)

In the special instance N = 2 [i.e., a double pole of ali) at A = O] one
reproduces the QCD result in Eg. (18). This special case is also reproduced

by substituting (6') into Eq. (20}, for then one gets exactly

T (-5)

(27}

Oyy (5) = B Im TV (s)

For large s, Im II{s) tends to a constant and II(-s) to -%n s. Equaticn (6')
is therefore not an ad hoc assumption but part of the asymptotic properties
inherent in the VMD representation. Stated heuristically, these scaling properties
ensure that the photon behaves as much as possible like a hadron. This is clearly

part of the implications of vector meson dominance.
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FIGURE CAPTIONS

Fig. 1 : Flavour contributions to the total YY cross=section. The full
curve is the p+y contribution, obtained by using VMD parameters.
The wu+d contribution, calculated by inserting Eg. (11} into
Eq. (5), for My = My = 125 MeV  (dashed curve and M, = My = 8 MeV

(dotted curve).

Fig. 2 : The quark mass dependence of the flavour contributions to a Y(Qz),
evaluated with VMD inputs in the p (full curves) and in the U

(dashed curves) cases.

Fig. 3 * The total yy cross-section (full curve) and its various flavour

contributions. Data points are taken from Ref. 4).
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