LHCb Trigger, Online and related Electronics

Artur Barczyk CERN PH/LBC

on behalf of the LHCb collaboration

LHCb Trigger-DAQ system overview

- ◊ Beam crossing rate: 40MHz
- Visible interaction rate: 10MHz
- Two stage trigger system
 - Level-O:
 - ♦ Hardware
 - ♦ Accept rate: 1MHz
 - High Level Trigger (HLT):
 - ◊ Software
 - ◊ Accept rate: 2kHz
- ♦ Level-1 Electronics: interface to Readout Network
- ◇ Readout network
 - Gigabit Ethernet
 - Full readout at 1MHz
- ◇ HLT trigger farm
 - ~1800 nodes

X Pisa Meeting on Advanced Detectors

The Front-End system

Level-O Trigger

- Custom electronics
- ♦ Fixed latency: 4μ s
 - Includes link delays, processing time: 2 µs
- ◇ Pile-up system
 - Determines number of interactions per crossing
- Calorimeter trigger
 - High E_T clusters
 - SPD multiplicity
- ◊ Muon Trigger
 - High p_T muons
- ◊ LO Decision Unit
 - Evaluates trigger information
 - Presents LO decision to Readout Supervisor

To Readout Supervisor

X Pisa Meeting on Advanced Detectors

Level-O Pile-up System

- ◊ Identifies bunch crossings with multiple interactions
- Vse hits in two silicon planes upstream of IP
 - Histogram track origin on beam axis (ZV)
 - Hits belonging to highest peak are masked
 - Search for second peak
- Information sent to LO Decision
 Unit:
 - Nr of tracks in second peak
 - Hit multiplicity
- ◊ Performance:
 - $\epsilon_{2 \text{ interactions}} = \sim 60\% \text{ at } 95\% \text{ purity}$
 - Latency: $\sim 1 \, \mu$ s

X Pisa Meeting on Advanced Detectors

Level-O Calorimeter Trigger

- ◇ Find high E_T candidates
 - Regions of 2x2 cells
 - PID from
 - ◇ ECAL, HCAL energy
 - Pre-shower information
 - ♦ SPD information
 - E_T threshold: ~3 GeV
- ◇ Information to LO-DU:
 - Highest E_T candidate
 - Total calorimeter energy
 - SPD multiplicity
- Performace:
 - $\epsilon_{hadronic channels} = 30-50\%$
 - Latency: $\sim 1 \, \mu$ s

Level-O Muon Trigger

- ♦ Search for straight lines in M2-M5
- ◇ Find matching hits in M1
 - Momentum resolution:
 ~20% for b-decays
- ◇ Information sent to LODU:
 - 2 highest p_T candidates (per quadrant)

- Performance:
 - $\epsilon_{B \rightarrow J/\Psi(\mu\mu)\chi}$ = ~ 88 %
 - Latency: $\sim 1 \,\mu s$

Level-O Decision Unit

- ♦ Logical OR of high E_T candidates
- Cuts on global variables:
 - Tracks in second vertex: 3
 - Pile-up multiplicity: 112 hits
 - SPD multiplicity: 280 hits
 - Total E_T: 5 GeV
- Applied thresholds:

Channel	Threshold (GeV)	Incl. Rate (kHz)
Hadron	3.6	705
Electron	2.8	103
Photon	2.6	126
π ⁰ local	4.5	110
$\pi^{ m o}$ global	4.0	145
Muon	1.1	110
Di-muon Σp_T	1.3	145

X Pisa Meeting on Advanced Detectors

Level-1 Electronics

- Common Level-1 board
- ◇ Receives Level-O accepted events
 - Sub-detector specific links
 - ◊ VELO: copper
 - ◊ Other SD: optical
- ◊ For analog signals, data is digitized
- Level-O throttle signal on input buffer occupancy
- Performs zero suppression
- ♦ Event formatting for DAQ
- ◊ Quad-GbE NIC, plug-in card
 - ~475 MB/s output bandwidth per board

Readout Network

- Gigabit Ethernet from Level-1 to farm nodes
- ~300 L1 front-end modules
 - Not all use all 4 interfaces
 - ~750 input links
- ◊ Event Filter Farm
 - ~1800 nodes (estimated from 2005 Real-Time Trigger Challenge results)
 - Organised in sub-farms of up to 44 nodes each
- ◇ Total system throughput: 50 GB/s
 - Designed for 80% average output link utilisation

50 sub-farms

- Routed network
 - Single core router
 (Force10 E1200, 1260 GbE ports)
 - Routing switches in each sub-farm
 - Static routes

Event Building Traffic

- Each Level-1 module contains one fragment of a given event
- Readout supervisor broadcasts the address of destination node to all Level-1 boards
- ◊ Push protocol
- Readout Network guarantees delivery of all event fragments to a single node

X Pisa Meeting on Advanced Detectors

- > Data is embedded in IP packets
- No transport layer protocol
- ◊ Multi-Event Packets
 - Several event fragments are packed into a single IP packet

- Reduction in
 - Frame rate, interrupt rate, CPU load
 - Network protocol overhead
 - \rightarrow better bandwidth utilisation

Readout Network Scalability

- ◇ Currently estimated event size: ~35kB
 → 50 GB/s network throughput (including safety margins)
- ◇ LHC pilot run in 2007
 → real data size
- Need a scalable design
 - Also for possible upgrade scenarios
- \diamond Achieved through
 - Modularity in FE design
 - Multiple interfaces from each Level-1 board
 - Modularity at sub-farm level

50 sub-farms

X Pisa Meeting on Advanced Detectors

Event Filter Farm

- ◊ Farm composed of 1U rackmountable PCs
 - Vendor independent
 - Horizontal cooling
 - Heat exchanger at back of the rack
- ◊ Dual-CPU nodes
 - One event-building process per node
 - One trigger process per CPU
- Same code running "on-line" and "off-line"
 - Change only running parameters
- Farm nodes running independent from each other
 - Partitioning
 - Can be dynamically included in the system

Storage System

Storage Writer

EFF Node

High Level Trigger

- Vse final quality information from detector
- ♦ Combine tracking information with μ 's, hadrons, electrons
- Starting point is the LO decision
- ♦ 4 "alleys" defined
 - Depending on LO decision
 - Each alley is independent
 - Each alley provides a summary to the selection algorithm
 - ♦ Decision
 - ◊ Type of trigger
 - ◊ Quantities used
 - Reconstructed objects
- ◊ Exclusive selection
 - Reconstructed B decays
- ♦ Inclusive selection
 - Used for systematic studies
 - Inclusive B or D*

HLT Alleys

- ♦ Each alley consists of 3 major steps
 - Level-O trigger confirmation
 - Fast rejection using reconstructed
 - ◊ VELO tracks, matching LO objects
 - ◇ Primary Vertex
 - ♦ VELO-TT matched tracks
 - Alley-dependent trigger algorithm
 - ◊ Long tracking (all tracking detectors)

Summary

- ◇ LHCb trigger consists of 2 Levels
 - Level-O, hardware, custom electronics
 - ♦ 1 MHz accept rate
 - Hight Level Trigger, software, CPU farm
 - ◊ 2 kHz accept rate
- Readout Network based on copper Gigabit Ethernet
 - 50 GB/s throughput
 - Scalable
- ♦ Trigger farm
 - Process 1 MHz of events
 - ~1800 processing nodes
- ◇ Installation of the Trigger and DAQ systems has started
 - Commissioning from Q3 2006
 - Will be ready for the LHC pilot run in 2007