## Imperial College London

Experience with distributed analysis in LHCb

Ulrik Egede
on behalf of the LHCb collaboration

CHEP 2006 Mumbai

#### Introduction

The analysis model of LHCb

The framework for distributed analysis

Use in the collaboration

Performance of our system

Future developments

Summary

Ulrik Egede Imperial College London CHEP 2006 2/20

## LHCb analysis model (1/2)



Continuous

User analysis

User analysis ongoing during the year.

10<sup>6</sup> to 10<sup>7</sup> events.

Disk resident
Replicated to all sites.

Ulrik Egede Imperial College London CHEP 2006 3/20

## LHCb analysis model (2/2)



Ulrik Egede Imperial College London CHEP 2006 4/20

#### Ganga – the user analysis framework

For analysis we want a system that makes it easy for a user to access the Grid.

System should not be general - we know the main use cases

Use prior knowledge

Identified use pattern

Aid users in

Bookkeeping aspects

Keeping track of many individual jobs.

The Ganga framework developed in cooperation between LHCb and ATLAS is developed to satisfy these criteria:

See talk "Ganga – a Grid user interface" presented by Karl Harrison for a detailed presentation on the design and architecture of Ganga.

Today, 2.40pm, Distributed event production and processing track

Ulrik Egede Imperial College London CHEP 2006 5/20

#### Ganga Architecture



#### Implementation:

Pure python ~20k lines of code

Ulrik Egede Imperial College London CHEP 2006 6/20

### User view of analysis using Ganga

To define a job we combine different parts to create a job



Ulrik Egede Imperial College London CHEP 2006 7/20

## Analysis access to the Grid (1/2)

#### No direct submission of jobs to LCG for LHCb

Analysis jobs are submitted to the Dirac workload management system (WMS) originally developed for LHCb Monte Carlo production.

#### This gives us the advantage to:

Protect users from instabilities of LCG.

Reduce the knowledge required of users.

Provides transparent access for reading and writing data on SE's

Allows LHCb to set priorities and or restrictions for analysis jobs.

See the talk by Stuart Paterson "DIRAC Infrastructure for Distributed Analysis" for technical details on supporting LHCb analysis jobs on the Grid.

Ulrik Egede Imperial College London CHEP 2006 8/20

### Analysis access to the Grid (2/2)



User sends job to the DIRAC WMS WMS sends a pilot agent as an LCG job

When pilot agent runs safely on a worker node it fetches job from WMS

Small data files returned to WMS
Large files registered in LFC file
catalogue

User query WMS for status and finally retrieve output from there.

Ulrik Egede Imperial College London CHEP 2006 9/20

#### Learning the system

Distributed analysis recently integrated into the overall training for analysis in LHCb.



About 50% of new users manage to submit a successful analysis job to the Grid within a 1 hour training session.



An intuitive feeling for the Ganga system is quick

Obtaining a grid certificate and register in VO still problem for many users

Learning very simple Python commands easy

About 30 regular users of system

Ulrik Egede Imperial College London CHEP 2006 10/20

### Creating an analysis (1/3)

Predefined Python classes with specific knowledge about LHCb applications:



Objects know how to compile code, extract configuration, place user DLLs in input sandbox, specify files for output sandbox etc.

Ulrik Egede Imperial College London CHEP 2006 11/20

### Creating an analysis (2/3)

A backend describes how the job will be executed

```
Local – run in the background on the client

LSF/PBS/SGE – submit to the batch system

Dirac – submit to the Grid via Dirac
```

```
# Define a Dirac backend object
d = Dirac()
print d
Out[34]: Dirac (
  status = None ,
  destination = None ,
  id = None
)
```

Ulrik Egede Imperial College London CHEP 2006 12/20

## Creating an analysis (3/3)

To put together and submit a job is simply by combining the different parts:

```
# Create an LHCb job and submit
j = Job(name='MyJob',
        application=app,
        backend=d)
print j
Out[38]: Job(
 status = 'new',
 name = 'MyJob' ,
 application = DaVinci (...)
 backend = Dirac (...)
 . . . )
j.submit()
```



Ulrik Egede Imperial College London CHEP 2006 13/20

### Performance: Throughput

An analysis of 5M events entered into the system at the same time.



517 s (8 min) before first job starts is dominated by latency in jobs for LCG and software installation.

Queue time afterwards is dominated by the time it takes for WMS system to submit agents to LCG.

Ulrik Egede Imperial College London CHEP 2006 14/20

#### Performance: Throughput

Look at the time it takes before the results are back



90% of results are back within less than 3 hours 95% in 4 hours 100% in 10 hours

Last 5% caused by Tier 1 site with data access problems

Ulrik Egede Imperial College London CHEP 2006 15/20

#### Performance: Scalability

Comparisons have been made of performance using the same analysis submitted simultaneously by different users.

We observe that waiting time is consistent with queue behaviour.

Performance scales linearly with number of users

Total execution time does not change much with more users

We have not in the analysis testing managed to saturate the available LCG resources.

Have tried up to 30 simultaneous users, so far no hard limit found.

The corresponding number of intermittent users will be much higher.

Ulrik Egede Imperial College London CHEP 2006 16/20

#### Performance: Reliability

Evaluate the fraction of jobs that succeed.

With success is meant that submission, running and retrieval of correct output all work as expected.

95% of jobs succeed in the first round.

Remainder dominated by occasional inconsistencies in file catalogue.



Ulrik Egede Imperial College London CHEP 2006 17/20

### Comparing different Grid submission strategies



Direct submission to LCG attempted as well.

If no limitation of submission sites the success rate is below 50%

If submission limited to well known functional Tier 1 site performance is close to results obtained via DIRAC.

Small difference attributed to lack of retries.

Waiting time and execution time is similar for DIRAC and direct submission.

Ulrik Egede Imperial College London CHEP 2006 18/20

#### Future plans

The Ganga framework and its implementation in LHCb will continue to develop:

Better concept of datasets to ease data selection.

Automatic merging of output data from multiple analysis jobs.

Provision of experiment wide and analysis group specific templates for analysis.

Provision of a GUI to give users the choice between using a GUI, interactive work at Python prompt and writing scripts.

More application types and backends will be supported

Ulrik Egede Imperial College London CHEP 2006 19/20

#### Conclusion

The Ganga framework allows LHCb users to submit jobs to the Grid in an easy and transparent way.

Submission of Grid analysis jobs submitted through the Dirac WMS tested.

System scales to the number of users and size of analysis required for LHCb.

The Ganga framework makes it trivial to perform testing on local system and then transfer to the Grid for full scale analysis.

Start-up time in Grid system hence not an issue.

# LHCb has demonstrated a working system for distributed analysis.

Documentation of Ganga system is available at http://cern.ch/ganga.

Ulrik Egede Imperial College London CHEP 2006 20/20

## Backup slides

Ulrik Egede Imperial College London CHEP 2006 21/20

### Dataflow - analysis

User physics analysis will be primarily performed on the output of the stripping

Output from stripping is selfcontained i.e. no need to navigate between files

Analysis generates quasiprivate data e.g. Ntuple and/or personal DSTs

Data publicly accessible - enable remote collaboration



Ulrik Egede Imperial College London CHEP 2006 22/20

## **Analysis**

User analysis accounted in model predominantly batch ~30k jobs/year

Predominantly analysing 10<sup>6</sup> event but assume some analyses 10<sup>7</sup> CPU of 0.3 kSl2k.s/evt

Analysis needs grow linearly with year in early phase of experiment

| Nos. of physicist performing analysis             | 14   |
|---------------------------------------------------|------|
| Nos. of analysis jobs per physicist/week          | 4    |
| Fraction of jobs analysing 10 <sup>6</sup> events | 80%  |
| Fraction of jobs analysing 10 <sup>7</sup> events | 20%  |
| Event size reduction factor after analysis        | 5    |
| Number of "active" Ntuples                        | 10   |
| 2008 CPU needs (MSI2k.years)                      | 0.78 |
| 2008 Disk storage (TB)                            | 200  |

Ulrik Egede Imperial College London CHEP 2006 23/20

#### **Application Manager**

Client

Application
Manager

Athena

Job Repository & Workspace

Job Manager & Monitoring

Prepares and configures the application, e.g.:

pre-process options compile user code setup environment

The work is done by Application Handlers.

An application handler is specific to a framework in an experiement – the Gaudi framework for LHCb.

Ulrik Egede Imperial College London CHEP 2006 24/20

#### Job Repository and Workspace

Client

Application Manager

Job Repository & Workspace

Job Manager & Monitoring





#### Job Repository:

keeps track of jobs stores job metadata "roaming-profile" may be Local or Remote

#### File Workspace

caches the job output allows to share files within Ganga

Ulrik Egede Imperial College London CHEP 2006 25/20

### Job Manager

Client

Application Manager

Job Repository & Workspace

Job Manager & Monitoring

Submits configured jobs to the submission backends using Backend Handlers, e.g.:

creates wrappers scripts created JDL files etc.

Monitors the status of jobs by polling the backends by monitoring notifications

Notifications allow to see changes in jobs submitted outside of Ganga

Ulrik Egede Imperial College London CHEP 2006 26/20