Diffraction and Multi-Parton Interactions: an experimental perspective

Paul Newman (University of Birmingham)

MPI@LHC, DESY 23 November 2011

- → Diffraction and Multi-Parton Interactions
- \rightarrow Soft diffraction at the LHC
- \rightarrow Radiation patterns between jets at the LHC
- \rightarrow Diffractive DIS at HERA \rightarrow Diffractive Partons
- \rightarrow Testing the Diffractive Partons at HERA
- \rightarrow Breaking the Diffractive Partons: γp , pbar-p & pp

Diffraction & Multi-Parton Interactions

- Trivially, more than 1 parton in t channel

- Gap survival probabilities / absorption: ... multiple interactions with large impact parameters

- Absorptive effects due to multiple soft exchanges in minimum bias models

- Less obviously, small rapidity gaps as sensitive probe of hadronisation fluctuations and underlying event

Diffraction & Multi-Parton Interactions

- Trivially, more than 1 parton in t channel

- Gap survival probabilities / absorption: ... multiple interactions with large impact parameters

- Absorptive effects due to multiple soft exchanges in minimum bias models

- Less obviously, small rapidity gaps as sensitive probe of hadronisation fluctuations and underlying event

Not covered here

- Elastic scattering in pp / ppbar (see Ken Osterberg)
- Exclusive vector mesons in ep and pp (see Marcella Capua)³

Soft Diffraction at the LHC: Processes and Kinematic Variables

Single diffractive (SD), $pp \rightarrow Xp$

 $\xi_{\rm X} = M_{\rm X}^2/s$

Double diffractive (DD), pp \rightarrow XY

 $\xi_{\rm Y} = M_{\rm Y}^2/s$

- At LHC energies, M_X , M_Y can range from $m_p+m_{\pi} \rightarrow ~1 \text{ TeV}$
- Large uncertainties in LHC cross sections, especially DD
- No proton tagged SD data (yet) ...
 - ... integrate over t
 - ... select based on energy flow / rapidity gap topologies

"Standard Model" of Soft Diffraction

Factorise SD into a pomeron (IP) flux and total p+IP cross section

Optical theorem relates $\sigma_{tot}(IP+p)$ to elastic IP+p amplitude Calculate SD cross sections from triple pomeron amplitudes

PHOJET, PYTHIA models based on this approach. Real life $\alpha(0) \neq 1$... LHC data sensitive to this 5 Deviations from triple-pom behaviour from multiple interactions?

CMS: Forward energy flow approach

 $\sqrt{s} = 7 \text{ TeV}$

∖s=7 TeV

12

10

8

6

14

16 0

18

N(HF-)

2

at all 3 LHC beam energies

A Promising Variable to Reconstruct ξ_X

Potentially strong sensitivity to diffractive dynamics

$$\sum_{X} E - p_z = 2E_p \cdot \xi_X \quad \text{... and lost particles have } E - p_z \sim 0$$

So far uncorrected for experimental effects

Alternative Approach: Rapidity Gaps

ALICE: Total SD and DD Cross Sections

ATLAS: Differential gap x-sections

- Cross sections measured from first $\int s = 7$ TeV LHC run
- Differential in rapidity gap size $\Delta\eta^{\text{F}}$
- $\Delta \eta^{F}$ extends from η = ±4.9 to first particle with $p_{t} > p_{t}^{cut}$

[Larger of gaps at $\pm \eta$ taken]

 $200 \text{ MeV} < p_t^{cut} < 800 \text{ MeV}$

 $0 < \Delta \eta^{F} < 8$

Corrected for experimental effects to level of stable hadron

ATLAS Differential Gap Cross Section

- Precision between ~8% (large gaps) and ~20% ($\Delta \eta^{F}$ ~ 1.5)
- Small gaps sensitive to hadronisation fluctuations / MPI
- Large gaps measure x-sec for SD [+ DD with M_Y <~ 7 GeV]1

Small Gaps and Hadronisation

- Big variation between MCs in small non-zero gap production via ND \rightarrow fluctuations / UE - PYTHIA8 best at small gaps - PHOJET > 50% high at $\Delta \eta^{F} \sim 1.5$

Cluster Fragmentation: HERWIG++

- HERWIG++ with underlying event tune UE7-2 contains no explicit model of diffraction, but produces large gaps at higher than measured rate and a "bump" near $\Delta \eta^{F} = 6$

- Effect not killed by removing colour reconnection or events with zero soft or semi-hard scatters in eikonal model

Increasing the pt cut defining gaps

Increasing the pt cut defining gaps

As p_t^{cut} increases, data shift to larger $\Delta \eta^F$ in a manner sensitive to hadronisation fluctuations and underlying event

Switching to p_t^{cut} = 400 MeV
doesn't change qualitative
picture

- Diffractive / non-diffractive processes barely distinguished at p_t^{cut} = 800 MeV 15

Large Gaps and Diffractive Dynamics

-Diffractive plateau with ~ 1 mb per unit of gap size for $\Delta \eta^F$ > 3 broadly described by models - PYTHIA high (DD much larger than in PHOJET) - PHOJET low at high $\Delta \eta^F$

З dơ/d∆η^F [mb] ATLAS Preliminary Data L - 7.1 ub⁻¹ 2.5 $\sqrt{s} = 7 \text{ TeV}$ PHOJET p_ > 200 MeV Non-Diffractive Single Diffractive Double Diffractive 1.5 Central Diffractive 0.5 MC/Data 1.5 2 3 5 6 7 4 Δn^{F}

Large Gaps and Diffractive Dynamics

Default PHOJET and PYTHIA models have $\alpha_{IP}(0) = 1$ Donnachie-Landshoff flux has $\alpha_{IP}(0) = 1.085$ Data exhibit slope in between these models at large $\Delta \eta_{17}^{F}$ Full interpretation pending ...

Total Inelastic pp Cross Section

- Full current picture on total cross section (from TOTEM)

Total Inelastic pp Cross Section

- Full current picture on total cross section (from TOTEM)

- ATLAS and CMS central values lower than TOTEM after extrap'n into region of very low ξ (extrapolation error is dominant)

Uncertainties in Low ξ **Extrapolations**

- Integrating gap cross section up to some max $\Delta \eta^F$ (equivalently min ξ_X) and comparing with TOTEM indicates that small ξ_X region underestimated in PHOJET and PYTHIA: - 14 mb with $\xi < 10^{-5}$, compared to 6 (3) mb in PYTHIA (PHOJET)

Dijets with Vetoes

Similar approach to harder physics: gaps between jets-type topology, but with typically $E_T < 20$ GeV in intermediate region

(JHEP 09 (2011) 053)

Hard Diffraction at HERA

Inclusive data as 'reduced'x-sec ...

Itl=0.2 GeV Itl=0.4 GeV²

x_{IP}σr^{D(4)} (GeV⁻²)

0.1 F

0.1

0.05

0.1

0.05

0.1

0.05

0.05

0.1 ⊢ β=0.0018

5.1 GeV²

8.8 GeV²

15.3 GeV²

 $-26.5 \, \text{GeV}^2$

- 46 GeV²

 $0.1 - Q^2 = 80 \text{ GeV}^2$

10⁻²

10⁻²

 10^{-1}

10⁻²

10⁻¹

10⁻¹

10⁻²

10⁻²

10⁻¹

¥4

H1 FPS

10⁻²

10⁻¹ XIP

10⁻¹

Most recent developments from tagging intact protons

Final H1 HERA-II FPS data \rightarrow Roman pots at 60-80m $(156 \text{ pb}^{-1} = 20 \text{ x HERA-I})$

4D structure function, 3 t bins

Final VFPS data still to come...

Factorisation and Pomeron Trajectory

No evidence for Q^2 or β dependence of $\alpha_{IP}(t)$ or t slope

 $\alpha_{\text{IP}}(0)$ consistent with soft IP α_{IP} ' smaller than soft IP

→ Dominantly soft exchange → Absorptive effects?... 23

First H1-ZEUS Combined Diffractive Data

Proton tagged data in region of mutual acceptance: H1/ZEUS norm: = 0.91 ± 0.01 (stat)

Improvements beyond the statistical \rightarrow crosscalibration of systematics

More to follow ...

Hard Processes: Diffractive PDFs

е

 $\gamma^* (\mathbf{Q}^2)$

DPDFs dominated by a gluon density which extends to large z

Testing the DPDFs: First F^D Measurement

Investigate role of longitudinally polarised photons in bulk of diffractive DIS

Novel test of diffractive gluon density

... F_L^D sensitivity @ highest y ($E_e \rightarrow 3.4 \text{ GeV}$) ... vary $E_p \rightarrow$ change y at fixed β , x_{IP} , Q^2

Large Rapidity Gap data

... 11pb⁻¹ @ 575 GeV, 6pb⁻¹ @ 460 GeV, in addition to 820 GeV, 920 GeV data

F^D Measurement

- $F_L{}^D$ shown to be several σ from zero over wide β range
- Compatible with all predictions based on NLO DGLAP fits to σ_r^{D} , including model with large higher twist F_L^{D} component as $\beta \rightarrow 1$

Forward Jets in Diff DIS

New analysis with FPS proton tag ... extends x_{IP} and η_{jet} ranges ... search for 'hard' pQCD-calculable contributions ... exclusive 2/3 jets with DGLAP p_t ordering broken?

 $p_t > 3.5 \text{ GeV}, m_{jj} > 12 \text{ GeV}$ Forward jet: 1 < η_{fwd} < 2.8 Central jet -1 < η_{cen} < η_{fwd}

... No evidence for configurations beyond those predicted from NLO DGLAP & DPDFs

... usually explained by multiple interactions / absorption

- Rapidity gap survival probabilities should in principle be calculable using multiple (parton?) interaction models
- However (in contrast to most MPI models) impact parameters are usually large (governed by t) \rightarrow Challenging!

Currently described by soft phenomenology (Durham, Tel Aviv)

Hard Diffraction: Tevatron

Most recent paper from CDF: Phys Rev D82 (2010) 112004: Using Roman pot proton taggers ... Diffraction with $0.03 < \xi < 0.1$, $|t| < 1 \text{ GeV}^2$ accounts for -1.00 ± 0.05 (stat.) ± 0.10 (syst.) % of W production

- 0.88 ± 0.21 (stat.) ± 0.08 (syst.) % of Z production

at the Tevatron (suggests small gap survival probability)

Comparable with lots of other diffractive processes measured using large rapidity gap approach ...

Hard component	Fraction (R)%
Dijet	0.75±0.10
W	1.15±0.55
b	0.62±0.25
J/ψ	1.45 V 0.25

Universal suppression relative to factorised predictions? ³⁰

W and Z events with gaps at CMS

After pile-up corrections, ~1% of W and Z events exhibit no activity above noise thresholds over range 3 < $\pm \eta$ < 4.9 ... interpretation not yet clear ...

 $ilde{\eta}$ (= 4.9 - $\Delta\eta$) end-point of gap - starting at acceptance limit

Exploiting Gap-Lepton η Correlation

Lepton pseudorapidity with + sign if lepton in same hemisphere as gap, else - sign.

Fit to combination of PYTHIA and POMPYT hard diffraction model suggests significant (~50%) diffractive contribution

Extraction of (limits on?) gap survival probabilities at the LHC from diffractive W/Z and jet production eagerly awaited ... survival may be small (~3% according to phenomenology?

Summary

Soft diffractive processes at the LHC

- Precision data emerging
- Small non-zero gaps sensitive to hadⁿ / MPI
- Large gaps sensitive to diffractive dynamics

- Detailed tests of soft MC models \rightarrow tunes
- Compare v TOTEM \rightarrow insight on low mass diffraction

Diffractive Deep Inelastic Scattering

- First H1-ZEUS combinations
- Novel diffractive factorisation tests DPDFs work
- No big gap survival effects

Hard Diffraction at the Tevatron and the LHC

- Big gap destruction effects (~90%) at Tevatron
- First results with W/Z at the LHC ... survival probability?..