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1 Introduction

Primordial non-Gaussianity is a window onto the early universe, which can be used to dis-
tinguish between different models for the origin of cosmological fluctuations [1–5]. For this
reason, it is important to characterize as completely as possible the properties of observable
quantities in a non-Gaussian distribution. In this paper, we discuss under what conditions
local non-Gaussian observables can be inhomogeneous to a measurable level.

Consider subdividing the observable sky of sizeH−1 into a large number of small patches
of size ℓ ≪ H−1, and measuring cosmological observables on each of these patches. The effec-
tive values of the cosmological parameters can differ from one patch to the other, since each
small part of the sky experiences a different local background. In particular primordial cur-
vature fluctuations within a small patch are defined with respect to a local background which
can be decomposed into a cosmological background solution of the homogeneous field equa-
tions, plus the cumulative effect of random modes with wavelengths larger than the size ℓ of
the patch (but smaller than the size H−1 of the observable sky). Since different patches of our
observable universe are affected by different contributions from the random long wavelength
modes, each patch is defined on a different background configuration. As a consequence,
quantities characterizing the properties of n-point functions of curvature fluctuations can
be different in one patch or the other. Indeed the effect of long-wavelength modes on the
small-scale gravitational collapse of dark matter halos is described by the peak-background
split in astrophysics and is used to explain the biased clustering of dark matter halos [6]. In
a non-Gaussian field the long-wavelength modes also modulate the amplitude of the short-
wavelength density perturbations which can lead to a distinctive scale-dependent bias which
is a powerful probe of primordial non-Gaussianity [7]. Of course there is also a cosmic vari-
ance between patches, even if there are no non-zero higher order correlators. However this
effect will be small as long as there are a large number of independent measurements in
every patch.
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Correlators between n-point functions measured in one patch, and k-point functions
measured in another patch, depend on (n + k)-point functions in the entire sky. As an ex-
ample, we will show that the autocorrelation of fNL between different patches depends on
a class of parameters controlling 5- and 6-point functions, that in the single-source case re-
duce to squares of trispectrum parameters. This implies that inhomogeneities in quantities
characterizing non-Gaussian observables can be measurable, since at present we have only
weak or even no constraints on parameters controlling higher-order point functions in the
full sky. Moreover, although the optimal way to constrain higher n-point functions in the
full sky would be through a direct analysis of that correlator, in practice this is exceed-
ingly time consuming and computer intensive. This problem will become significantly more
pressing when the Planck satellite data becomes avalailable in early 2013 [8], since it has a
much higher resolution than the WMAP satellite [9]. Only during the last few years have
the first constraints on the trispectrum been made [10–14], and there are not yet any con-
straints on higher n-point functions. Therefore, our method of relating n-point functions to
inhomogeneities of lower-order functions should also provide a feasible and practical way of
constraining higher-point functions in the full sky, even though the method is suboptimal.
There is a clear theoretical interest in constraining higher-order correlators: they may be
much larger than the correlators which have already been constrained, and their detection
would provide important additional information for characterizing the origin of primordial
fluctuations. Refs. [15–17] consider the amplitude of correlators of higher order than the
trispectrum for local models of non-Gaussianity. See [18] for an analysis of non-Gaussianity
not characterized by a local shape, that investigates 10-point functions and beyond.

The inhomogeneities of non-Gaussian quantities that we analyze in this paper are dis-
tinct from the anisotropies of inflationary observables, arising when background vector fields
(perhaps of curvaton nature) are turned on [19–27]. We are going to consider primordial
non-Gaussianity due to scalar fields that do not induce statistical anisotropy. Conversely,
generic models of inflation with vector fields may produce statistical anisotropy but do not in-
duce inhomogeneities of inflationary parameters. The inhomogeneities that we consider here
are also different from the scale-dependence of the non-linearity parameters, that describe a
variation with size rather than with position of patches [28].

The plan of this paper is as follows: We first focus on single-source scenarios, in which
only one field generates the curvature perturbation. In section 2.1 we consider correlators of
ζ and the power spectrum, in section 2.2 of fNL and in section 2.3 possible tests of single
versus multi-source scenarios. In section 3 we focus on the more general formula of multi-
source models, before going on to analyze in section 4 when the inhomogeneities can be large
enough to be observable. Finally we conclude in section 5.

2 Statistical inhomogeneities in single-source models

Let us start by considering single-source models where the curvature perturbation ζ arises
from fluctuations of a single scalar field. The single-source scenarios that we have in mind
do not necessarily correspond to single-field models of inflation. We have in mind set-ups in
which more than one scalar field may be present in the system, but only one of them, which
we dub σ, is responsible for generating the primordial curvature perturbation. Examples
are the curvaton model [29, 30], or the modulated reheating scenario [31, 32]. These models
are particularly interesting since they are capable of generating large non-Gaussianity of the
local type, potentially observable by the Planck satellite.

– 2 –
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The statistics of the curvature perturbation in general depend on the size of the patch we
consider. This is due to long-wavelength fluctuations which contribute to local background
quantities in any patch smaller than the horizon. The curvature perturbation within a patch
of size ℓ is given by [33–37]

ζℓ(x) = N ′(σℓ)δℓσ(x) +
1

2
N ′′(σℓ)δℓσ(x)

2 +
1

6
N ′′′(σℓ)δℓσ(x)

3 + . . . , (2.1)

where σℓ denotes the background field value in the patch. It consists of the classical homoge-
nous solution σ̄(t), and of fluctuations δσk with wavelengths greater than the patch size,
k < a ℓ−1 (here a denotes the scale factor). N(σ) =

∫

H dt denotes the number of e-foldings
from an initial time ti, soon after horizon exit during inflation of the modes of interest, to
some final time (for example, during the primordial radiation-dominated era) at which ζ
has frozen to its final, constant value. The fluctuations δℓσ(x) include modes ranging from
k = a ℓ−1 to ki = aiHi, the latter corresponding to modes that exit the horizon at the initial
time ti:

1

δℓσ(x) =

∫

a ℓ−1<k<ki

dk′

(2π)3
eik

′
·xδσk′ . (2.2)

We use a top-hat window function to select the modes within this momentum interval.
Different choices of the window function should not significantly alter our results. δℓσ(x)
consists of superhorizon modes at the initial time, δσk, which can subsequently be treated
as a classical, Gaussian random field with the two-point function given by2

〈δσkδσk′〉 = (2π)3δ(k+ k′)
H2

2k3
. (2.3)

Here the brackets denote ensemble averages.
We are interested in computing ζ in patches smaller than the observable universe, ℓ ≪

H−1, see Fig 1. The local background field value in a patch centered at some position x is
given by

σℓ,x = σH−1 +

∫

aH<k<a ℓ−1

dk′

(2π)3
eik

′
·xδσk′ ≡ σH−1 +∆ℓσx , (2.4)

where σH−1 denotes the background field in the entire observable universe. ∆ℓσx is comprised
of fluctuations δσk with wavelengths greater than the patch size, k < a ℓ−1, which do not
average out when computing spatial averages over the patch ℓ. For a patch ℓ located at a
position x, ∆ℓσx therefore acts as a constant, local background. We emphasize that we use
the label x to indicate quantities evaluated in a patch at position x, and we consider them
not as functions of the coordinate x. Denoting the spatial average over the patch by 〈. . .〉ℓ,
we in general obtain the non-vanishing result

∆ℓσx = 〈∆ℓσx〉ℓ 6= 0 , (2.5)

1Notice, however, that this cut-off does not lead to an additional dependence on ti of the quantity δℓσ(x),
besides the one already contained in δσk. Indeed, the upper limit ki is meant to characterize a UV cut-off.
Pushing this cut-off to a slightly larger fixed scale, kuv > ki would remove the additional dependence on
ti, without qualitatively changing our results. This since subhorizon modes are expected to provide only
subdominant contributions to the evolution on superhorizon modes.

2We assume that the scalar field σ has canonical kinetic terms, and is characterized by slow-roll dynamics
during inflation.

– 3 –



J
C
A
P
0
3
(
2
0
1
2
)
0
1
2

Figure 1. Schematic diagram to explain the measurements we are proposing. The large shaded area
is the full sky (Hubble volume) while the two small regions of size l ≪ H−1 are two examples of the
small patches in which observations are made and then correlated.

which depends on the location x of the patch. On the other hand, when ℓ ≪ H−1, the
spatial average of ∆ℓσx, when computed in the entire observable universe H−1, vanishes:
〈∆ℓσx〉H−1 = 0. This is because ∆ℓσx in our approximation depends linearly on the fluctua-
tions δσk, which have a vanishing spatial average over the full sky. By the ergodic theorem,
and provided that the quantity ℓ ·H is sufficiently small, the average of ∆ℓσx computed over
the full sky coincides with the ensemble average, 〈∆ℓσx〉H−1 = 〈∆ℓσx〉 = 0.

The consequences of long-wavelength fluctuations have been extensively studied in the
context of the infrared growth of inflationary correlators. It has been shown that, for suffi-
ciently local observations, a suitable shift of background quantities is able to remove infrared
divergences associated with adiabatic field fluctuations [38–41], see also [42–44]. On the
other hand, infrared-enhanced effects associated with long wavelength isocurvature fluctu-
ations cannot be removed by shifts in background quantities, and have the opportunity to
provide sizable contributions to inflationary observables [45]. In our analysis, we will consider
correlators between cosmological observables measured on distinct subhorizon patches within
the observable universe, in set-ups where long-wavelength modes generate sizable statistical
inhomogeneities. This effect was pointed out already in [46], but for the specific case of
single-field slow-roll inflation where inhomogeneities are slow-roll suppressed. Our treatment
applies to generic single and multiple source models, and we find that the inhomogeneities
can become large in scenarios characterized by observable non-Gaussianity. We will only
consider the inhomogeneities arising from scalar perturbations. Tensor modes, included in
the analysis of [38, 39], should only generate subleading, slow roll suppressed corrections to
our results which we neglect.

After this general discussion aimed to define the set-up, we move on discussing in more
detail small scale statistical inhomogeneities of quantities characterizing the properties of the
curvature perturbation.

2.1 Correlators of one and two-point functions

The two-point function of the curvature perturbation (2.1) in a patch of size ℓ ≪ H−1 is
given by

〈ζℓ(y1)ζℓ(y2)〉ℓ = N ′(σℓ ,x)
2〈δℓσ(y1)δℓσ(y2)〉ℓ +O(f2

NLζ
4) (2.6)
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If we re-express this with respect to the background field in the entire observable universe,
σH−1 , using eq. (2.4) this becomes

〈ζℓ(y1)ζℓ(y2)〉ℓ = N ′(σH−1)2〈δℓσ(y1)δℓσ(y2)〉ℓ
(

1 +
2N ′′(σH−1)

N ′(σH−1)
∆ℓσx

)

+O(f2
NLζ

4) , (2.7)

where x denotes the location of the patch and y1,y2 are coordinates inside the patch. Recall
that brackets 〈〉ℓ denote spatial averages computed over the region ℓ. The long-wavelength
contribution ∆ℓσx breaks translational invariance: the two-point function depends not only
on the separation of the points, |y1 − y2|, but also on the location of the patch x. The
long-wavelength modes therefore generate statistical inhomogeneity. For the case of 2-pt
functions, this fact was also pointed out in [46] and, in more generality, in [48].

Taking a Fourier transformation of (2.7) within the region ℓ, i.e., integrating over the y-
coordinates and treating x as a constant, we find a relation between the spectra of ζℓ and ζH−1

∆ℓPζ(x) ≡ Pζℓ − Pζ
H−1

=
12

5
Pζ

H−1 fNL(σH−1)N ′(σH−1)∆ℓσx + O(
√
ǫσ/N

′P3/2
ζ ) +O(f2

NLP2
ζ ) , (2.8)

where the full sky power spectrum is

Pζ
H−1 = N ′(σH−1)2

(

H

2π

)2

, (2.9)

and fNL describes the amplitude of the primordial bispectrum relative to the square of the
power spectrum, which is given in the δN -approach by [37]

fNL =
5

6

N ′′

N ′2
. (2.10)

∆ℓPζ(x) measures deviations of the local spectrum, measured in a patch of size ℓ, from
the global power spectrum characterizing 2-pt functions of perturbations over the entire
observable universe.

Since ∆ℓPζ(x) is proportional to ∆ℓσx, it is a Gaussian field with zero mean over the
full sky for ℓ ≪ H−1

〈∆ℓPζ(x)〉H−1 = 0 ,

with two-point function

〈∆ℓPζ(x1)∆ℓPζ(x2)〉H−1 = P2
ζ
H−1

(

12

5
fNL(σH−1)

)2

N ′(σH−1)2〈∆ℓσ(x1)∆ℓσ(x2)〉H−1

= P3
ζ
H−1

(

12

5
fNL(σH−1)

)2 ∫ kℓ

khor

d k′
sin(k′∆x)

k′2∆x
, (2.11)

where 〈. . .〉H−1 denotes the spatial average computed over the entire observable universe,
which we assume coincides with the ensemble average 〈. . .〉. Hence we will drop the label
H−1 from the angle brackets in what follows. We denote ∆x = |x1 − x2|, kℓ = a ℓ−1 and
khor = aH. The integral can be evaluated as

F (∆x, khor, kℓ) ≡
∫ kℓ

khor

d k′
sin(k′∆x)

k′2∆x

= ci(kℓ∆x)− ci(khor∆x)− sin(kℓ∆x)

kℓ∆x
+

sin(khor∆x)

khor∆x
, (2.12)

– 5 –
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Figure 2. The exact integral eq. (2.12) (solid line) and the approximation eq. (2.14) (dashed
line) plotted for khor/kℓ =

√
0.03. For this choice, a patch of size ℓ corresponds to a 3% region

of the observable sky, H−1. On the x-axis we have plotted the values k−1

ℓ
< ∆x < k−1

hor
− k−1

ℓ
,

corresponding to the possible distance between non-overlapping spheres of coordinate radius k−1

ℓ
/2

within the observable universe.

with ci(x) the cosine integral function. Notice that, as expected, the correlators between two-

point functions evaluated in different patches of the universe are proportional to
(

6
5fNL

)2
=

τNL, which in single-source models is a parameter characterizing the four-point function
measured in the entire sky.3 In the limit ∆x → 0, the result takes a particularly simple form

F (∆x = 0, khor, kℓ) = ln
kℓ
khor

= −ln (ℓH) , (2.13)

corresponding to the well-known logarithm associated with IR-enhancements. For k−1
ℓ ≪

∆x ≪ k−1
hor it can be approximated by

F (∆x, khor, kℓ) ≈ 1− γE − ln(khor∆x) +O
(

(kℓ∆x)−1
)

(2.14)

where γE ≈ 0.58 is the Euler constant. A comparison between the exact result (2.12) and
the estimate (2.14) is shown in figure 2.

The magnitude of the statistical inhomogeneities is described by the variance of ∆ℓPζ .
Using COBE normalization Pζ = 2.4× 10−9 and the bound |fNL| . 102 we find

√

〈∆ℓPζ(x)2〉
Pζ

H−1

=
12

5
P1/2
ζ
H−1

|fNL(σH−1)||ln (ℓH)|1/2 . 10−2 × |ln (ℓH)|1/2 . (2.15)

For patches ℓ corresponding to a few percent fraction of the observable universe, the logarithm
contributes with a factor of order unity, |ln (ℓH)| ≃ O(1).4 The statistical inhomogeneity
seen on these scales could therefore be at a few percent level. This observation was already
made in [46] (see also [47], and the more general discussion of [48]). Observational constraints
were discussed in [49].

3However, as we will discuss in section 2.3, this tree level equality can be broken when loop corrections are
included.

4Here and in the rest of this paper, we will always focus on cases in which the size of the logarithms is of
order one. The effects we are interested in are observable thanks to the coefficients in front of the logarithms,
that can assume large values.

– 6 –
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It is also interesting to consider the correlators of the quantity ∆ℓζ(x) ≡ ζℓ(x)−ζH−1(x),
measuring the difference in the amplitudes of the curvature perturbation evaluated in the
small patch ℓ and in the full sky H−1. To first order in perturbations we find

∆ℓζ(x) = (N(x)− 〈N(x)〉ℓ)− (N(x)− 〈N(x)〉H−1) (2.16)

= 〈N(x)〉H−1 − 〈N(x)〉ℓ
= −N ′(σH−1)∆ℓσx .

The correlator between ∆ℓζ(x)’s evaluated on different patches reads

〈∆ℓζ(x1)∆ℓζ(x2)〉H−1 = Pζ
H−1 F (∆x, khor, kℓ) (2.17)

that is proportional to the two point function measured in the full sky. Also, we have

〈∆ℓζ(x1)∆ℓ lnPζ(x2)〉H−1 = −12

5
fNL Pζ

H−1 F (∆x, khor, kℓ) (2.18)

that is proportional to the three point function.
In this paper we will focus on the two-point correlators of n-point functions measured

in separate patches. It would also be possible to extend our analysis to higher point corre-
lators of the same quantities between different patches. This would require extending our
analysis to non-linear orders in ∆ℓσx and, depending on the model, also extending the def-
inition of ∆ℓσx, given in eq. (2.4), to non-linear orders in perturbations. This should be
technically straightforward although it would lead to longer expressions. We will not pursue
this here, also since the results will be suppressed by higher powers of the power spectrum.
Measuring the higher-order correlators of observables in different patches would also become
computationally more demanding, something which our analysis, constraining the higher-
point correlators, alleviates.

2.2 Correlators of three-point functions

Because inhomogeneity of the power spectrum is already restricted by observational bounds
on the primordial bispectrum, it is more interesting to study the correlators of non-Gaussian
observables such as fNL itself. The non-linearity parameter fNL in a patch ℓ, located at x,
can be expressed as

fNL(σℓ,x) = fNL(σH−1) + f ′

NL(σH−1)∆ℓσx +O(f ′′

NL∆ℓσ
2
x) . (2.19)

The prime denotes a derivative with respect to σH−1 and for single-source models we find

f ′

NL(σH−1) =

(

9

5
gNL(σH−1)− 12

5
f2
NL(σH−1)

)

N ′(σH−1) , (2.20)

where gNL is a parameter describing the primordial trispectrum relative to the power spec-
trum cubed, and is given in the δN -approach by [50]

gNL =
25

54

N ′′′

N ′3
. (2.21)

For brevity we suppress the argument σH−1 in what follows, and write fNL(σH−1) ≡ fNL etc
meaning that quantities without argument are evaluated in the full sky.

– 7 –
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To leading order in ∆ℓσx, the difference between fNL measured in the entire observable
universe H−1 and in a patch of size ℓ is then given by

∆ℓfNL(x) ≡ fNL(x)− fNL =

(

9

5
gNL − 12

5
f2
NL

)

N ′∆ℓσx , (2.22)

and the two-point function of ∆ℓfNL(x) reads

〈∆ℓfNL(x1)∆ℓfNL(x2)〉 =

(

9

5
gNL − 12

5
f2
NL

)2

N ′2〈∆ℓσx1∆ℓσx2〉 (2.23)

=

(

9

5
gNL − 12

5
f2
NL

)2

N ′2

(

H

2π

)2 ∫ kℓ

khor

d k′
sin(k′∆x)

k′2∆x

=

(

9

5
gNL − 12

5
f2
NL

)2

Pζ F (∆x, khor, kℓ) .

We then learn that 〈∆ℓf
2
NL〉 is proportional to a combination of terms containing powers of

gNL and fNL. As we will discuss in the next sections, those terms are related, by consistency
relations valid in the single-source limit, to parameters controlling five and six point functions.

Using the amplitude of spectrum of curvature perturbations, Pζ = 2.4× 10−9, we find

〈∆ℓfNL(x1)∆ℓfNL(x2)〉 = 7.8× 10−9g2NLF (∆x, khor, kℓ) +O(10−8f2
NLgNL) +O(10−8f4

NL) .
(2.24)

For |gNL| . f2
NL the inhomogeneities are unobservably small, 〈(∆ℓfNL)

2〉 . 1, as fNL is con-
strained by |fNL| . 102 [9]. On the other hand, if |gNL| ≫ f2

NL, we discuss this possibility
further in the next subsection, the inhomogeneities can become significant as the observa-
tional constraint for gNL is rather weak, |gNL| . 106 [10–14]. In this limit, the last two terms
in eq. (2.24), proportional to powers of fNL, give only subleading contributions and they can
therefore be neglected. The function F (∆x, khor, kℓ) contributes with a factor of order unity,
and thus we arrive at the result

〈∆ℓfNL(x1)∆ℓfNL(x2)〉 ≈ 10−8g2NL . 104 . (2.25)

For |gNL| ∼ 106, the variation of fNL measured in different patches of size ℓ < H−1 becomes
quite large, 〈(∆ℓfNL)

2〉 ∼ 104, implying that fNL becomes inhomogeneous on small scales.5

This is a generic feature of all single-source models with large gNL.
6

It is illuminating to compare the result with the observational accuracy for detecting
fNL using a small fraction of the sky. For example, the BOOMERanG experiment found
−670 < fNL < 30 at 65% CL observing a 3% region of the sky [51]. For patches of the same
size, we find the variance 〈(∆ℓfNL)

2〉 ≈ 1.4× 10−8g2NL using eq. (2.24). For |gNL| ∼ 106, the
variation of fNL measured on different 3%-of-the-sky patches is therefore of the same order
of magnitude as the BOOMERanG 1-σ accuracy for detecting fNL.

In general, when estimating n-point functions on a limited part of the sky, observational
errors increase (at least) proportionally to 1/

√

fsky (fsky denotes the fraction of the sky which

5 We emphasize that our results are derived retaining only the linear term in (2.19). For |gNL| ≫ f2
NL,

which is the case of interest here, the higher order terms O(f ′′
NL∆ℓσ

2
x) give a subleading contribution provided

that |N
′′′′

/N ′4| ≪ 105|gNL|.
6A comparable constraint on the inhomogeneity of fNL can be found by considering the correlator of

∆ℓfNL and ∆ℓζ, see (3.14) for this correlator in the multiple-source case. We thank Antony Lewis for pointing
this out.
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is observed), since there is less data available in a small patch. Therefore when dividing the
sky into, say, one hundred equal patches, the error bar on every observation will grow by
at least a factor of ten compared to the full sky measurement. On the other hand, we then
correlate, over the full sky, the measurements of n and k-point functions evaluated in distinct
small patches. This implies that, for the aim of constraining the values of higher-order point
functions in the full sky, we are able to regain much of the accuracy we had previously lost.

There is however an important second effect to take into account: when making mea-
surements of n-point functions in a patch smaller than the entire sky, a smaller number of
correlators can be built. For example, for n = 3, when estimating fNL in a patch the range
of scales available is reduced, thereby limiting our ability to analyze the squeezed limit of
triangles.7 This effect is expected to depend only logarithmically on the size of the patches.
Indeed, the signal to noise ratio for measurements of local non-Gaussianity scales as [52, 53]

(

S

N

)2

∝ ℓ2max

(

1− ℓ2min

ℓ2max

)

ln

(

ℓmax

ℓmin

)

, (2.26)

where ℓmax and ℓmin denote the largest and smallest multipoles accessible by the experiment.
For example, for patches covering one per cents of the sky, ℓmin/ℓmax ≪ 1, and the patch size,
which determines ℓmin, enters only in the logarithm, reducing the accuracy only by a factor
of order three with respect to full sky. We will not develop this issue further in our work,
but to account for these logarithmic effects we simply increase by one order of magnitude
the values of our expected constraints on higher order n-point functions in the full sky. We
will see that, even within this conservative estimate, we can find interesting constraints on
these quantities.

To conclude this section, let us point out that alternative techniques based on needlets
analysis of CMB data are particularly well suited for testing non-Gaussianity in selected
regions of the sky. This fact has already been used for investigating inhomogeneity of non-
Gaussianity in different, large regions of the sky in [54, 55], with the main aim of investigating
foreground contaminations and directional variations of fNL. Although no significant hints
of anisotropies have been reported in those studies, it would be very interesting to apply the
same techniques to a collection of smaller regions of the sky, to instead test inhomogeneities
of fNL along the lines we suggest here.

2.3 New perspectives for discriminating single from multiple source models

We have learned from the previous analysis that a large gNL leads to sizable inhomogeneities
of fNL. On the other hand, other inflationary observables can be affected by a particularly
large gNL. We discuss in this section this possibility, showing that the conditions allowing
to obtain large inhomogeneities for fNL offer new perspectives for distinguishing single from
multiple-source scenarios.

Loop corrections [56] are known to influence observables by providing logarithmic con-
tributions that in some scenarios can be large enough to dominate over tree-level quanti-
ties [57, 58]. In our set-up, τNL is the observable that is most sensitive to loop corrections
when gNL is large. Expressing it as

τNL = τ treeNL + τ1−loop
NL ,

7We thank Rob Crittenden and Dominic Galliano for discussions on this point.

– 9 –



J
C
A
P
0
3
(
2
0
1
2
)
0
1
2

one finds that for |gNL| ≫ |fNL|2, the dominant part of the one-loop correction to τNL is
given by

τ1−loop
NL ≈

(

54

25

)2

g2NL Pζ ln(kℓ) . 104 , (2.27)

assuming that the fourth order derivative N ′′′′ is constrained according to footnote 5. We
have used approximation methods similar to [59–61] in evaluating the loop integral. The
cut-off scale l should be a bit larger than the box in which we are making our measurements,
such that ln(kℓ) & 1: because we are making a leading log approximation one cannot consider
the limit of the logarithm going to zero. Comparing equations (2.23) and (2.27), we observe
that the inhomogeneities of fNL are directly related to the fraction of τNL generated by loops

〈(∆ℓfNL)
2〉 ≃

(

5

6

)2

τ1−loop
NL . (2.28)

This consistency relation, which holds for |gNL| ≫ |fNL|2, is specific for the single-source
case. As we will learn in Sec 4.1, in multiple source models there are additional quantities
contributing to the right hand side of eq. (2.28), which in principle make it possible to
discriminate between single and multiple source scenarios.

Although for some models one cannot realise |gNL| ≫ f2
NL, especially for those with

quadratic potentials, for a review see [62], it is certainly possible to realise |gNL| ≫ f2
NL

in general early universe models. This can happen for example in the interacting curvaton
scenario [63], since the value of fNL oscillates depending on the initial field value of the
curvaton, and the points where fNL = 0 do not coincide with points where gNL is suppressed.
Also an isocurvature field direction during inflation with a quartic potential and zero VEV
gives rise to gNL but not fNL [64]. In general finite volume effects will also generate a non-zero
fNL in horizon size patches [65, 66], but in some patches fNL will still be small while gNL

is not. Some models of multifield inflation can also give rise to |gNL| ≫ f2
NL at the end of

inflation, see eq. (82) of [67] (see also [68]).

Interestingly, large loop corrections to τNL also break the well-known consistency relation
τNL = (6fNL/5)

2, characteristic for single-source models. This relation is indeed not protected
against loop corrections, as can be nicely demonstrated by considering models where the
curvature perturbation takes the form ζ = N ′δφ+N ′′′δφ3/6, with no higher order terms. For
this class of models fNL = 0 to all orders in perturbation theory, within the same patch that
this ansatz for ζ is valid in. At tree-level τNL also vanishes, τ treeNL = 0, but the unique one-loop
corrections generate a non-vanishing result, τNL ≈ (54/25)2g2NLPζ ln(kℓ) +O(g3NLP2

ζ ) . 104.
There is no two-loop correction and the three-loop correction is constrained to be much
less than unity due to the observational bound on gNL. The relation τNL = (6fNL/5)

2

is therefore clearly violated by the loop corrections. To the best of our knowledge, this
has not been demonstrated previously. However the Suyama-Yamaguchi (SY) inequality,
τNL > (6fNL/5)

2, which was originally proved at tree level in [69], and the possible effects
of loop corrections were discussed in [61, 62, 70], has recently been shown to remain true
against loop corrections at all orders in a completely model independent sense [71] (although
there are subtelties about the definition of the local correlators beyond tree level [61]).

The previous example is by no means a special case: for generic single-source models we
also find that the relation τNL = (6fNL/5)

2 can easily be broken by loops. Assuming there
are no large loop corrections with higher than three-point vertices, and concentrating on the
limit |gNL| ≫ f2

NL, the one-loop corrected fNL is given by fNL ≈ f tree
NL (1 + 13 gNL Pζ ln(kℓ)).
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Using that |gNL| . 106, we conclude that the loop corrections to fNL are small, at most at one
per cent level, since 13 gNL Pζ ln(kℓ) . 10−2. On the other hand, the one-loop corrections to
τNL of eq. (2.27) can be large, significantly altering the tree level relation τ treeNL = (6f tree

NL /5)2.
Combining the results so far we find the general one-loop corrected single-source relation
between τNL and fNL given by

τNL ≈
(

6

5

)2

f2
NL +

(

54

25

)2

g2NL Pζ ln(kℓ) . (2.29)

The second term on the right hand side arises from the loop corrections and can be as large
as 104, irrespectively of the value of fNL. It may therefore give the dominant contribution
to τNL. In conclusion, the condition that leads to sizeable inhomogeneities for fNL, that is
having a large gNL, also leads to breaking the single-source consistency relation between fNL

and τNL. On the other hand, even though the loop corrections can cause large deviations
from the tree-level single-source result τ treeNL = (6f tree

NL /5)2, the relation between τNL and fNL

still serves as a useful discriminator between single and multiple source models. Indeed as
we will show in section IV, the result (2.27) is converted into a lower bound for τ1−loop

NL in the
multiple source case, which also implies that (2.29) becomes a lower bound for τNL. It would
be interesting to generalize this analysis allowing for large loop corrections with higher than
three-point vertices and see if the same conclusion holds even in that case.

2.4 Correlators of four-point functions

Considering correlators involving four-point functions measured in small patches, we can
constrain higher-order n-point functions in the full sky, with n ≥ 5. In the single-source case,
the only new parameter which we can independently constrain (even if going beyond 2-point
correlators) is the quantity

hNL ≡ 1

4!

(

5

3

)3 N ′′′′

N ′4
. (2.30)

This is associated with the fourth order term in the standard expansion of the curvature
perturbation

ζ = ζG +
3

5
fNL ζ

2
G +

(

3

5

)2

gNL ζ
3
G +

(

3

5

)3

hNL ζ
4
G + · · · . (2.31)

In multiple-source models, more possibilities arise as we are going to discuss in section 3;
in this subsection, we focus on correlators that specifically depend on hNL. These involve
measurements of gNL in small patches, and read8

〈∆ℓζ(x1)∆ℓgNL(x2)〉 ≃ − 1

10
hNLPζ . (2.32)

〈∆ℓ lnP(x1)∆ℓgNL(x2)〉 ≃ 1

25
fNL hNL Pζ (2.33)

〈∆ℓfNL(x1)∆ℓgNL(x2)〉 ≃ 1

5
gNLhNL Pζ (2.34)

〈∆ℓgNL(x1)∆ℓgNL(x2)〉 ≃ 1

5
h2NL Pζ (2.35)

where in the right hand side of each correlator we only include the terms proportional to hNL

and that are weighted by the largest coefficient, under the assumption that the actual values

8Details of these calculations are given by taking the single-source limit of the general, multiple-source
calculation which we will present in section 3.
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of fNL, and gNL saturate their observational bounds. For simplicity, we also drop the factor
F defined in eq. (2.12) which is of order unity and does not modify our discussion.

Approximate 1σ constraints with WMAP for ζ, logPζ , fNL, gNL are respectively
10−5, 10−1 , 10 , 106. Considering around one hundred patches of the sky, the measurement
errors in each patch will be about ten times larger than these. On the other hand, when
making correlations over the full sky, we should be able to recover the accuracy we loose
when focussing on a small patch. As discussed at the end of subsection 2.2, in order to take
into account effects associated with the fact that only a limited class of momentum space
configurations fits into the small patches, we increase the expected error bars on the corre-
lations above by one order of magnitude. The resulting error bars are consequently of order
102, 106, 108 and 1013, respectively for eqs. (2.32)–(2.35). Considering the constraints these
terms could give on hNL, we see the correlation between ζ and gNL, eq. (2.32), would lead to
a competitive constraint, of order

|hNL| . few × 1011 . (2.36)

Moreover, this correlation is sensitive to the sign of hNL. A comparable constraint can be
obtained from the autocorrelation of gNL, eq. (2.35), although this quantity cannot determine
the sign of hNL.

9

Note that the assumption |hNL| ≪ 105|gNL|, which justifies neglecting the second order
terms in eq. (2.19), breaks down when |gNL| ∼ 106 and the bound |hNL| . few × 1011

is saturated. To work out the precise numerical factors in this limit one should therefore
include the second-order terms and repeat the analysis leading to eqs. (2.32)–(2.35). This
however should not affect the order of magnitude of the bound |hNL| . 1011.

How useful is this constraint on hNL? As we did in the previous sections with respect
to gNL, we should compare them with constraints obtained from loop contributions to infla-
tionary observables that are sensitive to hNL. There is a “dressed-vertex” loop diagram of
the bispectrum [72] which gives f1−loop

NL ∼ hNLPζ , which gives effectively a constraint of the
same order as (2.36), unless there is a cancellation between loop terms and the tree level term
contributing to fNL. One would need to include numerical factors to see which constraint is
the most competitive.

If one renormalises the δN coefficients to avoid the dressed vertices, as suggested in [72],
one should shift the derivative of N introducing Ñ ′′ = N ′′ + N ′′′′〈δφ2〉/2, which absorbs
this term. On the other hand, in this way, the fine-tuning needed to compensate the loop
corrections does not go away, it just becomes harder to spot. If the loops associated with
dressed vertices do cancel, then the largest loop term involving hNL becomes g1−loop

NL ∼
fNLhNLPζ , which implies |hNL| . 1014, which is a much weaker constraint than we forecast
cound be found by considering the autocorrelation of ∆lgNL.

3 Multiple source models

The extension of the previous analysis to the multiple-source case suggests that our method
is able to probe many of the parameters controlling higher-order point functions.

Taking ensemble averages of correlators among n-point and k-point parameters cal-
culated in small patches, we are probing parameters associated to (n + k)-point functions

9Planck data will be characterized by error bars reduced by one order of magnitude with respect with the
ones discussed above. The very same procedure could then be applied, obtaining more stringent limits on hNL.
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evaluated in the entire sky. More precisely, for n ≥ k the correlators of local n- and k-
point functions probe those parameters of the full-sky (n + k)-point function that contain
at most n:th order derivatives of N , the number of e-foldings. This is the generalization of
the observation made in [71] for the power spectrum. In the single-source limit, some of the
(n + k)-point function parameters coincide with the squares of parameters associated with
lower point functions (analogously to the tree-level consistency relation τNL = (6/5fNL)

2

holding between four and three point functions in the single source case). This is the reason
for which we found that the two-point correlators of ∆ℓfNL’s calculated in different small
patches are proportional to g2NL. On the other hand, in the multiple source case, our method
in principle allows us to probe individually the various parameters controlling the higher-
point functions.

In this section, we discuss this topic in more detail. Recently, a diagrammatic approach,
based on the δN -formalism, has been adopted in [16, 73] to determine the parameters char-
acterizing the five and six point functions. While the three-point function is characterized by
one parameter fNL and the four-point function by the two parameters τNL and gNL, the five
and six point functions are characterized by three and six parameters, respectively. In this
section, we borrow the notation of [16] for defining parameters associated to 5 and 6-point
functions (see [16] for more details, but notice that we do not adopt their normalization
condition NcNc = 1).

• Two point function:

Pζ = NaNa

(

H

2π

)2

(3.1)

• Three point function:

fNL =
5

6

NaNbNab

(NcNc)
2 (3.2)

• Four point function:

τNL =
NaNacNcbNb

(NeNe)
3 gNL =

25

54

NaNbNcNabc

(NeNe)
3 (3.3)

• Five point function:

f
(1)
5 =

NaNabNbcNcdNd

(NeNe)
4 f

(2)
5 =

NaNabNbcdNcNd

(NeNe)
4 f

(3)
5 =

NaNbNcNdNabcd

(NeNe)
4

(3.4)

• Six point function:

τ
(1)
6 =

NaNabNbcNcdNdeNe

(NfNf )
5 τ

(2)
6 =

NaNbNabcNcdeNdNe

(NfNf )
5

g
(1)
6 =

NaNbNabcNcdNdeNe

(NfNf )
5 g

(2)
6 =

NaNabNbcdNcNdeNe

(NfNf )
5

g
(3)
6 =

NaNabNbcdeNcNdNe

(NfNf )
5 g

(4)
6 =

NaNbNcNdNeNabcde

(NfNf )
5 (3.5)
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Notice that the parameters associated with 3 and 4 point functions carry the conventional
numerical coefficients. The aim of this section is to show that ensemble averages of correlators
between quantities involving two and three-point functions depend on parameters associated
with five and six point functions. This suggests a method for probing the quantities appearing
in eqs. (3.4) and (3.5).

Generalizing the notation of the previous section, we can write in the multiple-field case
(summations over repeated indices are understood)

fNL(σ
a
ℓ ,x) = fNL(σ

a
H−1) + fNL, b(σ

a
H−1)∆ℓσ

b
x (3.6)

where the lower-case upper indices a, b, . . . denote the different scalar fields involved. Anal-
ogous expansions hold for ζ, Pζ , τNL and gNL. We assume that the metric in field space is
flat, and that

〈∆ℓσ
a
x1
∆ℓσ

b
x2
〉 = δab

(

H

2π

)2 ∫ kℓ

khor

dk′
sin (k′∆x)

k′2∆x
. (3.7)

(We will neglect the slow-roll suppressed σ-dependence of H throughout this paper). Then
we have

ζ,b∆σb
x = −Nb∆σb

x , (3.8)

(lnPζ), b ∆σb
x = 2

NabNa

NcNc
∆σb

x , (3.9)

fNL, d∆σd
x =

5

6

(

2NadNbNab

(NcNc)
2 +

NaNbNabd

(NcNc)
2 − 24 fNL

5

NeNed

NcNc

)

∆σd
x (3.10)

τNL, d∆σd
x = 2

(

NadNacNcbNb

(NeNe)
3 +

NaNacdNcbNb

(NeNe)
3 − 3τNL

NcdNc

NeNe

)

∆σd
x , (3.11)

gNL, d∆σd
x =

25

54

(

3
NadNbNcNabc

(NeNe)
3 +

NaNbNcNabcd

(NeNe)
3 − 324 gNL

25

NcdNc

NeNe

)

∆σd
x . (3.12)

Denoting

∆ℓfNL(x) = fNL(σ
a
ℓ ,x)− fNL(σ

a
H−1) (3.13)

and the same for ζ, lnPζ , τNL and gNL, we obtain the following results (the function F ≡
F (∆x, khor, kℓ) is given in eq. (2.12)):

〈∆ℓζ(x1)∆ℓfNL(x2)〉 = −
(

5

3
τNL +

9

5
gNL − 24

5
f2
NL

)

PζF , (3.14)

〈∆ℓζ(x1)∆ℓτNL(x2)〉 = −2

(

f
(1)
5 + f

(2)
5 − 18

5
τNLfNL

)

PζF , (3.15)

〈∆ℓζ(x1)∆ℓgNL(x2)〉 = −
(

75

54
f
(2)
5 +

25

54
f
(3)
5 − 36

5
gNL fNL

)

PζF , (3.16)

〈∆ℓ lnP(x1)∆ℓ lnP(x2)〉 = 4τNL Pζ F , (3.17)

〈∆ℓfNL(x1)∆ℓfNL(x2)〉 =
25

36

(

4τ
(1)
6 + τ

(2)
6 +

576f2
NL

25
τNL + 4g

(1)
6

−96fNL

5
f
(1)
5 − 48fNL

5
f
(2)
5

)

Pζ F , (3.18)
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〈∆ℓ lnP(x1)∆ℓfNL(x2)〉 =
5

6

(

4f
(1)
5 + 2f

(2)
5 − 48

5
fNLτNL

)

Pζ F , (3.19)

〈∆ℓ lnP(x1)∆ℓτNL(x2)〉 = 4
(

τ
(1)
6 + g

(2)
6 − 3τ2NL

)

Pζ F , (3.20)

〈∆ℓ lnP(x1)∆ℓgNL(x2)〉 =
25

27

(

3g
(1)
6 + g

(3)
6 − 324

25
gNLτNL

)

Pζ F . (3.21)

These ensemble averages are able to probe combinations of parameters controlling 5 and 6
point functions, as explained above. The previous combinations allow one to individually
test each of the parameters characterizing the five-point function. Indeed, a combination of
eqs. (3.15), (3.16) and (3.19) lead to the following expressions for these parameters evaluated
in the full sky

f
(1)
5 Pζ F =

3

5
〈∆ℓ lnP(x1)∆ℓfNL(x2)〉+

1

2
〈∆ℓζ(x1)∆ℓτNL(x2)〉+

6

5
fNL τNL Pζ F , (3.22)

f
(2)
5 Pζ F = −f

(1)
5 Pζ F − 1

2
〈∆ℓζ(x1)∆ℓτNL(x2)〉+

18

5
fNL τNL Pζ F , (3.23)

f
(3)
5 Pζ F = −1

3
f
(2)
5 Pζ F − 54

25
〈∆ℓζ(x1)∆ℓgNL(x2)〉+

1944

125
fNL gNL Pζ F . (3.24)

In order to individually test the quantities associated with 6-pt functions one can consider
correlations among τNL and gNL measured in small patches — although the expressions for

these quantities depend also on 7 and 8-pt functions. However the parameter g
(4)
6 , containing

fifth order derivatives, can not be probed by considering the inhomogeneities of trispectrum

to leading order in ∆ℓσ. In order to probe g
(4)
6 , one should consider the inhomogeneities

of the 5-point function or include the next-to-leading-order contributions in ∆ℓσ. However
these in general are suppressed by a further factor of Pζ .

It is straightforward to check that, in the single-source limit, one recovers the results of
the previous sections. This is due to consistency relations associating parameters in eqs (3.4)
and (3.5) with parameters in (3.2) and (3.3). In the multiple source case, the parameters of
eqs. (3.4) and (3.5) are not directly constrained by the observational bounds on fNL, τNL and
gNL. The inhomogeneities we are calculating could therefore be very large in certain classes
of models — even at the level that might be detectable by re-analysing the WMAP data.

4 When is the inhomogeneity of non-Gaussian parameters large?

In this section, we investigate in more detail when the autocorrelations of fNL and gNL

measured in distinct patches can be large, and discuss the differences between single and
multiple-source scenarios. We focus our attention on a representative, two-field case, in
which the curvature perturbation is expanded as

ζ = N1δφ+
1

2
N11δφ

2 +N12δφδχ+
1

2
N22δχ

2

+
1

6
N111δφ

3 +
1

2
N112δφ

2δχ+
1

2
N122δφδχ

2 +
1

6
N222δχ

3 . (4.1)

An expression of this form can be obtained by doing a rotation in field space to the direction,
φ, generating the first-order contribution to the power spectrum of ζ; in this way only one
linear term in scalar perturbations appear in eq. (4.1). One could instead choose a different
field basis in which the second order derivatives are diagonalised (i.e. N12 = 0), as was
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chosen in [70], but this would be at the expense of introducing a second linear term which
leads to more cumbersome expressions for the non-linearity parameters. We note that, in
general, either choice of eliminating one term from the δN expression (4.1) will lead to a
non-trivial field-metric, because the required field space rotation will depend on the scale
we are focussing in. However since we can only observe a limited range of scales (around
5 e-foldings) this should typically only introduce small corrections, unless there happen to
be large numerical factors which override the expected slow-roll suppression. We will not
develop this interesting issue further, but simply adopt the expression (4.1) as a specific
Ansatz for the curvature perturbations.

Within this set-up, the non-linearity parameters controlling quantities up to the 6-pt
function are:

fNL =
5

6

N11

N2
1

,

f
(1)
5 =

1

N6
1

(

N3
11 + 2N11N

2
12 +N2

12N22

)

,

f
(2)
5 =

1

N5
1

(N11N111 +N12N112) , (4.2)

τNL =
1

N4
1

(

N2
11 +N2

12

)

,

τ
(1)
6 =

1

N8
1

(

N4
11 + 3N2

11N
2
12 +N4

12 + 2N11N
2
12N22 +N2

12N
2
22

)

, (4.3)

τ
(2)
6 =

1

N6
1

(

N2
111 +N2

112

)

,

gNL =
25

54

N111

N3
1

,

g
(1)
6 =

1

N7
1

(

N111(N
2
11 +N2

12) +N112N12(N11 +N22)
)

(4.4)

g
(2)
6 =

1

N3
1

(

N2
11N111 +N2

12N122 + 2N12N11N112

)

,

g
(3)
6 =

1

N6
1

(N1111N11 +N1112N12) . (4.5)

4.1 Inhomogeneous autocorrelation of fNL

We have learned that, in a single-source set-up, the autocorrelation of fNL can be large
provided that we saturate the observational limit for the full sky value of gNL. Let us inves-
tigate what happens instead in the multiple source case. In order to get an inhomogeneity
for the parameter fNL large enough to be potentially observable with Planck, we need the
combination in brackets of (3.18) to be of order O(1012).

Given the present observational constraints, |fNL| . 102, τNL . 104, |gNL| . 106 [9–14],

one may check that the only term which could be so large is the one proportional to τ
(2)
6 ,

that provides

〈∆ℓfNL(x1)∆ℓfNL(x2)〉 ≈ 25

36
τ
(2)
6 Pζ F =

(

(

9

5
gNL

)2

+

(

5

6

N112

N3
1

)2
)

Pζ F . (4.6)
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Notice that the first term in the right hand side with gNL is the same leading contribution we
found in the single-source case, see eq. (2.23). The second term represents a pure multiple-

source contribution and its magnitude is independent of gNL. While the form of τ
(2)
6 in

eq. (4.6) is specific for the two-source model (4.1) that we are considering as an example, the
conclusion that the inhomogeneities of fNL are not uniquely determined by the magnitude
of gNL holds for generic multiple-source scenarios, as we will show below.

The result (4.6) shows that large inhomogeneities of fNL are generated by cubic deriva-
tives of N , which also generate loop corrections to τNL. In the limit f2

NL ≪ |gNL|, the
dominant part of one-loop corrections to τNL is given by

τ1−loop
NL ≈

(

τ
(2)
6 +

N2
112

N6
1

+
N2

122

N6
1

)

Pζ ln(kℓ) , (4.7)

which implies that

〈(∆ℓfNL)
2〉 ≈

(

5

6

)2

τ1−loop
NL −

(

5

6

)2(N2
112

N6
1

+
N2

122

N6
1

)

Pζ ln(kℓ) 6

(

5

6

)2

τ1−loop
NL . (4.8)

This has to be compared with what we found in the single-source case, eq. (2.28), in which the

autocorrelation of fNL is uniquely determined by τ1−loop
NL , or equivalently by g2NL Pζ according

to the relation (2.27). In the multiple-source case, τ1−loop
NL instead sets only an upper bound

on the inhomogeneities of fNL and the actual level of inhomogeneities could be quite different
from τ1−loop

NL .
It is straightforward to show that this conclusion holds for generic multiple-source mod-

els, thus opening interesting possibilities for discriminating between single and multiple-

source scenarios. Defining a unit vector u
(k)
a = δak, the Cauchy-Schwarz inequality for the

inner product of the vectors u
(k)
b NaNabc and Nc leads to

(u
(k)
b NaNabcNc)

2 6 (u
(k)
b NaNabcNcdeNdu

(k)
e )(NfNf ) , (4.9)

where only the repeated lower case indices are summed over. The one-loop corrections to
τNL containing two three-point vertices are given by

τ1−loop
NL =

NaNabcNbcdNd

(NeNe)4
Pζ =

∑

k

u
(k)
b NaNabcNcdeNdu

(k)
e

(NfNf )4
Pζ , (4.10)

where we have neglected the logarithm associated with loop integrals. This represents the
dominant contribution to the loop corrections, provided that |gNL| ≫ f2

NL, and that there
are no large loops associated with higher than three-point vertices. Similarly we can write

τ
(2)
6 =

NaNbNabcNcdeNdNe

(NfNf )5
=
∑

k

(u
(k)
b NaNabcNc)

2

(NfNf )5
. (4.11)

Comparing the above expressions to the inequality (4.9), and making use of the inequal-

ity (54/25)2 g2NL 6 τ
(2)
6 derived in [16], we find

(

54

25

)2

Pζg
2
NL 6 Pζτ

(2)
6 6 τ1−loop

NL . (4.12)
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In the limit |gNL| ≫ f2
NL, using eq. (3.18) we therefore find the general result

〈(∆ℓfNL)
2〉 .

(

5

6

)2

τ1−loop
NL . (4.13)

The inequality is saturated in the single-source case (2.28) where the magnitude of the in-

homogeneities is set by τ1−loop
NL . In multiple source scenarios, τ1−loop

NL can be greater than
〈(∆ℓfNL)

2〉. The inhomogeneities of fNL could therefore provide an interesting new tool for
discriminating between single and multiple source models. While the result (4.13) only applies
in the limit |gNL| ≫ f2

NL and assuming there are no large loops with higher than three-point
vertices, it could nevertheless offer an intriguing new window for probing inflationary physics.

Similar information can be obtained by considering the structure of the trispectrum.
The inequality (4.12) implies

(

54

25

)2

Pζg
2
NL 6 τ1−loop

NL , (4.14)

which is again saturated for the single-source case. Under the assumptions stated above, there
are no significant loop corrections to gNL, and τNL is dominated by the loop correction as we
are considering the limit τ treeNL ∼ f2

NL ≪ |gNL|. We therefore see that both the inhomogeneities
of fNL and the ratio of the two parameters gNL and τNL have the opportunity to provide
interesting new tools for distinguishing between single and multiple source models.

4.2 Inhomogeneities of gNL

We can apply the same procedure to analyze the autocorrelator of gNL. This quantity is
given by

〈∆ℓgNL(x1)∆ℓgNL(x2)〉 =

(

625

324
τ
(1)
8 +

625

2916
τ
(3)
8 − 36g2NLτNL

+
3750

2916
g
(2)
8 − 50

3
gNLg

(1)
6 − 50

9
gNLg

(3)
6

)

Pζ F . (4.15)

Based on a measurement accuracy of |gNL| ∼ 106 (which will be improved by up to two orders
of magnitude with Planck [14]) we require the term in brackets to be O(1022) in order to be
able to probe the inhomogeneity with WMAP data. With Planck data values as small as
O(1018) could be relevant.

The new non-linearity parameters which enter at this order are:

g
(3)
6 N6

1 = N1111N11 +N1112N12, τ
(3)
8 N8

1 = N2
1111 +N2

1112, (4.16)

τ
(1)
8 N10

1 = N2
111N11(N11 +N12) + 2N111N112N12(N11 +N22) +N2

112(N
2
22 +N2

22), (4.17)

g
(2)
8 N9

1 = N1111(N11N111 +N12N112) +N1112(N12N111 +N22N112) . (4.18)

Notice that only two new quantities are important for studying the new correlator of
eq. (4.15). These are N1111 and N1112, which are two out of the five fourth derivatives
of N . Unless one of these two quantities is large, the correlator (4.15) does not give compet-
itive information compared to the correlators we considered in the previous sections. If one

of the fourth derivatives is assumed to be very large, then the dominant term is simply τ
(3)
8 .
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This implies that we can constrain N1111/N
4
1 and N1112/N

4
1 to the level of 1015 with WMAP

and 1013 with Planck.

On the other hand, |f1−loop
NL | ≃ |N1111|/N4

1Pζ . 102 provides the constraint
|N1111|/N4

1 . 1011, so barring an accurate cancellation between this term and the tree
level f tree

NL we do not find interesting constraints from this contribution. However for N1112

there is no 1-loop constraint from fNL, and instead the tightest constraint comes from
τ1−loop
NL = N1112N12Pζ/N

6
1 . 104. This does not constitute a dominant constraint compared

to the expected sensitivity with the Planck satellite unless |N12|/N2
1 is larger than unity.

In conclusion, we see some similarities between studying the autocorrelation of ∆ℓfNL

and here the autocorrelation of ∆ℓgNL. In both cases one can constrain two higher order
derivatives, the one which is present in the single-source case, i.e. N111 and N1111 which
are proportional to gNL and hNL respectively, but this constraint is not very competitive
compared to the natural constraint we get from consider the loop contribution to lower order
correlators unless there is a chance cancellation between the loop and the tree level terms.
For the ‘cross-derivatives’, N112 and N1112, the loop constraints are weaker (especially in
the case of N112) and we can achieve a tighter probe by considering the inhomogeneity of
non-Gaussian correlators.

5 Conclusions

In this paper, we investigated under which conditions inflationary parameters can be in-
homogeneous to an observable level, focussing in particular on observables controlling local
non-Gaussianity. We have demonstrated that if we subdivide the entire sky into a large num-
ber of small patches, the value of cosmological observables associated with the properties of
the curvature fluctuation can differ from patch to patch. In particular, we have shown that
correlators between n-point functions of curvature fluctuations as measured in one patch,
and k-point functions as measured in another patch, depend on (n + k)−point functions in
the entire sky. This implies that the expected degree of inhomogeneity in observable quanti-
ties can be quantified in a rather model independent manner. In interesting cases it results
large enough to be measurable, since at present we have only weak constraints on parame-
ters controlling higher-order point functions in the full sky. Consequently, inhomogeneities
of non-Gaussian parameters can also be seen as feasible method for probing or constraining
higher-point functions.

We have analyzed in detail the degree of inhomogeneity of local non-Gaussian observ-
ables, first in the single-source case, in which only one scalar field contributes to the generation
of primordial curvature perturbation (as in curvaton models), then in multiple-source set-ups.
In the case of single-source models, we have shown that autocorrelators of fNL evaluated in
different patches depend on the value of gNL in the full sky. If gNL turns out to be large enough
to saturate its present day bound, we should expect variations of fNL of order one hundred
from patch to patch, large enough to be observable. Autocorrelators of gNL, on the other
hand, can be used to set constraints on hNL, the parameter characterizing 5-point functions:
present day data are accurate enough to be able to set an upper bound |hNL| . few× 1011.
In the case of multiple source models, we have shown that correlators between parameters
controlling n-point functions in different patches, with n ≤ 4, can be useful for probing
individually the several new parameters that characterize five and six point functions.

We have pointed out interesting connections between the degree of inhomogeneities and
loop corrections to non-Gaussian observables. Typically, models that lead to sizable inhomo-
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geneities are also characterized by large loop corrections to inflationary observables. We have
used this fact to determine consistency relations between quantities denoting respectively
inhomogeneities and loop contributions to non-Gaussian observables. These consistency re-
lations take the form of inequalities in multiple source models, that are saturated in the
single-source limit: consequently, they offer new observational perspectives for distinguishing
between single and multiple source set-ups.

The conclusion of our theoretical analysis is that a sizable degree of inhomogeneity in
non-Gaussian observables is allowed by present day bounds on gNL and τNL. We have then
described observational prospects for probing inhomogeneities of non-Gaussian observables,
discussing the accuracy we should expect for determining correlators of n-point functions
measured in different patches of the skies. We discussed geometrical effects that reduce the
accuracy, and conservatively took them into account in our estimates. We have also pointed
out that alternative techniques based on needlets analysis of CMB data are particularly well
suited for testing non-Gaussianity in selected regions of the sky. It would be very interesting
to apply those techniques to study inhomogeneities.
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