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Abstract: We provide a simple analytic formula for the two-loop six-point ratio function

of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of

multi-loop six-point amplitudes beyond those with maximal helicity violation. We make

a natural ansatz for the symbols of the relevant functions appearing in the two-loop am-

plitude, and impose various consistency conditions, including symmetry, the absence of

spurious poles, the correct collinear behaviour, and agreement with the operator product

expansion for light-like (super) Wilson loops. This information reduces the ansatz to a

small number of relatively simple functions. In order to fix these parameters uniquely,

we utilize an explicit representation of the amplitude in terms of loop integrals that can

be evaluated analytically in various kinematic limits. The final compact analytic result

is expressed in terms of classical polylogarithms, whose arguments are rational functions

of the dual conformal cross-ratios, plus precisely two functions that are not of this type.

One of the functions, the loop integral Ω(2), also plays a key role in a new representa-

tion of the remainder function R(2)
6 in the maximally helicity violating sector. Another

interesting feature at two loops is the appearance of a new (parity odd) × (parity odd)

sector of the amplitude, which is absent at one loop, and which is uniquely determined in

a natural way in terms of the more familiar (parity even) × (parity even) part. The second

non-polylogarithmic function, the loop integral Ω̃(2), characterizes this sector. Both Ω(2)

and Ω̃(2) can be expressed as one-dimensional integrals over classical polylogarithms with

rational arguments.
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1 Introduction

Much progress has been achieved recently in the analytic understanding of seemingly com-

plicated scattering processes. In particular, attention has been focused on the planar sector,

or large N limit, of maximally supersymmetric N = 4 Yang-Mills theory. The scattering
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amplitudes in this sector of the theory obey many startling properties, which has led to

the hope that the general scattering problem might be solvable, exactly in the coupling.

One of the major simplifications that the planar N = 4 theory enjoys is dual confor-

mal symmetry [1–7], which dictates how colour-ordered amplitudes behave under conformal

transformations of the dual (or region) variables defined via pi = xi−xi+1. For the partic-

ular case of maximally helicity-violating (MHV) amplitudes, this symmetry is intimately

connected to the relation between the amplitudes and Wilson loops evaluated on polygons

with light-like edges, whose vertices are located at the xi [3–6, 8–11]. The MHV ampli-

tudes are infrared divergent, just as the corresponding light-like Wilson loops are ultraviolet

divergent. The Wilson-loop divergence has the consequence that a suitably-defined finite

part transforms anomalously under the dual conformal symmetry [4, 5]. The Ward identity

describing this behaviour actually fixes the form of the four-point and five-point amplitudes

to all orders in the coupling, to that given by the BDS ansatz [12]. From six points on-

wards, the existence of dual-conformal invariant cross-ratios means that the problem of

determining the MHV amplitude reduces to finding a function that depends only on the

cross-ratios — the so-called ‘remainder function’, which corrects the BDS ansatz.

Great advances have been made recently in understanding the form of the remainder

function, which is non-trivial beginning at two loops. The need for a two-loop remainder

function for Wilson loops was observed for a large number of points in ref. [7], and for

six points in ref. [9]. The multi-Regge limit of the six-point scattering amplitude also im-

plied a non-trivial remainder function [13]. At a few generic kinematic points, the Wilson

loop [11] and amplitude [10] remainder functions were found to agree numerically. The

six-point Wilson loop integrals entering the remainder function were computed analyti-

cally in terms of Goncharov polylogarithms [14, 15], and then simplified down to classical

polylogarithms [16] using the notion of the symbol of a pure function [16–19]. The integrals

contributing to the six-point MHV scattering amplitude have also been evaluated analyt-

ically [20] in a certain kinematical regime using a mass regulator [21], and the remainder

function has been found to agree with the Wilson-loop expression of ref. [16]. Very recently,

the symbol for the three-loop six-point remainder function was determined up to two ar-

bitrary parameters [22], by imposing a variety of constraints, in particular the operator

product expansion (OPE) for Wilson loops developed in refs. [23–25].

For more than six points, numerical results for the remainder function have been ob-

tained via Wilson loop integrals [26, 27]. Integral representations for the MHV amplitudes

have been presented at seven points [28] and for an arbitrary number of points using mo-

mentum twistors [29]. Recently, an expression for the symbol of the two-loop remainder

function has been given for an arbitrary number of points [30], and the structure of the

OPE for this case has been explored [31]. In special kinematics corresponding to scattering

in two space-time dimensions, analytic results are available for a number of configurations

at two loops [32–34] and conjecturally even at three loops [35].

When one considers amplitudes beyond the MHV sector, there is another finite dual

conformally invariant quantity that one can consider, namely the ‘ratio function’ P. This
quantity is defined by factoring out the MHV superamplitude from the full superampli-
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tude [36],

A = AMHV × P . (1.1)

Infrared divergences are universal for all component amplitudes; hence the MHV factor

contains all such divergences, leaving an infrared finite quantity P. One of the central con-

jectures of ref. [36] is that P is also dual conformally invariant. There is strong supporting

evidence for this conjecture in the form of direct analytic one-loop results [37–41] and, in

the six-point case, numerical evidence at two loops [42]. In this paper, we will construct

the ratio function P analytically at two loops for six external legs.

At tree level, the ratio function is given by a sum over dual superconformal ‘R-

invariants’ [36, 43–47]. These quantities are invariant under a much larger (infinite-

dimensional) Yangian symmetry, obtained by combining invariance under both the original

and dual copies of superconformal symmetry [48]. Beyond tree level one finds R-invariants

dressed by dual conformally invariant functions [36, 41, 42]. Since the R-invariants indi-

vidually exhibit spurious poles, which cannot appear in the final amplitude, they cannot

appear in an arbitrary way. The particular linear combination appearing in the tree ampli-

tude is free of spurious poles. At loop level, the absence of spurious poles implies restrictions

on the dual conformally invariant functions that dress them [49]. Additional restrictions

on these same functions come from the known behaviour of the amplitude when two of the

external particles become collinear. These constraints will be important in our construction

of P at two loops.

A consequence of the duality between MHV amplitudes and light-like Wilson loops is

that the remainder function can be analysed by conformal field theory methods, such as

the operator product expansion (OPE) [23–25]. Various proposals have been put forward

for extending the duality between amplitudes and Wilson loops beyond the MHV sector,

either in terms of a supersymmetric version of the Wilson loop [30, 50, 51], or in terms of

correlation functions [52, 53]. Although there may be various subtleties in realising such an

object, compatible with the full N = 4 supersymmetry in a Lagrangian formulation [54],

one may instead justify the existence of such an object through the OPE. The framework

for pursuing this approach was developed in ref. [55], and agreement was found with the

known one-loop six-point next-to-MHV (NMHV) amplitude [37, 39–41]. This agreement

provides non-trivial evidence that there does indeed exist a Wilson-loop quantity dual to

all scattering amplitudes.

The aim of this paper is to combine various approaches in order to determine the six-

point ratio function P, or equivalently the NMHV amplitude, analytically at two loops.

This quantity was expressed in terms of dual conformal integrals, and computed numeri-

cally, in ref. [42]. We proceed in a manner similar to our recent examination of the three-

loop six-point remainder function [22]. In particular, we make an ansatz for the symbols

of the various pure functions involved. (See appendix A for a brief introduction to pure

functions and their symbols.) In other words, we assume that the functions that appear

fall within a particular class of multi-dimensional iterated integrals, or generalized poly-

logarithms. We say functions rather than function because in general, beyond one loop,

one can imagine that there are both (parity even)×(parity even) and (parity odd)×(parity
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odd) contributions, in a sense which we make specific in the next section. For convenience,

we call these contributions ‘even’ and ‘odd’, respectively. At tree level and at one loop, the

odd part vanishes.

After constructing an ansatz, the next step is to impose consistency conditions. We

first impose the spurious pole and collinear conditions. Then we impose that a certain dou-

ble discontinuity is compatible with the OPE [23–25, 55]. At this stage, we find that the

symbols for the relevant functions contain nine unfixed parameters. We convert these sym-

bols into explicit functions. In general, this step leads to ‘beyond-the-symbol ambiguities’.

These ambiguities are associated with functions whose symbols vanish identically, namely

transcendental constants, such as the Riemann ζ values ζp, multiplied by pure functions

of lower degree. However, in the present case, after re-imposing the spurious and collinear

restrictions at the level of functions, there is only one additional ambiguity, associated with

adding the product of ζ2 with the one-loop ratio function. This term obeys all constraints

by itself and has vanishing symbol. We are thus left with a ten-dimensional space of func-

tions. In particular, we find that the odd part is necessarily non-zero. Moreover, it is

uniquely determined in terms of the even part.

In order to fix the remaining free parameters, we turn to a representation of the even

part of the two-loop six-point NMHV amplitude based on loop integrals [42]. We analyse

this representation, appropriately rewritten with a mass regulator [21], in the symmetric

regime with all three cross-ratios equal to u. In this regime, the most cumbersome double-

pentagon integrals can be traded for the MHV remainder function, plus simpler integrals.

This observation allows us to perform an analytic expansion for small and large u. Com-

paring these expansions with the ansatz, we are able to match them, precisely fixing all

remaining free parameters. The fact that the ansatz agrees with the expansion of the loop-

integral calculation in this regime is a highly non-trivial cross check, since an entire function

is matched by an ansatz with just a few free parameters. Further confirmation that our

result is correct comes from comparing with a numerical evaluation [42] at a particular

asymmetric kinematical point. This latter check also confirms the expectation that P is

defined independently of any infrared regularization scheme. See also ref. [56] for a recent

discussion of different infrared regularizations and regularization-scheme independence.

In contrast to the the two-loop six-point MHV amplitude [16], the two-loop six-point

ratio function cannot quite be expressed in terms of classical polylogarithms. Two addi-

tional functions appear, one in the even part and one in the odd part. However, these

functions have a very simple structure: we can write them as simple one-dimensional in-

tegrals over classical polylogarithmic functions of degree three. The even part of the ratio

function can be written in terms of single-variable polylogarithmic functions whose argu-

ments are rational in the three cross-ratios u, v, w, plus one of the new functions, which

coincides with the finite double-pentagon integral Ω(2) [57]. We use the differential equa-

tions obeyed by this integral [58, 59] to derive various parametric integral representations

for it. The odd part consists entirely of the second new function, Ṽ , which also can be

expressed as a single integral over classical polylogarithms of degree three. This function

can also be identified as the odd part of another finite double-pentagon integral, Ω̃(2) [57],

which we compute using the differential equations derived in ref. [58].
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This paper is organized as follows. In section 2 we review non-MHV amplitudes, and

the definition of the ratio function in planar N = 4 super Yang-Mills theory. We discuss

the physical constraints satisfied by P, namely in the collinear and spurious limits, and

also those arising from the OPE expansion of super Wilson loops. We make an ansatz for

the symbol of P at two loops in section 3, and then apply the constraints. In order to

promote the symbol to a function, we introduce in section 4 two new functions that are

not expressible in terms of classical polylogarithms, but have simple parametric integral

definitions. Next, in section 5, we parametrise the beyond-the-symbol ambiguities and

apply the collinear and spurious constraints at the functional level, which leaves only

ten unfixed parameters. In section 6 we determine these parameters by performing an

analytic two-loop evaluation of the integrals contributing to the even part of the NMHV

amplitude in a special kinematical regime. The final result for the full two-loop NMHV

ratio function is presented in section 7. We conclude in section 8. Several appendices

contain background material and technical details. We provide the symbols for several of

the quantities appearing in this article as auxiliary material.

2 Non-MHV amplitudes and the ratio function

To describe the scattering amplitudes of N = 4 super Yang-Mills theory, it is useful to

introduce an on-shell superspace (see e.g. refs. [36, 60–62]). All the different on-shell states

of the theory can be arranged into an on-shell superfield Φ which depends on Grassmann

variables ηA transforming in the fundamental representation of su(4),

Φ = G+ + ηAΓA + 1
2!η

AηBSAB + 1
3!η

AηBηCǫABCDΓ
D
+ 1

4!η
AηBηCηDǫABCDG

−. (2.1)

Here G+, ΓA, SAB = 1
2ǫABCDS

CD
, Γ

A
, and G− are the positive-helicity gluon, gluino,

scalar, anti-gluino, and negative-helicity gluon states, respectively. These on-shell states

carry a definite null momentum, which can be written in terms of two commuting spinors,

pαα̇ = λαλ̃α̇. Note that the spinors λ and λ̃ are not uniquely defined, given p; they can

be rescaled by λ → cλ, λ̃ → c−1λ̃. The transformation properties of the states and the η

variables are such that the full superfield has weight 1 under the following operator,

h = −1

2

[

λα
∂

∂λα
− λ̃α̇ ∂

∂λ̃α̇
− ηA ∂

∂ηA

]

. (2.2)

All the different (colour-ordered) scattering amplitudes of the theory are then com-

bined into a single superamplitude A(Φ1,Φ2, . . . ,Φn), from which individual components

can be extracted by expanding in the Grassmann variables ηAi associated to the different

particles. The tree-level MHV superamplitude is the simplest cyclically invariant quantity

with the correct scaling behaviour for each particle that manifests translation invariance

and supersymmetry,

A(0)
MHV = i

δ4(p)δ8(q)

〈12〉〈23〉 · · · 〈n1〉 . (2.3)

The arguments of the delta functions are the total momentum pαα̇ =
∑

i λ
α
i λ̃

α̇
i and total

chiral supercharge qαA =
∑

i λ
α
i η

A
i , respectively. The full MHV superamplitude is the

– 5 –
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tree-level one multiplied by an infrared-divergent factor,

AMHV = A(0)
MHV × M . (2.4)

Moving beyond MHV amplitudes, we define the ratio function by factoring out the

MHV superamplitude from the full superamplitude [36],

A = AMHV × P . (2.5)

Here P has an expansion in terms of increasing Grassmann degree, corresponding to the

type of amplitudes (MHV, NMHV, N2MHV, etc.),

P = 1 + PNMHV + PN2MHV + . . .+ PMHV . (2.6)

The number of terms in the above expansion of P is (n − 3), where n is the number of

external legs. The Grassmann degrees of the terms are 0, 4, 8, . . . , (4n− 16). At six points,

which is the case of interest for this paper, there are just three terms, corresponding to

MHV, NMHV and N2MHV. The N2MHV amplitudes for n = 6 are equivalent to MHV

amplitudes, which are simply related to the MHV amplitudes by parity. Thus the non-

trivial content of the ratio function at six points is in the NMHV term.

At tree level, P is given by a sum over dual superconformal ‘R-invariants’ [36]. In

particular, for six points we have

P(0)
NMHV = R1;35 +R1;36 +R1;46 . (2.7)

The R-invariants can be described using dual coordinates xi, θi defined by

pαα̇i = λαi λ̃
α̇
i = xαα̇i − xαα̇i+1, qαAi = λαi η

A
i = θαAi − θαAi+1 . (2.8)

Then we have [36, 43]

Rr;ab =
〈a, a− 1〉〈b, b− 1〉 δ4

(

〈r|xraxab|θbr〉+ 〈r|xrbxba|θar〉
)

x2ab 〈r|xraxab|b〉 〈r|xraxab|b− 1〉 〈r|xrbxba|a〉 〈r|xrbxba|a− 1〉 . (2.9)

The R-invariants take an even simpler form in terms of momentum twistors [45, 63].

These variables are (super)twistors associated to the dual space with coordinates x, θ. They

are defined by

Zi = (Zi |χi), ZR=α,α̇
i = (λαi , x

βα̇
i λiβ), χA

i = θαAi λiα . (2.10)

The momentum (super)twistors Zi transform linearly under dual (super) conformal sym-

metry, so that (abcd) = ǫRSTUZ
R
a Z

S
b Z

T
c Z

U
d is a dual conformal invariant. The R-invariants

can then be written in terms of the following structures:

[abcde] =
δ4
(

χa(bcde) + cyclic
)

(abcd)(bcde)(cdea)(deab)(eabc)
, (2.11)
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which contains five terms in the sum over cyclic permutations of a, b, c, d, e in the delta

function. The bracket notation serves to make clear the totally anti-symmetrised depen-

dence on five momentum supertwistors. The quantity Rr;ab is a special case of this general

invariant,

Rr;ab = [r, a− 1, a, b− 1, b] . (2.12)

At the six-point level it is clear that there are six different such invariants. We label them

compactly by (t), using the momentum twistor t that is absent from the five arguments in

the brackets:

(1) ≡ [23456], (2.13)

and so on.

In general R-invariants obey many identities; see for example refs. [36, 41]. These

identities can be organised as residue theorems in the Grassmannian interpretation [44].

At six points, the only identity we need is [36]

(1)− (2) + (3)− (4) + (5)− (6) = 0. (2.14)

Using eqs. (2.12), (2.13) and (2.14), we can rewrite the NMHV tree amplitude (2.7) as

P(0)
NMHV = [12345] + [12356] + [13456] = (6) + (4) + (2) = (1) + (3) + (5). (2.15)

Beyond tree level, the R-invariants in the ratio function are dressed by non-trivial

functions of the dual conformal invariants [36]. In the six-point case, there are three

independent invariants. We may parametrise the invariants by the cross-ratios,

u =
x213x

2
46

x214x
2
36

, v =
x224x

2
51

x225x
2
41

, w =
x235x

2
62

x236x
2
25

. (2.16)

Often it will also be useful to use the variables yu, yv, yw defined by,

yu =
u− z+
u− z−

, yv =
v − z+
v − z−

, yw =
w − z+
w − z−

, (2.17)

where

z± =
1

2

[

−1 + u+ v + w ±
√
∆
]

, ∆ = (1− u− v − w)2 − 4uvw . (2.18)

In terms of momentum twistors, the cross-ratios are expressed as

u =
(6123)(3456)

(6134)(2356)
, v =

(1234)(4561)

(1245)(3461)
, w =

(2345)(5612)

(2356)(4512)
, (2.19)

while the y variables simplify to

yu =
(1345)(2456)(1236)

(1235)(3456)(1246)
, yv =

(1235)(2346)(1456)

(1234)(2456)(1356)
, yw =

(2345)(1356)(1246)

(1345)(2346)(1256)
. (2.20)

In this form, it is clear that a cyclic rotation by one unit Zi −→ Zi+1 maps the y variables

as follows,

yu −→
1

yv
, yv −→

1

yw
, yw −→

1

yu
, (2.21)
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while the cross-ratios behave in the following way,

u −→ v, v −→ w, w −→ u . (2.22)

The parity operation which swaps the sign of the square root of ∆ (i.e. inverts the y

variables) is equivalent to a rotation by three units in momentum twistor language. Indeed

one can think of the cross-ratios as independent, parity-invariant combinations of the y

variables. Specifically we have

u =
yu(1− yv)(1− yw)
(1− yuyv)(1− yuyw)

, 1− u =
(1− yu)(1− yuyvyw)
(1− yuyv)(1− yuyw)

, (2.23)

and similar relations obtained by cyclic rotation. Because of the ambiguity associated with

the sign of the square root of ∆ in eq. (2.17), the primary definition of the y variables is

through the momentum twistors and eq. (2.20). Further relations between these variables

are provided in appendix F.

At six points it can also be convenient to simplify the momentum-twistor four-brackets

by introducing [16] antisymmetric two-brackets of CP1 variables wi via [53]

(ij) = 1
4!ǫijklmn(klmn) , (2.24)

so that we have

u =
(12)(45)

(14)(25)
, 1− u =

(24)(15)

(14)(25)
, yu =

(26)(13)(45)

(46)(12)(35)
, (2.25)

plus six more relations obtained by cyclic permutations.1

Having specified our notation for the invariants we need, we now parametrise the

six-point NMHV ratio function in the following way,

PNMHV =
1

2

[

[(1) + (4)]V3 + [(2) + (5)]V1 + [(3) + (6)]V2

+ [(1)− (4)]Ṽ3 − [(2)− (5)]Ṽ1 + [(3)− (6)]Ṽ2

]

. (2.26)

The Vi and Ṽi are functions of the conformal invariants and of the coupling, with the Vi
even under parity while the Ṽi are odd (recall that parity is equivalent to a rotation by

three units). The cyclic and reflection symmetries of the amplitude A (and hence the

ratio function P) mean that the Vi and Ṽi are not all independent. Indeed, choosing

V3 = V (u, v, w) and Ṽ3 = Ṽ (yu, yv, yw), we can write

PNMHV =
1

2

[

[(1) + (4)]V (u, v, w) + [(2) + (5)]V (v, w, u) + [(3) + (6)]V (w, u, v) (2.27)

+ [(1)− (4)]Ṽ (yu, yv, yw)− [(2)− (5)]Ṽ (yv, yw, yu) + [(3)− (6)]Ṽ (yw, yu, yv)
]

.

The functions V and Ṽ obey the symmetry properties,

V (w, v, u) = V (u, v, w) , Ṽ (yw, yv, yu) = −Ṽ (yu, yv, yw) . (2.28)

1In comparison with ref. [22], the indexing of the wi variables differs by one unit, and a square-root

ambiguity in defining the y variables was resolved in the opposite way.
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Note that we have written the parity-odd function Ṽ as a function of the y variables, while

V , being parity even, can be written as a function of the cross-ratios. The functions V and

Ṽ depend on the coupling. We expand them perturbatively as follows,

V (a) =
∞
∑

l=0

alV (l), Ṽ (a) =
∞
∑

l=0

alṼ (l) . (2.29)

Here

a ≡ g2N

8π2
, (2.30)

where g is the Yang-Mills coupling constant for gauge group SU(N); the planar limit is

N →∞ with a held fixed.

At tree level, we have V (0) = 1 while Ṽ (0) vanishes. One can see that the expres-

sion (2.27) with V = 1 agrees with eq. (2.15). At one loop, Ṽ still vanishes, while V is a

non-trivial function involving logarithms and dilogarithms,

V (1) =
1

2

[

− log u logw + log(uw) log v + Li2(1−u) + Li2(1−v) + Li2(1−w)− 2ζ2

]

, (2.31)

Ṽ (1) = 0 . (2.32)

The main results of this paper are analytical two-loop expressions for V (2) and Ṽ (2), both

of which are non-vanishing.

Let us discuss some general constraints that the functions V and Ṽ obey.

Physical poles in amplitudes are associated with singular factors in the denominator

involving sums of color-adjacent momenta, of the form (pi + pi+1 + . . .+ pj−1)
2 ≡ x2ij . In

the R-invariants, in the notation of eq. (2.11), such poles appear as four brackets (abcd) of

the form

(i− 1, i, j − 1, j) = 〈i− 1, i〉 〈j − 1, j〉x2ij . (2.33)

However, the R-invariants also contain spurious poles, which arise from the four brackets

(abcd) that are not of this form. The full amplitude must not have such poles. Therefore

the functions V and Ṽ must conspire to cancel the pole with a zero in the corresponding

kinematical configuration.

In the dual-coordinate notation (2.9), the R-invariants contain poles from denominator

factors of the form 〈r|xraxab|b〉. For special values of a, b, r, such factors can simplify into

physical singularities, but for generic values they correspond to spurious poles. In the

six-point case, for example, R1;46 contains a factor of

〈1|x14x46|5〉 = 〈1|x14|4] 〈45〉 (2.34)

in the denominator. While the pole at 〈45〉 = 0 is a physical (collinear) singularity, the

pole at 〈1|x14|4] = 0 is spurious. In momentum-twistor notation, the spurious pole comes

from any four-bracket in the denominator which is not of the form (i− 1, i, j − 1, j).

For example, in the six-point case theR-invariants (1) and (3) both contain the spurious

factor (2456) in the denominator. (In the dual-coordinate notation, this particular pole is
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proportional to 〈2|x25|5] rather than 〈1|x14|4].) In the tree-level amplitude (2.15) there is

a cancellation between the two terms, so we see that

(1) ≈ −(3) as (2456)→ 0. (2.35)

At loop level, using this relation, we find that the absence of the spurious pole implies the

following condition on V and Ṽ ,

[V (u, v, w)− V (w, u, v) + Ṽ (yu, yv, yw)− Ṽ (yw, yu, yv)](2456)=0 = 0 . (2.36)

As the spurious bracket (2456) vanishes, we find the following limiting behaviour,

w → 1 , yu → (1− w)u(1− v)
(u− v)2 , yv →

1

(1− w)
(u− v)2
v(1− u) , yw →

1− u
1− v . (2.37)

This is easiest to see in the two-bracket notation of eq. (2.24), in which (2456) = 0 cor-

responds to (13) = 0 and hence to w1 = w3. The above condition reduces to the one of

ref. [49] on the assumption that Ṽ = 0.2 The one-loop expression for V , eq. (2.31), satisfies

the above constraint with Ṽ (1) = 0, since logw → 0 in the limit.

There is also a constraint from the collinear behaviour. There are two types of collinear

limits, a ‘k-preserving’ one where NkMHV superamplitudes are related to NkMHV super-

amplitudes with one fewer leg, and a ‘k-decreasing’ one which relates NkMHV superampli-

tudes to Nk−1MHV superamplitudes with one fewer leg. These two operations are related

to each other by parity and correspond to a supersymmetrisation of the two splitting

functions found when analysing pure gluon amplitudes [37, 42, 64–66]. For the six-point

NMHV case, we only need to examine one of the collinear limits; the other will follow

automatically by parity.

Under the collinear limit, the n-point amplitude should reduce to the (n − 1)-point

one multiplied by certain splitting functions. The splitting functions are automatically

taken care of by the MHV prefactor in eq. (2.5). The n-point ratio function P should

then be smoothly related to the (n − 1)-point one. Consequently, in the collinear limit

the loop corrections to the six-point ratio function should vanish, because the five-point

ratio function (containing only MHV and MHV components) is exactly equal to its tree-

level value. The R-invariants behave smoothly in the limit, either vanishing or reducing

to lower-point invariants. In the case at hand we can consider the limit Z6 → Z1, which

also corresponds to w6 → w1, or x
2
35 → 0, or w → 0 with v → 1 − u. In this limit, all

R-invariants vanish except for (6) and (1), which become equal. Beyond tree level, the

sum of their coefficients must therefore vanish in the collinear regime. This implies the

constraint,

[V (u, v, w) + V (w, u, v) + Ṽ (yu, yv, yw)− Ṽ (yw, yu, yv)]w→0, v→1−u = 0 . (2.38)

In fact the parity-odd function Ṽ drops out of this constraint. The reason is that the

collinear regime can be approached from the surface ∆(u, v, w) = 0 (see eq. (2.18)), and

all parity-odd functions should vanish on this surface.

2This is true after correcting a typo in eq. (3.63) of that reference.
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The final constraint we will need comes from the predicted OPE behaviour of the ratio

function [55]. The general philosophy that an operator product expansion governs the

form of the amplitudes comes from the relation of amplitudes to light-like Wilson loops.

Light-like Wilson loops can be expanded around a collinear limit and the fluctuations

can be described by operator insertions inside the Wilson loop [23–25]. By extending

this philosophy [55] to supersymmetrised Wilson loops [50, 51] (or equivalently correlation

functions [52]) one can avoid questions about giving a precise Lagrangian description of

the object under study. In this sense the OPE can be used to justify the existence of a

supersymmetrised object dual to non-MHV amplitudes.

The analysis of ref. [55] allows one to choose various components of the ratio function.

Let us consider the component proportional to χ2χ3χ5χ6. The only term in eq. (2.27) that

contributes to this component is the first one,

P(2356)
NMHV =

1

(2356)
V (u, v, w) . (2.39)

In order to examine the OPE, we follow ref. [55] and choose coordinates (τ, σ, φ) by fixing

a conformal frame where

1

(2356)
=

1

4(coshσ cosh τ + cosφ)
=

√
uvw

2(1− v) , (2.40)

and the three cross-ratios are given by

u =
eσ sinh τ tanh τ

2(coshσ cosh τ + cosφ)
, v =

1

cosh2 τ
, w =

e−σ sinh τ tanh τ

2(coshσ cosh τ + cosφ)
. (2.41)

Extrapolating the results of ref. [55] to two loops, the OPE predicts the leading (double)

discontinuity of the (2356) component of the ratio function to be,

∆v∆vP(2356)
NMHV ∝

∞
∑

m=−∞

∫ ∞

−∞

dp

2π
eimφ−ipσ C(2356)m (p)F (2356)

|m|+1,p(τ) [γ1+|m|(p)]
2 , (2.42)

where

F (2356)
E,p (τ) = sechEτ 2F1

[

1
2(E − ip), 12(E + ip);E; sech2τ

]

, (2.43)

C(2356)m (p) = 1
4(−1)mB

[

1
2(|m|+ 1 + ip), 12(|m|+ 1− ip)

]

, (2.44)

γ1+|m|(p) = ψ
(

1
2(1 + |m|+ ip)

)

+ ψ
(

1
2(1 + |m| − ip)

)

− 2ψ
(

1
)

. (2.45)

Here 2F1 is the hypergeometric function, B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the Euler beta

function, and ψ is the logarithmic derivative of the Γ function.

3 Ansatz for the symbol of the two-loop ratio function

In order to make a plausible ansatz for the ratio function at two loops we assume that

the functions V (2)(u, v, w) and Ṽ (2)(u, v, w) are pure functions of u, v and w, i.e. iterated
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integrals or multi-dimensional polylogarithms of degree four. Moreover, we make an ansatz

for the symbols of V (2) and Ṽ (2), requiring that their entries are drawn from the following

set of nine elements,

{u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} . (3.1)

We summarise some background material on pure functions and symbols in appendix A.

We recall that the y variables invert under parity. The parity-even function V should have

a symbol which contains only terms with an even number of y entries. Likewise the symbol

of the parity-odd function Ṽ should contain only terms with an odd number of y entries.

The ansatz for the symbol entries is the same as the one used recently for the three-loop

remainder function [22] (after omitting restrictions on the final entry of the symbol). It

is consistent with every known function appearing in the six-point amplitudes of planar

N = 4 super Yang-Mills theory, in particular the simple analytic form of the two-loop

remainder function found in ref. [16]. It is also consistent with the results for explicitly

known loop integrals appearing in such amplitudes, see refs. [58, 59, 67]. In the ensuing

analysis we will find many strong consistency checks on our ansatz.

Let us pause to note that our assumption that the relevant functions are pure func-

tions of a particular degree equal to twice the loop order is by no means an innocent

one. Although it is true that such general polylogarithmic functions generically show up

in amplitudes in four-dimensional quantum field theories, it is certainly not true in general

that they always appear with a uniform degree dependent on the loop order. In QCD, for

example, the degrees appearing range from twice the loop order to zero, and the transcen-

dental functions typically appear with non-trivial algebraic prefactors. In fact the observed

behaviour of having maximal degree only is limited to N = 4 super Yang-Mills theory, and

the most evidence is for the planar sector. This behavior is the generalization, to non-trivial

functions of the kinematics, of the maximal degree of transcendentality for harmonic sums

that has been observed in the anomalous dimensions of gauge-invariant local operators [68].

The symbols we construct from the set of letters (3.1) should obey certain restrictions.

They should be integrable; that is, they should actually be symbols of functions. The

initial entries of the symbol should be drawn only from the set {u, v, w}, because the

leading entry determines the locations of branch points of the function in question, and

branch cuts can only appear when one of the x2ij vanishes. This assumption, together with

integrability of the symbol, implies that the second entries are always drawn from the set

{u, v, w, 1− u, 1− v, 1−w}. Hence the y variables can only appear in the third and fourth

entries of our degree four symbols. For the symbol of V this means there can be either two

y entries or none. The symbol of Ṽ must have exactly one y entry in every term.

There are 41 integrable symbols of degree 4 for V , and 2 for Ṽ , obeying the initial entry

condition as well as the symmetry conditions (2.28). The spurious pole conditions (2.36)

provide 14 constraints and the collinear conditions (2.38) provide 14 more, leaving 15 free

parameters at this stage. In order to impose the constraints from the leading discontinuity

predicted by the OPE, we use the fact that the sum (2.42) is annihilated by the following

differential operator [55],

D = ∂2τ + 2 coth(2τ) ∂τ + sech2τ ∂2σ + ∂2φ + 1 . (3.2)
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In the u, v, w variables this differential operator is given by

D = 1
2(D+ +D−) + 1 , (3.3)

where

D± =
4

1− v
[

− z±u∂u − (1− v)v∂v − z±w∂w

+ (1− u)vu∂uu∂u + (1− v)2v∂vv∂v + (1− w)vw∂ww∂w
+ (−1 + u− v + w)

(

(1− v)u∂uv∂v − vu∂uw∂w + (1− v)v∂vw∂w
)

]

. (3.4)

Imposing that the double discontinuity (2.39) is annihilated by the operator D gives

5 further conditions, leaving 10 free parameters in the symbol. One of these parameters,

denoted by αX below, is just the overall normalisation of the symbol of the double discon-

tinuity, which is non-zero and convention-dependent. In the following we provide functions

with physical branch cuts which represent the symbol. We find that the solution has the

form,

S(V ) = αX S(VX) +
9

∑

i=1

αi S(fi), S(Ṽ ) = αX S(ṼX) + α8 S(f̃) , (3.5)

where αX and α1 through α9 are the constant free parameters, and the quantities V , fi,

ṼX and f̃ will be defined below.3

The double discontinuities of the functions appearing in eq. (3.5) obey

S(∆v∆vVX) = 2αX

[

u⊗ (1− u) + u⊗ u + w ⊗ (1− w) + w ⊗ w

+ 2
(

u⊗ w + w ⊗ u− uw ⊗ (1− v)− (1− v)⊗ uw

+ (1− v)⊗ (1− v)
)]

, (3.6)

S(∆v∆vfi) = 0 , (3.7)

S(∆v∆vṼX) = S(∆v∆vf̃) = 0 . (3.8)

Consistency with the spurious pole condition (2.36) forces the odd part Ṽ to be non-zero,

given that αX is non-zero. The odd part contains no ambiguity at the level of the symbol

(or beyond it), once we fix the even part, particularly the two parameters αX and α8.

The symbol of the double discontinuity of V and Ṽ is entirely controlled by VX , through

eq. (3.6). We can find a function compatible with this symbol, and compare it to eq. (2.42)

to fix the ζ2 terms. We find that

∆v∆vP(2356)
NMHV ∝

1

(2356)

[

log2 u+ log2w + 4 log u logw + 2 log2(1− v)

− 4 log(uw) log(1− v)− 2
(

Li2(1− u) + Li2(1− w)− 2 ζ2

)

]

. (3.9)

3In section 6 we will fix the ten parameters using an analytical computation for particular kinematics.

We have compared the symbols (3.5) for V and Ṽ with all parameters fixed to an independent computation

of these symbols from a formulation of the super Wilson loop [69]; the results agree precisely.
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In order to present the symbols appearing in eq. (3.5) explicitly and compactly, it is

very useful to employ harmonic polylogarithms [70–72]. This presentation simultaneously

accomplishes the following step, of turning the symbols into functions, up to certain beyond-

the-symbol ambiguities. The functions we will present are of degree at most four, and

almost all of them can be represented in terms of classical Lin functions. Thus the use of

harmonic polylogarithms may seem unnecessarily complicated. However, it is a very useful

way to represent, at any degree, a symbol only involving the letters {u, v, w, 1−u, 1−v, 1−
w}, whereas Lin functions are often insufficient beyond degree four.

Harmonic polylogarithms are single-variable functions defined by iterated integration.

It is very simple to write down their symbols. We use harmonic polylogarithms with labels

(weight-vector entries) “0” and “1” only. The symbol of a harmonic polylogarithm of

argument x is obtained by reversing the list of labels and replacing all “0” entries by x

and all “1” entries by 1−x. Finally, one multiplies by (−1)n where n is the number of “1”

entries. For example, the symbol of H0,0,0,1(x) = Li4(x) is − (1− x)⊗ x⊗ x⊗ x, and the

symbol of H0,1,0,1(x) is (1− x)⊗ x⊗ (1− x)⊗ x .
We also use the common convention of shortening the label list by deleting each “0”

entry, while increasing by one the value of the first non-zero entry to its right, so that, for

example, H0,0,0,1(x) = H4(x) = Li4(x) and H0,0,1,1(x) = H3,1(x). Apart from the logarithm

function, we take all arguments of the harmonic polylogarithms to be (1−u), (1−v) or (1−
w). This representation guarantees that the functions we are using to represent the symbol

do not have any branch cut originating from an unphysical point. We then compactify

the notation further by writing H2,2(1 − x) = Hx
2,2, and so on. Finally, we recall that the

symbol of a product of two functions is given by the shuffle product of the two symbols.

With this notation we can immediately write down a function which has the symbol,

S(VX), of the part of V with non-zero double discontinuity, i.e. the part fixed by the OPE,

VX =
{

4Hu
3,1 + log u

(

Hv
3 + 2Hu

2,1 − 5Hv
2,1 + 6Hw

2,1 +
3
2H

u
2 logw

)

+ log2 u (Hu
2 − 3Hw

2 )

+ log v
[

Hu
3 − 3Hu

2,1 − 1
2 log u (Hu

2 +Hv
2 )− 3

2 log
2 u logw

]

+ log2 v
(

−Hu
2 + 1

2 log
2 u

)

+ (u↔ w)
}

+ 4Hv
3,1 + 2 log u log2 v logw − 1

2 log
2 u log2w . (3.10)

We can similarly write down functions with the correct symbols for the first seven ambi-

guities in the even part (the double v discontinuity of each function vanishes):

f1=H
u
2H

w
2 ,

f2=[− log u (Hw
3 +Hw

2,1 +Hu
2 logw)− log2 u

(

Hw
2 + 1

2 log v logw
)

+ (u↔ w)] ,

f3=[−Hw
2 log u log v + (u↔ w)] +Hv

2 log u logw ,

f4=[−Hu
2 log u logw − log2 u (2Hw

2 + log v logw) + (u↔ w)]−Hv
2 log u logw ,

f5=[Hu
2H

v
2 +Hu

2,2 + log u (2Hv
2,1 − 2Hw

2,1 −Hu
2 logw) + log v (2Hu

2,1 + log u (Hu
2 +Hv

2 ))

+ (u↔ w)] +Hv
2,2 ,

f6=[− 2Hu
2H

v
2 − 2Hu

2,2 − 4Hu
3,1 + log u (−2Hu

3 − 2Hv
2,1 + 2Hw

2,1 +Hu
2 logw)

− log v (2Hu
2,1 + log u (Hu

2 +Hv
2 )) + (u↔ w)]− 2Hv

2,2 − 4Hv
3,1 − 2Hv

3 log v ,
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f7=
[

− 3Hu
4 − 3Hu

2,1,1 + log u (Hv
3 − 2Hu

2,1 +Hw
2,1 +Hu

2 logw) + log2 u
(

−1
2H

u
2 +Hw

2

)

+ log v
(

Hu
3 + 1

2 log
2 u logw

)

+ (u↔ w)
]

− 3Hv
4− 3Hv

2,1,1− 2Hv
2,1 log v− 1

2H
v
2 log

2 v .

For the even part there remain two more ambiguities whose symbols cannot be ex-

pressed in terms of those of the single-variable harmonic polylogarithms with the arguments

we have been using,

f8 = [−Hu
2H

v
2 − 2Hu

4 +Hu
2,2 − 4Hu

3,1 + 6Hu
2,1,1 + log u (−Hu

3 −Hv
3 +Hw

3 + 2Hu
2,1)

+Hw
2 log2 u+ log v (Hu

3 −Hw
2 log u) + (u↔ w)]

−Hv
2,2 − 2Hv

3,1 +Hv
2 log u logw + 1

2 log
2 u log2w −Hv

3 log v − 2Ω(2)(w, u, v) ,

f9 =R(2)
6 (u, v, w) .

Here R(2)
6 stands for the two-loop remainder function, whose symbol is known [16]. The

appearance of the two-loop remainder function as an ambiguity should not be surprising.

It is a function with physical branch cuts, which vanishes in the collinear limit. Also, it

is totally cyclic and hence automatically satisfies the spurious pole condition on its own.

Furthermore, it has vanishing double discontinuities and hence drops out from the leading-

discontinuity OPE criterion (2.42). It is known [16] that R(2)
6 can in fact be expressed in

terms of single-variable classical polylogarithms. However, to do so one must use arguments

involving square roots of polynomials of the cross-ratios.

The other quantity not given in terms of the harmonic polylogarithms, which enters

f8, is the integral Ω(2). In fact its symbol can also be recognised from other considera-

tions [58, 59], as we will discuss in the next section. The symbol of Ω(2) is,

S(Ω(2)(u, v, w)) = −1

2

[

S(qφ)⊗ φ+ S(qr)⊗ r + S(Φ̃6)⊗ yuyv
]

, (3.11)

where

φ =
uv

(1− u)(1− v) , r =
u(1− v)
v(1− u) . (3.12)

Here Φ̃6 is the one-loop six-dimensional hexagon function [59, 67], whose symbol is given

explicitly in terms of the letters of our ansatz [59],

S(Φ̃6) = −S
(

Ω(1)(u, v, w)
)

⊗ yw + cyclic, (3.13)

where Ω(1) is a finite, four-dimensional one-loop hexagon integral [57, 58],

Ω(1)(u, v, w) = log u log v + Li2(1− u) + Li2(1− v) + Li2(1− w)− 2ζ2 . (3.14)

The other degree 3 symbols above can be represented by harmonic polylogarithms as

follows,

qφ =
[

−Hu
3 −Hu

2,1 −Hv
2 log u− 1

2 log
2 u log v +Hu

2 logw + (u↔ v)
]

+ 2Hw
2,1 +Hw

2 logw + log u log v logw ,

qr =
[

−Hu
3 +Hu

2,1 +Hu
2 log u+Hw

2 log u+ 1
2 log

2 u log v − (u↔ v)
]

. (3.15)
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For the symbol of the parity-odd function Ṽ , we find that the part fixed by the OPE

(acting in conjunction with the spurious-pole constraint (2.36)), S(ṼX), coincides with the

symbol of

ṼX = Φ̃6 log
( u

w

)

. (3.16)

For the odd part of the ambiguity associated with α8, we have

S(f̃) = S(f̃u)⊗ yu + S(f̃v)⊗ yv + S(f̃w)⊗ yw − S(Φ̃6)⊗
1− u
1− w , (3.17)

where the functions f̃u, f̃v, f̃w are given by,

f̃u = [2Hu
3 −Hu

2 log v − (u↔ w)]− 2Hv
2,1 −Hv

2 log v ,

f̃v = [2Hu
3 − 2Hu

2,1 −Hu
2 log u−Hv

2 log u+Hw
2 log u− (u↔ w)] ,

f̃w = [2Hu
3 −Hu

2 log v − (u↔ w)] + 2Hv
2,1 +Hv

2 log v . (3.18)

We emphasise again that the formulas presented in this section are meant to represent

the symbols of the functions involved. For some of the relevant symbols (S(VX) and S(f1)
through S(f7)) we were able to trivially write down actual functions which represent those

symbols in terms of single-variable harmonic polylogarithms with arguments 1− x, where
x is one of the cross-ratios. For two others (S(f9) and S(ṼX)) we recognised them as

involving symbols of functions we already know, namely the two-loop remainder function

and the one-loop six-dimensional hexagon integral. In order to write down actual functions

for V and Ṽ there are two issues to address. Firstly, we must give functions which represent

the symbols S(Ω(2)(w, u, v)) and S(f̃). Secondly, we must include all possible terms which

have vanishing symbol and which are therefore insensitive to the analysis we have presented

so far. We address these two issues in the next two sections.

4 Digression on integral representations for Ω(2) and f̃

Here we will present integral formulas to define the functions Ω(2) and f̃ whose symbols

are given in the previous section. We also present a new representation of the two-loop

remainder function, based on the integral Ω(2). This section is more technical, and could

therefore be skipped on a first reading.

4.1 Integral representations for Ω(2)

We start with the finite double-pentagon integral Ω(2)(u, v, w) [57]. Let us take a derivative

with respect to w. The only contributing term from the symbol (3.11) is the last one, so

we see that the symbol S(Ω(2)) is consistent with the differential equation,

∂wΩ
(2)(u, v, w) = − Φ̃6

2
∂w log(yuyv) = −

Φ̃6√
∆
. (4.1)

We recognise here the differential equation [59] relating the two-loop, finite double-pentagon

integral Ω(2) to the massless, one-loop, six-dimensional hexagon function Φ̃6.
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The relation (4.1) can be used to write an integral formula for Ω(2),

Ω(2)(u, v, w) = −
∫ w

0

dt
√

∆(u, v, t)
Φ̃6(u, v, t) + Ω(2)(u, v, 0) . (4.2)

The relevant boundary condition is Ω(2)(u, v, 0) = Ψ(2)(u, v), where Ψ(2) is the two-loop

pentaladder function found in ref. [58]. The boundary behaviour at w = 0 was tested

numerically from the Mellin-Barnes representation for Ω(2) [58]. The symbol (3.11) reduces

to the symbol of Ψ(2) at w = 0. It is the unique symbol within our ansatz, built from the

letters in eq. (3.1), that obeys eq. (4.1) and the w = 0 boundary condition. The integral in

eq. (4.2) is well-defined and real in the Euclidean region, i.e. the positive octant in which

u, v, w are all positive, because the integrand Φ6 ≡ Φ̃6/
√
∆ is well-defined and real there,

and Φ6 is well-behaved even where ∆ vanishes [59].

As discussed in ref. [59], the first-order differential equation (4.1) can be obtained from

the second-order equation of ref. [58] for the double-pentagon integral, which can be written

as

w∂w

[

−u(1− u)∂u− v(1− v)∂v + (1− u− v)(1−w)∂w
]

Ω(2)(u, v, w) = Ω(1)(u, v, w) . (4.3)

Because the second-order operator naturally factorises into two first-order operators, we

can integrate up to Ω(2) in two steps. This procedure will yield another one-dimensional

integral relation for Ω(2). We define

Qφ(u, v, w) ≡
[

−u(1− u)∂u − v(1− v)∂v + (1− u− v)(1− w)∂w
]

Ω(2)(u, v, w) , (4.4)

so that

w∂wQφ(u, v, w) = Ω(1)(u, v, w) . (4.5)

The above formula can be used to define the function Qφ,

Qφ(u, v, w) = 2

[

Li3(1− w) + Li3

(

1− 1

w

)]

(4.6)

+ logw
[

−Li2(1− w) + Li2(1− u) + Li2(1− v) + log u log v − 2 ζ2

]

− 1

3
log3w − 2Li3(1− u)− Li3

(

1− 1

u

)

− 2Li3(1− v)− Li3

(

1− 1

v

)

+ log
(u

v

) [

Li2(1− u)− Li2(1− v)
]

+
1

6
log3 u+

1

6
log3 v

− 1

2
log u log v log(uv) .

This function obeys eq. (4.5) and has a symbol coinciding with that of qφ from eq. (3.15).

It also obeys Qφ(1, 1, 1) = 0. In principle, eq. (4.5) allows one to add beyond-the-symbol

terms to Qφ that are proportional to ζ2 log(uv), and to ζ3. We verified numerically that

these terms are absent. The function Qφ is manifestly real in the positive octant.

Given the function Qφ, we can integrate eq. (4.4) to obtain Ω(2). We first note that

the relevant operator becomes very simple in the (yu, yv, yw) variables,

− u(1− u)∂u − v(1− v)∂v + (1− u− v)(1− w)∂w =
(1− yw)(1− yuyvyw)

1− yuyv
∂yw . (4.7)
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Inserting this relation into eq. (4.4), we find an alternative integral formula for Ω(2) in

terms of the y variables,

Ω(2)(u, v, w) = −6 ζ4 +
∫ yw

1
yuyv

dt

1− t
1− yuyv
1− yuyvt

Q̂φ(yu, yv, t) . (4.8)

Here we use the notation Q̂φ(yu, yv, yw) = Qφ(u(yu, yv, yw), v(yu, yv, yw), w(yu, yv, yw)).

Note that this integral is well-defined at the lower limit of integration, for the follow-

ing reason: Whenever the product of the y variables is unity, yuyvyw = 1, we see from

eq. (2.23) that the cross-ratios collapse to the point (u, v, w) = (1, 1, 1), and at that point

Qφ vanishes, Qφ(1, 1, 1) = 0. Equation (4.8) can be applied straightforwardly in the y

variables for yw > 1 and yuyv < 1, and also for yw < 1 and yuyv > 1. (In other regions,

the vicinity of t = 1 makes a direct integration problematic.)

It can be more convenient to map the integral (4.8) back to the (u, v, w) space. This

mapping avoids problems related to the variables (yu, yv, yw) becoming complex when ∆

is negative. To do this mapping, we first define

r =
u(1− v)
v(1− u) =

yu(1− yv)2
yv(1− yu)2

, (4.9)

s =
u(1− u)v(1− v)

(1− w)2 =
yu(1− yu)2 yv(1− yv)2

(1− yuyv)4
, (4.10)

t =
1− w
uv

=
(1− yuyv)2 (1− yuyvyw)

yu(1− yu) yv(1− yv) (1− yw)
. (4.11)

Notice that r(yu, yv, yw) and s(yu, yv, yw) are actually independent of yw. Therefore the

curve of integration in the integral (4.8) from (1, 1, 1) to (u, v, w), which has constant yu
and yv, should have a constant value of r and s along it, while t varies. Also,

d(log t)

dyw
=

1− yuyv
(1− yw)(1− yuyvyw)

, (4.12)

so that the measure in eq. (4.8) is just d log t.

Let (ut, vt, wt) be the values of (u, v, w) along the curve from (1, 1, 1) to (u, v, w). We

solve the two constraints, that r and s are constant along the curve, i.e.

ut(1− vt)
vt(1− ut)

=
u(1− v)
v(1− u) , (4.13)

ut(1− ut)vt(1− vt)
(1− wt)2

=
u(1− u)v(1− v)

(1− w)2 , (4.14)

for vt and wt in terms of ut, obtaining,

vt =
(1− u) v ut

u (1− v) + (v − u)ut
, (4.15)

wt = 1− (1− w)ut (1− ut)
u (1− v) + (v − u)ut

. (4.16)
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Inserting these expressions into d log t = d log[(1− wt)/ut/vt], we have

d(log t)

dut
=

1

ut(ut − 1)
, (4.17)

which enables us to use ut as the final integration parameter,

Ω(2)(u, v, w) = −6 ζ4 +
∫ u

1

dut
ut(ut − 1)

Qφ(ut, vt, wt) . (4.18)

Using this formula, with Qφ from eq. (4.6), for which the polylogarithms are all rational

functions of the cross ratios, it is easy to rapidly get high-accuracy values for Ω(2). For

example, we find

Ω(2)(2817 ,
16
5 ,

112
85 ) = −5.273317108708980008 , (4.19)

Ω(2)(165 ,
112
85 ,

28
17) = −6.221018431345742955 , (4.20)

Ω(2)(11285 ,
28
17 ,

16
5 ) = −9.962051212650647413 , (4.21)

in general agreement with the numbers obtained at these points using a Mellin-Barnes

representation for the loop integral.

4.2 A new representation of the two-loop remainder function

Now that we have obtained representations of the function Ω(2), we note that the two-loop

remainder function can be written in terms of this function, together with functions with

purely rational (y-independent) symbols. Specifically, we have

R(2)
6 (u, v, w) =

1

4

[

Ω(2)(u, v, w) + Ω(2)(v, w, u) + Ω(2)(w, u, v)
]

+R(2)
6,rat . (4.22)

The piece with a rational symbol is defined as

R(2)
6,rat = −

1

2

[

1

4

(

Li2(1−1/u)+Li2(1−1/v)+Li2(1−1/w)
)2

+r(u)+r(v)+r(w)−ζ4
]

, (4.23)

with

r(u) =− Li4(u)− Li4(1− u) + Li4(1− 1/u)− log uLi3(1− 1/u)− 1

6
log3 u log(1− u)

+
1

4

(

Li2(1− 1/u)
)2

+
1

12
log4 u+ ζ2

(

Li2(1− u) + log2 u
)

+ ζ3 log u . (4.24)

The function R(2)
6,rat is real when all three cross-ratios are positive. Almost all of the terms

in eqs. (4.23) and (4.24) make this manifest term-by-term, because they contain only

logarithms of cross-ratios, or Lin(x) for some argument x which is less than one. The one

slight exception is the combination

Li4(u) +
1

6
log3 u log(1− u) . (4.25)

It is easy to see that eq. (4.25) is real as well, but in this case the branch cut starting at

u = 1 in each term cancels in the sum.
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In one sense, the representation (4.22) is a step backward from ref. [16], because the

function Ω(2)(u, v, w) cannot be expressed in terms of classical polylogarithms, whereas

R(2)
6 can be. (The absence of a classical polylogarithmic representation for Ω(2) can be

seen from its symbol, using the test described in ref. [16].) However, the appearance of the

sum over cyclic permutations of the finite two-loop double-pentagon integral is natural,

and the coefficient of 1
4 matches the one in the expression for the two-loop MHV amplitude

in ref. [57]. The relation (4.22) between R(2)
6 and Ω(2) will be useful for us in the ensuing

NMHV analysis.

4.3 An integral representation for f̃

We can obtain in a similar way an integral formula for the parity-odd function f̃ . Note

that we already have a formula, eq. (3.16), for the function ṼX = Φ̃6 log(u/w). It is useful

to observe that the combination ṼX + f̃ has a symbol which can be arranged so that the

final entries are drawn from the list,
{

yu, yv, yw,
u(1− w)
w(1− u)

}

. (4.26)

In terms of the y variables, the last final entry in the list above is independent of yv,

u(1− w)
w(1− u) =

yu(1− yw)2
yw(1− yu)2

. (4.27)

This fact allows us to obtain the symbol of the logarithmic derivative with respect to yv,

which is independent of the y variables,

S(Z̃) = 2

{

u⊗ u

1− u ⊗ (1− u)−
[

u⊗ w

1− u − v ⊗ (1− v) + w ⊗ u
]

⊗ u

+
(

u⊗ v + v ⊗ u
)

⊗ (1− v)− u⊗ u⊗ w
}

. (4.28)

The combination ṼX + f̃ can then be written as an integral of a function with this symbol,

ṼX + f̃ =

∫ yv

1
yuyw

dt

t
Z̃(yu, t, yw) . (4.29)

Here Z̃ is to be considered as a function of the variables (yu, yv, yw) for the integration,

but it is most simply expressed in terms of the variables (u, v, w),

Z̃(u, v, w) = −2
[

Li3

(

1− 1

u

)

− Li3

(

1− 1

w

)

+ log
( u

w

)(

Li2(1− v)− 2 ζ2

)

− 1

6
log3

( u

w

)

]

, (4.30)

in which form it is manifestly real in the positive octant.

Using the same trick we used for Ω(2), we can rewrite the integral (4.29) directly in

the (u, v, w) space. The only difference is that the roles of (v, yv) and (w, yw) are swapped,

and there is an extra factor multiplying the pure function, corresponding to

(1− yv)(1− yuyvyw)
yv(1− yuyw)

=

√
∆

v
. (4.31)
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Thus we get,

ṼX + f̃ = −
∫ u

1

dut
ut(ut − 1)

√

∆(ut, vt, wt)

vt
Z̃(ut, vt, wt) , (4.32)

= −
√

∆(u, v, w)

∫ u

1

dut Z̃(ut, vt, wt)

vt
[

u (1− w) + (w − u)ut
] , (4.33)

where

vt = 1− (1− v)ut (1− ut)
u (1− w) + (w − u)ut

, (4.34)

wt =
(1− u)w ut

u (1− w) + (w − u)ut
. (4.35)

The second form of the integral, eq. (4.33), makes clear that in the positive octant, ṼX + f̃

is real for ∆ > 0, and pure imaginary for ∆ < 0. The overall sign of eq. (4.33) corresponds

to the branch of
√
∆ defined in term of the y variables in eq. (F.8); it ensures that the

logarithmic derivative with respect to yv reproduces Z̃.

5 Ansatz and constraints at function level

Now that we have obtained explicit functions representing the symbols in section 3, we

proceed to enumerate the additional possible contributions, all of which have vanishing

symbol. The ratio function is real-valued in the Euclidean region in which all three cross-

ratios are positive. Each of the above functions entering V also has this property. Therefore

any additional functions that we add to our ansatz must also obey the property. In addition

to the parameters {αX , α1, . . . , α9}, we have the following real-valued parity-even beyond-

the-symbol ambiguities:

• At the ζ2 level,

g(2) = ζ2
[

c1 (log
2 u+ log2w) + c2 log

2 v + c3 log(uw) log v + c4 log u logw

+ c5 (H
u
2 +Hw

2 ) + c6H
v
2

]

, (5.1)

• At the ζ3 level,

g(3) = ζ3
[

c7 log(uw) + c8 log v
]

, (5.2)

• At the ζ4 level,

g(4) = ζ4 c9 . (5.3)

If our ansatz is correct, then we expect that the parity-even function V should be given

by

V = αX VX +
9

∑

i=1

αi fi + g(2) + g(3) + g(4) , (5.4)
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for some rational values of the αi and ci. There are no parity-odd beyond-the-symbol

ambiguities that possess only physical branch cuts. (This fact follows from the absence of

an integrable parity-odd degree-two symbol whose first slot is constrained to be u, v or w.)

Next we would like to apply the constraint (2.38) from the collinear limit, namely

V (u, v, w)+V (w, u, v)→ 0 as w → 0, v → 1−u, but now at the level of functions, not just

symbols. One way to do this is to first complete the functions VX and fi into new functions

FX = VX + V̂X , Fi = fi + f̂i, each of which gives a vanishing contribution to V (u, v, w) +

V (w, u, v) in the collinear limit. Although the symbols of the functions f1, . . . , f9 were

already constrained to give a vanishing contribution in this limit, that does not mean that

they vanish as functions. Instead we will correct VX and the fi by appropriate beyond-the-

symbol terms, V̂X and f̂i, which are constructed from the expressions (5.1), (5.2) and (5.3)

for suitable values of the constants ci. The function f9 requires no such correction, because

it is the two-loop MHV remainder function, which vanishes in all collinear limits.

To perform this correction, we need to know the collinear limits of the functions VX
and fi. For all but f8, these limits are straightforward to compute. The limit of f8 is

more complicated to obtain due to the presence of Ω(2). We compute this limit directly in

appendix B. However, we may also observe that in the collinear constraint equation (2.38),

only the combination Ω(2)(w, u, 1−u)+Ω(2)(1−u,w, u) is needed for small w. (To see this,

we use the symmetry of Ω(2) under exchange of its first two arguments.) This combination

appears on the right-hand side of eq. (4.22), evaluated in the limit w → 0, v → 1−u, along
with Ω(2)(u, 1− u,w) and the simpler function R(2)

6,rat(u, 1− u,w). Now the left-hand side

of this equation, the two-loop remainder function, vanishes in the limit. Also, Ω(2)(u, 1 −
u, 0) = Ψ(2)(u, 1 − u) = 0, where Ψ(2)(u, v) is the two-loop pentaladder function [58].

Hence the limit of the pair of Ω(2) functions appearing in f8(u, v, w) + f8(w, u, v) reduces

to evaluating R(2)
6,rat(u, 1− u, 0), using eq. (4.23). The explicit formulas for all the required

beyond-the-symbol functions V̂X and f̂i are given in appendix B.

The collinear constraint at the level of functions fixes 7 out of the 9 beyond-the-symbol

terms, leaving only the following combinations which have vanishing collinear contributions:

g̃1 = ζ2 [ζ2 +Hv
2 −Hu

2 −Hw
2 ] , (5.5)

g̃2 = ζ2 [−ζ2 + 2Hv
2 + log(uw) log v − log u logw] . (5.6)

The function V should therefore be given by

V (u, v, w) = αXFX +
9

∑

i=1

αiFi + c̃1g̃1 + c̃2g̃2 , (5.7)

where c̃1 and c̃2 are arbitrary constants.

We can analyse the constraints coming from the spurious pole condition (2.36) in a

similar way. The end result of this analysis is that one more beyond-the-symbol ambiguity

is fixed, leaving just one such function free. In fact, this is the maximum number of beyond-

the-symbol terms we can fix with this analysis, because one can always add ζ2 multiplied by

the one-loop ratio function, V (1), given in eq. (2.31). This product is a linear combination
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of g̃1 and g̃2, namely g̃2 − g̃1, and it automatically satisfies all constraints by itself. Thus

the only remaining beyond-the-symbol ambiguity is ζ2 V
(1).

In the next section, we will calculate analytically the loop integrals contributing to

the two-loop NMHV amplitude for special kinematics. We will use this information to

determine the remaining unfixed parameters, αX , α1 through α9, and (one of) c̃1 and c̃2.

6 Analytic calculation using loop integrals

In this section, we will fix the remaining undetermined parameters in our ansatz by com-

puting the ratio function analytically in a certain kinematical regime.

We find it convenient to perform our calculation using a mass regulator [21]. As was

reviewed in section 2, the ratio function is infrared finite. Moreover, it should be indepen-

dent of the regularization scheme used to compute it. We first verify this statement at one

loop by re-evaluating the MHV and NMHV six-point amplitudes in the mass regulariza-

tion. At two loops, we find agreement with previous numerical results [42] obtained using

dimensional regularization.

6.1 Review of six-point MHV amplitudes

Recall from section 2 that supersymmetry allows to write any MHV amplitudes to all

loop orders as a product of the tree-level amplitude, multiplied by a helicity-independent

function. We have

AMHV(a) = A(0)
MHV ×M(a) , (6.1)

whereM(a) = 1+aM (1)+a2M (2)+ . . ., and a is defined in eq. (2.30). The known structure

of infrared divergences takes a particularly simple form if we consider logM , namely [73]

logM(a, x2ij) =
6

∑

i=1

[

−γ(a)
16

log2
x2i,i+2

m2
− G̃0(a)

2
log

x2i,i+2

m2
+ f̃(a)

]

+ F (a, x2ij) +O(m2) .

Here γ(a) is the cusp anomalous dimension [74]. It is given by

γ(a) = 4a− 4ζ2a
2 +O(a3) , (6.2)

and we have

G̃0(a) = −ζ3a2 +O(a3) , (6.3)

f̃(a) =
ζ4
2
a2 +O(a3) . (6.4)

Moreover, the finite part F satisfies a dual conformal Ward identity [4, 5], whose most

general solution is

F (a, x2ij) =
1

4
γ(a)F (1)(x2ij) +R6(u, v, w; a) + C̃(a) +O(m2) , (6.5)

with

C̃(a) = −5ζ4
4
a2 +O(a3) . (6.6)
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The first term on the right-hand side of eq. (6.5) comes from the BDS ansatz [12], and

provides a particular solution to the Ward identity. It is given by the one-loop contribution

to F , multiplied by one quarter of the (coupling-dependent) cusp anomalous dimension

γ(a). Hence its kinematical dependence is determined by the one-loop result. The second

term on the right-hand side of eq. (6.5), the remainder function R6(u, v, w; a) [10, 11],

depends on three conformal cross-ratios, u, v and w. There is no remainder function for four

and five points, because non-vanishing conformal cross-ratios only appear starting at six

points. The specific choice of the kinematic-independent terms f̃(a) and C̃(a), determined

by the four-point and five-point cases, was made in such a way [12] that R6(u, v, w; a)

vanishes in the collinear limit.

6.2 Six-point NMHV amplitudes and ratio function

The NMHV amplitude can be written as

ANMHV(a) =
1

2
A(0)

MHV

[

[(2) + (5)]W1(a) − [(2)− (5)] W̃1(a) + cyclic
]

, (6.7)

where W1(a) = 1 + aW
(1)
1 + a2W

(2)
1 + . . . and W̃1(a) = a2W̃

(2)
1 + . . .. Cyclic symmetry

implies that under a cyclic rotation P of the external legs, i→ i+ 1, the Wi permute into

each other according to PW1 =W2, P
2W1 =W3, P

3W1 =W1, and similarly for the W̃i.

We recall from section 2, eq. (2.26), that the ratio function(s) Vi and Ṽi are defined

by [36]4

ANMHV(a) =
1

2
AMHV(a)

[

[(2) + (5)]V1(a) − [(2)− (5)] Ṽ1(a) + cyclic
]

. (6.8)

Based on the universality of infrared divergences, and in particular the independence of

infrared divergences on the helicity configuration, the ratio function P defined in eq. (2.5)

is expected to be infrared finite, and independent of the regularization scheme used to

compute it. More explicitly, comparing eqs. (6.1), (6.7) and (6.8), we see that

Wi(a) =M(a)Vi(a) , W̃i(a) =M(a) Ṽi(a) , i = 1, 2, 3 . (6.9)

Expanding these relations in the coupling constant, we find, at the one- and two-loop

orders,

V
(1)
i = W

(1)
i −M (1) , (6.10)

V
(2)
i = W

(2)
i −M (2) −M (1)V

(1)
i , (6.11)

Ṽ
(2)
i = W̃

(2)
i . (6.12)

It will be a non-trivial check of our calculation that all infrared divergences cancel in V
(2)
i .

4The original definition [36] differs from one used later [42] by a (coupling-dependent) constant. We use

the latter definition [42] because it makes the collinear behavior of the Vi simpler. Note that Vi is called Ci

in ref. [42].
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6.3 The one-loop ratio function

At one loop, the MHV amplitude is given by [65]

M (1) = −1

8

∑

σ∈S1∪PS1∪P2S1

[

F 1m(σ)− 1

2
F 2me(σ)

]

+O(m2) , (6.13)

where S1 = {(123456), (321654), (456123), (654321)} and (abcdef) denotes a permutation

of the external momenta. In the NMHV case, we have [37]

W
(1)
1 = −1

4

∑

σ∈S1

[

F 1m(σ) + F 2mh(σ)
]

+O(m2) . (6.14)

In writing eqs. (6.13) and (6.14), we converted the corresponding expressions in dimensional

regularization to mass regularization. The definitions of the integrals F 1m, F 2me and F 2mh

in this regularization are given in appendix C.

Inserting these results into eq. (6.10) to obtain V
(1)
1 , and then applying the permutation

P
2 to get V

(1)
3 ≡ V (1)(u, v, w), we recover the expressions for V (1) and Ṽ (1) in eqs. (2.31)

and (2.32). These results are in perfect agreement with the results of an earlier com-

putation using dimensional regularization [42], confirming the expectation that the ratio

function should be independent of the regularization scheme. (The result of the original

calculation [36] of the one-loop ratio function differs by a convention-dependent constant.)

Let us check that the collinear and spurious conditions reviewed in section 2 are sat-

isfied. They are given by eqs. (2.38) and (2.36), respectively. Indeed, we have that

lim
w→0

[

V (1)(u, 1− u,w) + V (1)(w, u, 1− u)
]

= 0 , (6.15)

and

V (1)(u, v, 1)− V (1)(1, u, v) = 0 . (6.16)

6.4 The two-loop ratio function

There exist several representations of M (2) and W
(2)
1 in terms of loop integrals. Using gen-

eralized unitarity and dimensional regularization, representations for the loop integrand of

M (2) and the even part of W
(2)
1 were found in refs. [10] and [42], respectively. Alternative

expressions for a four-dimensional integrand were derived using on-shell recursion relations

in refs. [29, 57]. This loop integral representation also describes the odd part W̃
(2)
1 . How-

ever, it will be convenient for us to choose a form in which the MHV and NMHV amplitudes

are treated in a uniform way [10, 42].

As in the one-loop case, we will assume that the loop integrals appearing in the massive

regularization are the analogs of those appearing in dimensional regularization [42]. A

similar assumption was made for the four-point amplitude up to four loops [73, 75], and

for the two-loop MHV amplitudes up to six points [20]. The latter work also required

promoting the planar four-dimensional loop integrands of ref. [57] into objects that can

be integrated to give a finite result. We should point out that this procedure could in
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principle miss terms whose integrand vanishes as the mass vanishes, m2 → 0, but that

are finite after integration. Although examples of such integrals have been given [73, 76],

they have not yet proved relevant in a practical calculation. In principle, there are various

ways of introducing mass regulators, which differ in how masses are given to different

propagators, leading to different results after integration. We will use the mass regulator

of ref. [21], which provides a systematic way of introducing the masses.

We should also comment on ‘µ-integrals’ present in dimensional regularization, in

which numerator factors involve explicit factors of the extra-dimensional components ~µ of

the loop momentum. These integrals do not seem to have an analog in mass regulariza-

tion, at least when one neglects terms that vanish as m2 → 0. The µ-integrals arise in

dimensional regularization due to a mismatch in dimension between the four-dimensional

external polarization vectors and the D-dimensional loop integration variable. It has been

observed in explicit computations that in the quantity logM the µ-integrals only con-

tribute at O(ǫ) in dimensional regularization. At two loops, this requires a cancellation

involving one- and two-loop µ-integrals [10]. Such an interference has no analog, at least

through O(m2), in the massive regularization, and therefore we drop the µ-integrals in the

dimensionally-regularized integrands of refs. [10] and [42].

At two loops, both the MHV amplitude and the even part of the NMHV amplitude

can be parametrized by [42]

S(2) =
1

4
c1I

(1) + c2I
(2) +

1

2
c3I

(3) +
1

2
c4I

(4) + c5I
(5) + c6I

(6)

+
1

4

(

c7aP
−2I(7) + c7bP

−1I(7) + c7cI
(7)

)

+
1

2
c8I

(8) + c9I
(9)

+c10I
(10) + c11I

(11) +
1

2
c12I

(12) +
1

2
c13I

(13)

+
1

2
c14I

(14) +
1

2
c15I

(15) + c16I
(16) . (6.17)

The integrals I(i) that enter are depicted in figure 1. We recall that P denotes a rotation

of the external momenta by one unit. The coefficients ci are given by

c1 = s123
(

s12s45s234 + s23s56s345 c2 = 2s23s
2
12

+s123(s34s61 − s234s345)
)

c3 = s123(s345s123 − s45s12) c4 = s34s
2
123

c5 = s12(s234s123 − 2s23s56) c6 = −s61s12s123
c7a = s123(s234s345 − s34s61) c7b = −4s34s61s123
c7c = s123(s234s345 − s34s61) c8 = 2s12(s345s123 − s12s45)
c9 = s45s56s123 c10 = s56(2s12s45 − s123s345)
c11 = s61s56s123 c12 = s123(s345s123 − s12s45)
c13 = −s2123s61 c14 = 0

c15 = 0 c16 = 0

(6.18)
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p
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p
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p
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Figure 1. Two-loop integrals I(i) entering the two-loop six-point MHV and NMHV amplitudes.

The labels i are to the upper left of each graph. Solid internal lines indicate scalar propagators,

while numerator factors (if any) are shown below the graph. The arrow on the external line indicates

leg number 1. The figure is from ref. [42].

for the MHV case [10], and by

c1 = −s2123s34s61 + s2123s234s345 c2 = 2s212s23

−s123s234s12s45 − s123s345s23s56 +2s12s23s45s56
c3 = s123(s123s345 − s12s45) c4 = s2123s34

c5 = −s12s123s234 c6 = s61s12s123

c7a = −s123(s345s234 − s61s34) c7b = 2s123s34s61

c7c = −s123(s234s345 − s61s34) c8 = 0

c9 = s123s45s56 c10 = s56s123s345

c11 = −s56s61s123 c12 = −s123(s123s345−s12s45)
c13 = s2123s61 c14 = 2s234s123

c15 = 0 c16 = 2s12s34s123
(6.19)

for the NMHV case [42]. Here si,i+1 = xi,i+2 and si,i+1,i+2 = xi,i+3, with all indices

understood to be defined modulo 6.

Then we can write

M (2) =
1

16

∑

σ∈S1∪PS1∪P2S1

S
(2)
MHV +O(m2) , (6.20)

W
(2)
1 =

1

8

∑

σ∈S1

S
(2)
NMHV +O(m2) . (6.21)
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In refs. [10, 42], the dimensionally-regularized version of the above formulas was used to

study these amplitudes numerically. In particular, the dual conformal invariance of the

remainder and ratio functions was tested. The individual integrals are rather compli-

cated, especially the ones of double-pentagon type, and an analytic formula for them is

not known yet.

Let us discuss several strategies that might be used to simplify the calculation.

In ref. [20], the calculation ofM (2) in the massive regularization was simplified by going

from the above integral basis to a more convenient one. In particular, the complicated

double-pentagon integrals were replaced by other double-pentagon integrals (plus simpler

integrals) that are conceptually and practically easier to evaluate.

Another possibility is to exploit the fact that the ratio function is dual conformally

invariant, although the individual integrals contributing to it are not. This fact can be used

to simplify the expression for the ratio function, by taking limits that leave the cross-ratios

invariant, but simplify the individual integrals. This technique turned out to be very useful

in computing the Wilson loops dual to MHV amplitudes [15].

Here we use a trick that relies on the following observation. The ratio between the

coefficients c12 and c13 is exactly the same in the MHV and NMHV case — see eqs. (6.18)

and (6.19). There is still a small mismatch in those terms when comparing eqs. (6.20)

and (6.21), due to the different permutation sums. However, this mismatch disappears if

we choose a symmetrical kinematical configuration. We can choose, for example,

K = {x2i,i+2 = 1 , x2i,i+3 = 1/
√
u} , i = 1, 2, . . . , 6, (6.22)

which corresponds to setting all three cross-ratios equal to u. As we will see, this kinemat-

ical subspace is more than sufficient to fix the remaining ambiguities of the ansatz in the

preceding section.

For equal cross-ratios, taking into account the prefactors and different numbers of per-

mutations in eqs. (6.20) and (6.21), we see that the sum ofW
(2)
1 and 2

3 M
(2) not only cancels

the contributions from I(12) and I(13), but cancels or simplifies several other coefficients as

well. We can write

W
(2)
1 [K] = S

(2)
∗ −

2

3
M (2)[K] , (6.23)

where S
(2)
∗ is defined according to eq. (6.17), with the new coefficients

c∗i =

{

1, 2,
1− u
u3/2

,
1

u
,−1, 0,− 1√

u
,
1

u
− 1,

1√
u
, 1, 0, 0, 0,

1√
u
, 0,

1√
u

}

, (6.24)

and where we have combined c7 ≡ c7a + c7b + c7c, because the corresponding integrals

are equal at the symmetrical point (u, u, u). Given the known analytical result for M (2),

we only need to evaluate the integrals I(i) for i = 1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16 in order to

obtainW
(2)
1 [K]. We could even further simplify the latter integrals using a more convenient

integral basis [20, 29, 57], but this turns out not to be necessary for the present purpose.

Taking into account eq. (6.11), we have

V (2)[K] = S
(2)
∗ −

5

3
M (2)[K]−M (1)[K] V (1)[K] . (6.25)
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Let us collect the relevant formulas here, using in particular eqs. (C.10) and (C.11), and

letting L ≡ logm2:

V (1)[K] =
1

2
log2 u+

3

2
Li2(1− u)− ζ2 , (6.26)

M (1)[K] = −3

2
L2 +

π2

2
− 3

4
log2 u− 3

2
Li2 (1− u) , (6.27)

M (2)[K] = (logM)(2) +
1

2
(M (1)[K])2

=
3

2
ζ2L

2 − 3ζ3L+
7

4
ζ4 − ζ2F (1)[K] +R(2)

6 (u, u, u) +
1

2
(M (1)[K])2 , (6.28)

F (1)[K] =
π2

2
− 3

4
log2 u− 3

2
Li2 (1− u) . (6.29)

We wish to emphasize that all terms appearing on the right-hand side of eq. (6.25) have in-

frared divergences in the form of powers of L = log(m2), and that those terms must cancel in

the infrared-finite quantity V (2). This cancellation is a non-trivial check of our calculation.

The evaluation of the loop integrals proceeds in the standard way. We give a detailed

example in appendix D. We derived Mellin-Barnes representations for all integrals, and then

used the Mathematica code MBasymptotics.m [77–79] in order to perform the asymptotic

m2 → 0 limit. In this way we could verify the cancellation of the infrared divergent terms,

analytically at the L4, L3 level, and numerically at the L2, L level. The remaining finite L0

terms are given by at most four-fold Mellin Barnes integrals, which gives us a convenient

way of evaluating V (2)(u, u, u) numerically.

We can do better and use MBasymptotics.m another time in order to compute ana-

lytically the small u and large u limits of V (2)(u, u, u). Having in mind that we want to

fix the remaining undetermined coefficients of our ansatz from section 3, we go beyond the

logarithmic terms in the expansion and also keep power suppressed terms in u.

To promote these asymptotic limits back to a full function, we make the analog of

the ansatz of section 3, by reducing the result of section 5 to the case of all cross-ratios

equal. Hence we expect V (2)(u, u, u) to be given by a linear combination of R(2)(u, u, u)

and single-variable harmonic polylogarithms.

We can then compare the asymptotic limits we computed against the corresponding

expansions of our ansatz. In fact, when fitting a complete function against just a few

parameters it is highly non-trivial that we do find a solution. From comparing the first

terms in the small u and large u expansion (see appendix D for more details), we find

V (2)(u, u, u) = −4

3
R(2)

6 +
1

16
log4 u+

[

Hu
2 −

3

2
ζ2

]

log2 u−Hu
3 log u+

1

2
Hu

4 +
7

4
Hu

2,2

+
3

2

[

Hu
2,1 log u+Hu

3,1 +Hu
2,1,1 − 3 ζ2H

u
2

]

+
17

3
ζ4 . (6.30)

We also performed numerical checks of this expression at intermediate values of u. By

comparing eq. (6.30) for V (2)(u, u, u) ≡ V (u, u, u) with our ansatz (5.7) for v = u and

w = u, we find that the remaining twelve parameters in the joint ansatz for V (u, v, w) and

Ṽ (2)(u, v, w) are all fixed. (As mentioned in section 5, there is one additional constraint from
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the beyond-the-symbol spurious-pole constraint, which is compatible with this solution.)

The values of the parameters are,

{αX , α1, . . . , α9, c̃1, c̃2} =
{

1
8 ,

1
4 ,

3
8 ,−5

8 ,−1
4 ,

1
4 ,− 1

16 , 0,
1
8 ,−1, 1,−1

}

. (6.31)

We present the final form of the functions V and Ṽ in the next section.

7 The final formula for the two-loop ratio function

Now we insert the values of the twelve parameters that were fixed in the previous section

into our ansatz, and convert everything except Ω(2) and R(2)
6 into classical polylogarithms

whose arguments are simple, rational functions of u, v and w. The result is

V (u, v, w) = V A(u, v, w) + V A(w, v, u) + V B(u, v, w), (7.1)

where

V A(u, v, w) = −3

4
Li4

(

1− 1

u

)

− Li4(1− u) + log uLi3(1− u)

− 1

4
log

(uw

v

)

[

Li3

(

1− 1

u

)

+ 2Li3(1− u)
]

(7.2)

+
1

4
Li2(1− v)

[

Li2(1− u) + log u log v
]

+
1

8
Li2(1− u)

[

2Li2(1− u)− log2 v − log2w + 4 log v logw − 12 ζ2

]

,

and

V B(u, v, w) = −R(2)
6 (u, v, w)− 1

4
Ω(2)(w, u, v)

+
1

8
Li2(1− v)

[

Li2(1− v)− 2 log u logw − 8 ζ2

]

+
1

4
Li2(1− u) Li2(1− w) +

1

16
log2 v

(

log2 u+ log2w + 4 log u logw
)

− 1

24
log v log3(uw) +

1

96
log4(uw)− 1

16
log2 u log2w

+
ζ2
4

[

log2 v − 6
(

log v log(uw)− log u logw
)]

+ 5 ζ4 . (7.3)

The function Ω(2) can be evaluated as a simple one-dimensional integral over classical

polylogarithms with rational arguments, using eqs. (4.6) and (4.18) from section 4. The

function R(2)
6 is the two-loop remainder function. It can be expressed entirely in terms

of classical polylogarithms whose arguments involve square-root functions of the cross ra-

tios [16]. Alternatively, it can be expressed, using eq. (4.22), in terms of three cyclic

permutations of Ω(2), plus classical polylogarithms with rational arguments. It is clear

from eqs. (7.2) and (7.3) that V (u, v, w) is real in the positive octant, given that R(2)
6

and Ω(2) are.
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For the odd part we find, using αX = α8 =
1
8 ,

Ṽ (u, v, w) =
1

8
(ṼX + f̃) . (7.4)

This is exactly the linear combination of ṼX and f̃ (multiplied by an overall 1
8) for which

we derived a simple parametric integral formula in section 4.

We can give an alternative form of the final answer that involves both Ω(2) and the

double-pentagon integral with ‘mixed’ numerator, Ω̃(2) [57], where the latter integral is

evaluated in appendix E. Due to the respective symmetry and antisymmetry of V and Ṽ

under exchange of their first and third arguments, eq. (2.28), the NMHV ratio function is

entirely specified by V (u, v, w) + Ṽ (yu, yv, yw). We have

V + Ṽ = −1

2

[

Ω(2)(w, u, v) + Ω̃(2)(1/yw, 1/yu, 1/yv)
]

+ T (u, v, w) , (7.5)

where T (u, v, w) is implicitly defined by eqs. (4.22), (7.1) and (E.7). Explicitly it is given

by,

T (u, v, w) = TA(u, v, w) + TA(w, v, u) + TB(u, v, w) , (7.6)

where

TA(u, v, w) = −1

2
Li4

(

1− 1

u

)

− 3

2
Li4(1− u) +

1

2
Li4(u) +

1

12
log3 u log(1− u)

+ log
(uv

w

)

Li3(1− u) +
1

2
log

( v

w

)

Li3

(

1− 1

u

)

+
3

8
[Li2(1− u)]2

+
1

8

[

4Li2(1− u) + log2 u
]

Li2(1− v) +
1

8

[

6 log v logw

− 2 log u log
( v

w

)

− log2 v − log2w − 12 ζ2

]

Li2(1− u) , (7.7)

and

TB(u, v, w) = Li4

(

1− 1

v

)

+
1

2
Li4(1− v) +

1

2
Li4(v) +

1

12
log3 v log(1− v)

+
1

2
log v Li3

(

1− 1

v

)

+
1

8
[Li2(1− v)]2 +

1

2
Li2(1− u) Li2(1− w)

+
1

4

[

log(uw) log v − log u logw − 2 ζ2
] [

Li2(1− v)− 6 ζ2
]

− 1

48
log4

( u

w

)

+
1

16
log2 u log2w − 1

12
(log3 u+ log3w) log v

+
1

16
(log2 u+ log2w + 4 log u logw) log2 v − 1

24
log4 v

− ζ2
4
(log2 u+ log2w − log2 v)− ζ3

2
log(uvw)− 3 ζ4 . (7.8)

We see that T is given by sums of products of logarithms and polylogarithms with argu-

ments which are rational combinations of u, v, w. In other words, the most complicated

piece of V + Ṽ is captured by the two double-pentagon integrals on the right-hand side of

equation (7.5).
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Figure 2. Representation of Ṽ in terms of the finite, dual conformal loop integral Ω̃(2). This

integral is evaluated in appendix E. The sum corresponds to the right-hand side of eq. (7.9), which

also provides the proper overall normalization.

Moreover, the only term containing parity-odd pieces on the right-hand side of (7.5)

is Ω̃(2). We can easily project out the parity-even piece by taking a linear combination of

this integral minus the same integral rotated by three steps in the twistor variables. This

means that we have an extremely simple representation of the parity-odd function Ṽ in

terms of finite, dual conformal loop integrals (see figure 2),

Ṽ =
1

4

[

Ω̃(2)(yw, yu, yv)− Ω̃(2)(1/yw, 1/yu, 1/yv)
]

. (7.9)

The same double-pentagon integral with mixed numerator appears in the representation of

the NMHV loop integrand that was given in table 1 of ref. [57]. The latter integral contains

both an even and an odd part, although it is not immediately obvious how to separate the

two. For example, although the penta-box integrals appearing in the representation of

ref. [57] of that amplitude contain odd parts, it can be shown that the latter are only

O(m2) when the integrals are evaluated using a massive regulator [21]; see ref. [20].

We can perform a numerical check of our result for the (parity-even) × (parity-even)

part. Using the values obtained for Ω(2) in eqs. (4.19), (4.20) and (4.21), we find that

[

V +R(2)
6

] (

16
5 ,

112
85 ,

28
17

)

= 14.428955293631618492 , (7.10)
[

V +R(2)
6

] (

112
85 ,

28
17 ,

16
5

)

= 12.613874875030471932 , (7.11)
[

V +R(2)
6

] (

28
17 ,

16
5 ,

112
85

)

= 11.705797993389994692 , (7.12)

in agreement with the values given in table I of ref. [42], to the numerical accuracy given

there. For reference, we also give the value of R(2)
6 , which is the same for all three points

due to its symmetry,

R(2)
6

(

16
5 ,

112
85 ,

28
17

)

= −3.655432869447587985 . (7.13)

We also give the numerical values of the parity-odd function at these three points.

Here we have to specify the y values, or equivalently the branch of the square root of ∆

that we consider. At the three points, ∆ is negative, ∆ = −1.1049134948096. We take the

positive imaginary branch of the square root,
√
∆ = 1.0511486549530 i in defining the y
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values through eq. (2.17). We then evaluate eqs. (4.33) and (7.4) to obtain,

Ṽ
(

16
5 ,

112
85 ,

28
17

)

= 0.09053803091646201664 i , (7.14)

Ṽ
(

112
85 ,

28
17 ,

16
5

)

= −0.12117656112226985895 i , (7.15)

Ṽ
(

28
17 ,

16
5 ,

112
85

)

= 0.03063853020580784231 i . (7.16)

Note that these three values sum to zero.

In fact, although it is not apparent from the integral form (4.33), for general kinematics

the function Ṽ obeys

Ṽ (yu, yv, yw) + Ṽ (yv, yw, yu) + Ṽ (yw, yu, yv) = 0 . (7.17)

This relation is a consequence of our ansatz and the symmetry condition (2.28). Given this

symmetry condition, eq. (7.17) means that the totally antisymmetric part of Ṽ vanishes.

Even if there had existed functions within our ansatz with a totally antisymmetric part,

we could have removed them simply by noting that they never contribute to the ratio

function (2.27), due to the condition (2.14).

In an auxiliary plain text file accompanying this article, we provide the degree-four

symbols for the functions V , Ṽ , Ω(2), Ω̃(2), T and Y . In these files, a term a⊗ b⊗ c⊗ d is

written as SB(a, b, c, d).

8 Conclusions and outlook

In this paper we have obtained the full analytic result for the two-loop ratio function

in planar N = 4 super Yang-Mills theory. Our method assumed the existence of two

pure functions, V and Ṽ , characterizing the ratio function, and was based on making an

ansatz for the letters entering their symbols. We then further restricted the ansatz by

imposing physical constraints, such as the behaviour in collinear and spurious regimes, and

constraints coming from the operator product expansion of Wilson loops, leaving only a

small number of undetermined parameters. The remaining parameters were fixed by an

analytic computation of the loop integrals that contribute to the ratio function in particular

kinematical regions.

We analysed the constraints in the collinear and spurious pole limits. It is interesting

that the spurious pole constraint involves both the (parity-even) × (parity-even) and the

(parity-odd) × (parity-odd) part of the ratio function. We found that, within our ansatz,

the (parity-odd) × (parity-odd) part is uniquely fixed by the (parity-even) × (parity-even)

part. In particular, it is necessarily non-zero.

We were able to express the ratio function in terms of sums of products of classical

polylogarithms of rational arguments, plus two relatively simple new functions. The first is

the parity-even double-pentagon integral Ω(2). The second is a new function Ṽ describing

the parity-odd sector, but it is also related to the parity-odd part of a second double-

pentagon integral, Ω̃(2). Neither of these two additional functions can be expressed in

terms of classical polylogarithms; however, we have provided simple parametric integral

formulas for them, based on the differential equations that the integrals obey. We have
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checked our result for the (parity-even) × (parity-even) part of the ratio function by an

analytic two-loop computation (in a special kinematical regime) performed in the present

paper, as well as against numerical values in the literature.

Let us comment on the class of functions that can appear within our ansatz. We

considered symbols that are built from the set of nine letters {u, v, w, 1 − u, 1 − v, 1 −
w, yu, yv, yw}, with the physical constraint that the first entry should be drawn from the

set {u, v, w} only, to exclude non-physical branch cuts. At degrees 1, 2, 3 and 4 there are 3,

9, 25 and 69 integrable parity-even symbols of this kind. At degree 3 and 4 there are also

1 and 6 parity-odd integrable symbols. respectively. As a byproduct of our analysis, we

have a complete basis of functions corresponding to the parity-even symbols through degree

four, without imposing any symmetries or collinear or spurious pole constraints. Three of

the degree-four functions are given by Ω(2) in its three orientations, while the remaining

functions are simple sums of products of single-variable harmonic polylogarithms, such as

H0,1,0,1(1 − u). The labels and the argument are chosen such that only a physical branch

cut starting from u = 0 is present. In general the labels can be any combination of zeros

and ones, provided that the last label is 1. The unique parity-odd function at degree three

is just the (rescaled) six-dimensional hexagon integral Φ̃6, whose relevance for scattering

amplitudes inN = 4 super-Yang-Mills theory was suggested earlier [59]. The six parity-odd

functions at degree four are the three functions Φ̃6 log u, Φ̃6 log v and Φ̃6 logw; two more

functions are given by Ṽ in two orientations (which is also described by the parity-odd

part of the two-loop mixed hexagon Ω̃(2)); and there is one further function.

Beyond two loops (i.e. for symbols of degree higher than four) new functions can

appear, as in the three-loop MHV remainder function [22]. It would be very interesting to

find representations for them, analogous to the simple parametric integral representations

obtained in this paper.

The ansatz we made for the symbol was motivated by explicit results for loop ampli-

tudes [16, 22] and loop integrals [58, 59]. Another motivation comes from thinking in terms

of twistor-space variables. Our ansatz implies that the letters of the symbol factorise into

four-brackets of momentum twistors. This seems natural, because for six points (and hence

six twistors describing the scattering data) intersections of lines and planes in twistor space

always factorise into twistor four-brackets. At any rate, it would be very interesting if one

could prove or disprove our ansatz for the six-point remainder function and ratio function

at an arbitrary number of loops. If the ansatz is valid to all loop orders for six-point am-

plitudes in N = 4 super Yang-Mills theory, then it is an extremely powerful constraint on

the S matrix of that theory.
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A Pure functions and symbols

We define a pure function of degree (or weight) k recursively, by demanding that its dif-

ferential satisfies

d f (k) =
∑

r

f (k−1)
r d log φr . (A.1)

The sum over r is finite and φr are algebraic functions. This recursive definition is for

all positive k; the only degree zero pure functions are constants. The definition (A.1)

includes logarithms and classical polylogarithms, as well as other iterated integrals, such

as harmonic polylogarithms of one [70] or more [72, 80–82] variables.

The symbol [17–19] S(f) of a pure function f is defined recursively with respect

to eq. (A.1),

S(f (k)) =
∑

r

S(f (k−1)
r )⊗ φr . (A.2)

If we continue this process until we reach degree 0, we find that S(f (k)) is an element of

the k-fold tensor product of the space of algebraic functions,

S(f (k)) =
∑

~α

φα1 ⊗ . . .⊗ φαk
, (A.3)

where ~α ≡ {α1, . . . , αk}. The symbol of a function loses information about which logarith-

mic branch the function is on. It also does not detect functions that are transcendental

constants multiplied by pure functions of lower degree; such functions have zero symbol.

The symbol therefore corresponds to an equivalence class of functions that differ in these as-

pects. Nevertheless, the symbol is extremely useful, because complicated identities between

transcendental functions defined by iterated integrals become simple algebraic identities.

If a symbol can be expressed as a sum of terms, and all entries in each term belong

to a given set of variables, then we say that the symbol can be factorised in terms of that

set of variables. In this paper we have assumed that the pure functions associated with

the NMHV six-point ratio function can be factorised in terms of the set (3.1). From the

definition of the symbol, a term containing an entry which is a product can be split into

the sum of two terms, according to

. . .⊗ φ1φ2 ⊗ . . . = . . .⊗ φ1 ⊗ . . . + . . .⊗ φ2 ⊗ . . . . (A.4)

Performing this factorisation is usually necessary to identify all algebraic relations between

terms. It is often necessary to perform the step again after taking a kinematic limit, because

the algebraic relations in the limit are different than for generic kinematics.

The elements of the symbol are not all independent, but are related by the integrability

condition d2f (k) = 0 for any function f (k). The integrability relations can be described

simply: Pick two adjacent slots in the symbol φαi
⊗ φαi+1 and replace the corresponding

elements by the wedge product d log φαi
∧d log φαi+1 in every term. The resulting expression

must vanish.

The symbol also makes clear the locations of the discontinuities of the function. If

S(f (k)) is given by eq. (A.3), then the degree k function f (k) has a branch cut starting at
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φα1 = 0. The discontinuity across this branch cut, denoted by ∆φα1
f (k), is also a pure

function, of degree (k− 1). Its symbol is found by clipping the first element off the symbol

for f (k):

S(∆φα1
f (k)) =

∑

~α

φα2 ⊗ . . .⊗ φαk
. (A.5)

It is instructive to check, for example, the vanishing of the double v discontinuity for the fi
functions in eq. (3.7), by inspecting their symbols. Using S(Hv

2 ) = −v ⊗ (1− v) is enough
to show that f1 through f4 obey this relation. Using S(2Hv

2,1+log v Hv
2 ) = −v⊗ (1−v)⊗v

and S(Hv
2,2) = v ⊗ (1− v)⊗ v ⊗ (1− v) is enough to establish it for f5, and so on.

In general, taking discontinuities commutes with taking derivatives, and both oper-

ations can be carried out at symbol level. These facts make it straightforward to verify,

starting from eq. (3.6), that the double v discontinuity of VX/(2356) is annihilated by the

operator D defined in eqs. (3.3) and (3.4).

B Details of the collinear limit

We give here beyond-the-symbol completions of the functions VX , f1, . . . , f8 obeying the

collinear limit constraint. We denote the completed functions by FX = VX+V̂X or Fi = fi+

f̂i, where the fi were given already in the main text. The collinearly-consistent completions

of the functions VX and f1, . . . , f7 are simple to calculate. We find that we can choose

V̂X =
ζ2
30

[

15 (log2 u+ log2w) + 7 log(uw) log v − 67 log u logw + 75 log2 v

− 16
(

Li2(1− u) + Li2(1− w)
)]

− 3 ζ3 log(uvw) , (B.1)

f̂1 =
ζ2
3

[

log(uw) log v − log u logw − Li2(1− u)− Li2(1− w)
]

, (B.2)

f̂2 =
ζ2
2

[

log2 u+ log2w + 4 log u logw + log2 v
]

+ ζ3 log(uvw) , (B.3)

f̂3 = ζ2

[

log(uw) log v − log u logw
]

, (B.4)

f̂4 = ζ2

[

log2(uw) + log2 v
]

, (B.5)

f̂5 =
ζ2
15

[

2 log(uw) log v − 2 log u logw − 11
(

Li2(1− u) + Li2(1− w)
)]

, (B.6)

f̂6 = ζ2

[

log(uw) log v − log u logw + 2
(

Li2(1− u) + Li2(1− w)
)]

+ 2ζ3 log(uvw) , (B.7)

f̂7 =
2

5
ζ2

[

4 log(uw) log v − 9 log u logw + 8
(

Li2(1−u) + Li2(1−w)
)]

+ ζ3 log(uvw) .

(B.8)

To define f̂8, the limit w → 0 of Ω(2)(w, u, 1 − u) is required. Analyzing the symbol of

Ω(2)(w, u, 1− u), one expects the following behavior as w → 0,

lim
w→0

Ω(2)(w, u, 1− u) = log2w q2(u) + logw q3(u) + q4(u) +O(w) . (B.9)

From the symbol of Ω(2) we can determine the symbol of the qi(u). Therefore, the only

ambiguities to be fixed are beyond-the-symbol terms in the qi, for which we can make an
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ansatz. Then, we fix the latter by comparing against the asymptotic w → 0 limit of a

Mellin-Barnes representation of Ω(2). We find,

q2(u) =
1

4
log2 u+

1

2
Li2(1− u) , (B.10)

q3(u) = −Li2(1− u)
(

log u+ log(1− u)
)

− log2 u log(1− u) + ζ2 log u

+ Li3(1− u)− Li3(u) + ζ3 , (B.11)

q4(u) =
1

2
log3 u log(1− u) + 3

4
log2 u log2(1− u)

+
1

2

[

log2 u+ 4 log u log(1− u) + 2 ζ2

]

Li2(1− u) +
1

2
[Li2(1− u)]2

+ Li3(1− u)
(

log(1− u)− log u
)

+ log uLi3(u)− 3Li4(1− u)− Li4(u)

− 3S2,2(u) + 3 ζ3 log u+
7

4
ζ4 . (B.12)

Here S2,2(u) = H0,0,1,1(u) is the Nielsen polylogarithm.

The other limit that is needed in eq. (2.38) can be obtained by the symmetry of Ω(2)

in the first two entries,

Ω(2)(1−u,w, u) = Ω(2)(w, 1−u, u) = log2w q2(1−u) + logw q3(1−u) + q4(1−u) . (B.13)

Using these limits, we can determine a correction to f8 such that f8+ f̂8 satisfies eq. (2.38),

f̂8 =
ζ2
3

[

log(uw) log v − log u logw − Li2(1− u)− Li2(1− w)
]

+ ζ3 log(uvw) . (B.14)

We found the following identity helpful,

0 = S2,2(u) + S2,2(1− u) + log(1− u)Li3(u) + log uLi3(1− u) +
1

4
log2 u log2(1− u)

−ζ2 log u log(1− u)− ζ3
(

log u+ log(1− u)
)

− ζ4
4
. (B.15)

We also have

f̂9 = 0 , (B.16)

because f9 = R(2)
6 vanishes in all collinear limits.

C One-loop integrals in massive regularization

All integrals in our paper are given in the mostly-plus metric, so that the distances x2ij are

positive in the Euclidean region.

The integrals appearing in the one-loop MHV and NMHV amplitudes are

I1m =

∫

d4xj
iπ2

1

(x21j +m2)(x24j +m2)(x25j +m2)(x26j +m2)
, (C.1)

I2me =

∫

d4xj
iπ2

1

(x26j +m2)(x21j +m2)(x23j +m2)(x24j +m2)
, (C.2)

I2mh =

∫

d4xj
iπ2

1

(x26j +m2)(x21j +m2)(x22j +m2)(x24j +m2)
, (C.3)
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Figure 3. One-loop box integrals appearing in MHV and NMHV amplitudes.

where we recall that x2i,i+1 = 0 with indices defined modulo 6, such that in particular

x261 = 0. See figure 3. It is convenient to define the dimensionless functions,

F 1m = x246x
2
15I

1m , (C.4)

F 2me = (x213x
2
46 − x214x236)I2me , (C.5)

F 2mh = x214x
2
26I

2mh . (C.6)

They are given by

F 1m = log2
m2

x246
+ log2

m2

x215
− log2

m2

x214
− log2

x215
x246
− π2

3

−2Li2
(

1− x214
x215

)

− 2Li2

(

1− x214
x246

)

+O(m2) , (C.7)

F 2me = − log2
m2

x214
− log2

m2

x236
+ log2

m2

x213
+ log2

m2

x246
+ log2

x214
x236

+2Li2

(

1− x213
x214

)

+ 2Li2

(

1− x213
x236

)

+ 2Li2

(

1− x246
x214

)

+2Li2

(

1− x246
x236

)

− 2Li2

(

1− x213x
2
46

x214x
2
36

)

+O(m2) , (C.8)

and

F 2mh =
1

2
log2

(

m2x224x
2
46

(x214)
2x226

)

− log2
x224
x214
− log

x246
x214

−2Li2
(

1− x224
x214

)

− 2Li2

(

1− x246
x214

)

+O(m2) . (C.9)

In the symmetric kinematics (6.22), and neglecting the O(m2) terms, we have,

F 1m = L2 − 4Li2

(

1− 1√
u

)

− 2 ζ2 , (C.10)

F 2me = 8Li2(1−
√
u)− 2Li2(1− u) , (C.11)

F 2mh = 1
2L

2 + L log u− 4Li2(1−
√
u) . (C.12)
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D Description of the two-loop computation

Let us illustrate the analytic computation of the loop integrals by using the pentabox

integral I(10) of figure 1. It is defined by

I(10) =

∫

d4xid
4xj

(iπ2)2
(x21j +m2)

(x26i +m2)(x21i +m2)(x22i +m2)x2ij

× 1

(x22j +m2)(x23j +m2)(x24j +m2)(x25j +m2)
, (D.1)

where the external dual coordinates are in the order x2, x3, x4, x5, x6, x1, reading counter-

clockwise from the external momentum k1 in the figure. Also, xi is the dual coordinate for

the box, and xj is the one for the pentagon. We remind the reader that the specific mass as-

signment in eq. (D.1), in particular the fact that the internal propagator is massless, follows

from extended dual conformal symmetry. See refs. [21] and [73] for further explanation.

We proceed by deriving a Mellin-Barnes (MB) representation for this integral. This is

done by first introducing Feynman parameters in order to carry out the four-dimensional

loop integrations. Subsequently, MB parameters are introduced to factorize the Feynman

denominator, after which the Feynman integrals can be done trivially. Experience shows

that it is convenient to introduce the MB parameters loop by loop [83]. Very detailed

derivations of MB representations for integrals like I(10) in eq. (D.1) can be found in

appendix A of ref. [73].

In the case of integral I(10), the numerator factor (x21j +m2) deserves a comment. We

choose to treat the latter as an inverse propagator. In doing so, some of the formulas we

need to use, such as the Feynman parameter formula, develop spurious divergences. In or-

der to be able to still use these formulas, we work with the analytically continued integral

I(10)(δ), where the numerator factor is replaced by (x21j+m
2)1−2δ and the integration mea-

sure is changed to d4+2δxj . We will do our computation for δ 6= 0, where all manipulations

are allowed, and take the δ → 0 limit later. The MB representation we find in this way is

I(10)(δ) = (m2)−3−δ

∫

dzi
(2πi)12

Γ(−z1)





12
∏

j=3

Γ(−zj)



Γ(1 + z1)Γ(1 + z1 + z2)

×Γ(z1 − z2 − z3)Γ(1 + z3)Γ(1 + z2 + z3)Γ(2 + z10 + z11 + z12 + z2 + z3)

×Γ(z12 − z2 + z5 + z6)Γ(1 + z4 + z5 + z7)Γ(1 + z10 + z6 + z8)

×Γ(1 + z11 + z4 + z9)Γ(−1 + 2δ − z3 + z7 + z8 + z9)Γ(2 + δ + z4,12)

×1/
[

Γ(2 + 2z10)Γ(−1 + 2δ − z3)Γ(2 + z2 + z3)Γ
(

2(2 + δ + z4,12)
)]

×
(

x213
m2

)z7 (x214
m2

)z8 (x215
m2

)z9 (x224
m2

)z10 (x225
m2

)z11 (x226
m2

)z1+z12

×
(

x235
m2

)z4 (x236
m2

)z5 (x246
m2

)z6

, (D.2)

where z4,12 =
∑12

j=4 zj . Here the integrations go from −i∞ to i∞ in the complex plane.

The real part of the zi must be chosen such that the arguments of all Γ functions have

positive real part. One finds that this is only possible for δ 6= 0.
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The limit δ → 0 is very similar to the regulator limit in dimensional regularization,

with the difference that here we expect a finite result, because the original integral was

well-defined for δ = 0. In order to take the limit, one first has to deform some of the zi in-

tegration contours [83]. This procedure has been implemented in the MB.m Mathematica

code [77–79].

Having removed the auxiliary parameter δ, we have a valid MB representation for I(10).

We can now perform the regulator limit m2 → 0. This again involves deforming the inte-

gration contours, such that the real part of the exponent of m2 becomes positive, at which

point a Taylor expansion inm2 is possible. We neglect power-suppressed terms inm2, since

we are only interested in the logarithmic infrared divergences and in the finite part. In de-

forming the contours, one picks up residues from poles of the Γ functions, which can produce

powers of logm2. The resulting lower-dimensional integrals are treated in the same way.

In fact, the leading divergent log4m2 and log3m2 terms are obtained in this way

without any remaining MB integrations. For example,

I(10) =
5

8

1

x224x
2
26x

2
35

log4m2 +O(log3m2) . (D.3)

All logim2 terms with i > 0 eventually cancel in the definition of the remainder function.

We will therefore focus on the finite terms as m2 → 0. The latter are obtained as at most

four-fold MB integrals.

In the main text, we have considered the special kinematical regime K in eq. (6.22), in

which all three cross-ratios are equal to u. It is easy to use the Mathematica codes [77–79]

in order to compute the u → 0 or u → ∞ limits of I(10)[K] analytically. For example, we

find, in the small u limit,

lim
u→0

I(10)[K]|log0 m2 =
3

32
log4 u

+ log3 u

[

5

12
u1/2 + u+

5

36
u3/2 +

3

2
u2 +

1

12
u5/2 +

10

3
u3 +O(u7/2)

]

+O(log2 u) . (D.4)

It is straightforward to obtain higher orders in these expansions, either analytically or

numerically to high precision, but we refrain from reproducing them here to save space.

Computing the asymptotic expansions of all integrals contributing to S
(2)
∗ in this way,

we obtain

lim
u→0

S
(2)
∗ |log0 m2 =

5

32
log4 u

+ log3 u

[

3

4
u+

7

8
u2 +

7

4
u3 +

71

16
u4 +

253

20
u5 +O(u6)

]

+ log2 u

[

−π
2

12
+

7

4
u2 +

19

4
u3 +

653

48
u4 +

995

24
u5 +O(u6)

]

+O(log u) , (D.5)
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in the small u limit, and

lim
u→∞

S
(2)
∗ |log0 m2 =

1

32
log4 u

− log3 u

[

1

24
u−1 +

1

48
u−2 +

1

72
u−3 +

1

96
u−4 +

1

120
u−5 +O(u−6)

]

+ log2 u

[

π2

24
+

1

16
u−1 − 1

64
u−2 − 17

1440
u−3 − 67

8960
u−4 − 83

16800
u−5 +O(u−6)

]

+O(log u) , (D.6)

in the large u limit. We remark that the half-integer powers appearing in eq. (D.4) have

cancelled in the sum over all integrals contributing to S
(2)
∗ . Higher-order terms in the

expansions can be obtained numerically to great accuracy, but are not displayed for brevity.

Comparing eqs. (D.5) and (D.6) to eq. (6.25), we can fix V (u, u, u)+ 5
3 R

(2)
6 (u, u, u), or

equivalently V (u, u, u), within our ansatz. In this way we arrive at eq. (6.30) in the main

text.

We can further test eq. (6.30) by using our four-fold MB representation for V (u, u, u)

in order to compute some numerical values at intermediate values of u. For example, we

find

V
(

1
4 ,

1
4 ,

1
4

)

= −3.49796± 10−4 , (D.7)

V (12, 12, 12) = 35.56433± 10−5 , (D.8)

using our MB representation of V (u, u, u), and

V
(

1
4 ,

1
4 ,

1
4

)

= −3.497905588766739 , (D.9)

V (12, 12, 12) = 35.564326922499499 , (D.10)

using eq. (6.30).

We also note that eqs. (D.7) and (D.9) agree, within the error bounds, with the nu-

merical value given in ref. [42], namely VKRV

(

1
4 ,

1
4 ,

1
4

)

= −3.502± 0.002.

E Computation of the mixed numerator integral Ω̃(2)

Differential equation for Ω̃(2). We consider the double-pentagon integral with mixed

numerator [57],

Ω̃(2)(yu, yv, yw) =

∫

d4ZABd
4ZCD

(iπ2)2
(4612)(2346)(AB13)

(AB61)(AB12)(AB23)(AB34)

× (CD(561) ∩ (345))

(ABCD)(CD34)(CD45)(CD56)(CD61)
, (E.1)

where (CD(561) ∩ (345)) = (C561)(D345)− (D561)(C345).

Loop integrals of this type satisfy simple second-order differential equations [58]. The

key point is the presence of pentagon subintegrals that are also present in Ω̃(2). Following

ref. [58], it is easy to see that the latter integral satisfies the differential equation

Z1 · ∂Z2Z6 · ∂Z1

1

(2346)
Ω̃(2) =

(3461)

(1234)(2346)
Ω̃(1) , (E.2)
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where the (rescaled) one-loop hexagon integral with mixed numerator is defined as

Ω̃(1)(yu, yv, yw) =
(4612)(2346)

(3461)

∫

d4ZAB

iπ2
(AB13)(AB(345) ∩ (561))

(AB61)(AB12)(AB23)(AB34)(AB45)(AB56)
.

(E.3)

It is given explicitly by [29]

Ω̃(1)(yu, yv, yw) = log u log v − yv(1− yu)
1− yuyv

log v logw − 1− yv
1− yuyv

log u logw . (E.4)

We note that the integrals Ω̃(2) and Ω̃(1) are left invariant by the transformation

Z1 ←→ Z3 , Z4 ←→ Z6 , (E.5)

which implies

u←→ v , yu −→ 1/yv , yv −→ 1/yu , yw −→ 1/yw . (E.6)

We make the ansatz that Ω̃(2) is a pure function, whose symbol’s entries are drawn from

the set of nine letters {u, v, w, 1 − u, 1 − v, 1 − w, yu, yv, yw}. Within this ansatz, we find

that eq. (E.2) has a unique solution obeying the symmetry condition (E.6), integrability,

and the first entry condition. The solution involves parity-even as well as parity-odd terms.

Having determined the symbol of Ω̃(2) from the differential equation (E.2), we now

promote it to a function. We find that we can express it as5

Ω̃(2)(yu, yv, yw) =
1

2

[

Ω(2)(v, w, u) + Ω(2)(w, u, v)
]

+ Y (u, v, w) + 2 Ṽ (yv, yw, yu) , (E.7)

with

Y (u, v, w) = Y A(u, v, w) + Y A(v, u, w)− Y B(u, v, w) , (E.8)

where

Y A(u, v, w) =
1

2

{

4Li4(u)− Li4

(

1− 1

u

)

+ log u

[

2Li3(1− u) + 3Li3

(

1− 1

u

)]

+
2

3
log3 u log(1− u)− 1

2

[

Li2

(

1− 1

u

)]2

+
1

2
log2 uLi2

(

1− 1

u

)

−1

6
log4 u− 2 r(w) + 3Li4

(

1− 1

w

)

− log
( v

w

)

[

2Li3(1− u) + Li3

(

1− 1

u

)

− log uLi2(1− u)−
1

6
log3 u

]

+
1

2
log2

( v

w

)

Li2

(

1− 1

u

)}

, (E.9)

5To avoid confusion, we emphasize that Ṽ (yv, yw, yu) differs from P Ṽ (yu, yv, yw), where P denotes a

cyclic shift of all twistors by one unit. In fact, we have P {u, v, w, yu, yv, yw} = {v, w, u, 1/yv, 1/yw, 1/yu},

and hence P Ṽ (yu, yv, yw) = −Ṽ (yv, yw, yu).
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Figure 4. The integrals Ω(2) and −Ω̃(2) have the same soft limit p5 → 0 at the integrand level.

This property allows us to formulate the boundary condition (E.14).

with r(w) defined in eq. (4.24), and where the beyond-the-symbol ambiguity for a function

symmetric in u and v is given by

Y B(u, v, w) = ζ2
[

c1(Li2(1− u) + Li2(1− v)) + c2 Li2(1− w) + c3
(

log2 u+ log2 v
)

+ c4 log
2w + c5 log u log v + c6 log(uv) logw

]

+ ζ3
[

c7 log(uv) + c8 logw
]

+ c9 ζ4 . (E.10)

We can ask how many of the ci can be determined by the differential equation (E.2). Using

the variables from appendix F it is not hard to verify that the only functions appearing

in Y B(u, v, w) that are annihilated by the differential operator are ζ4 and ζ3 log(w/(uv)).

Therefore, 7 out of the 9 coefficients ci can be determined by plugging eq. (E.7) back

into eq. (E.2).

Indeed, using the parametric integrals derived in the main text for Ω(2) and Ṽ , we can

easily verify the differential equation (E.2) numerically. We find

c1 = 1 , c2 = −2 , c3 = 3/2 , c4 = −1 , c5 = 0 , c6 = 0 , c7 = 2− c8 . (E.11)

We will fix the remaining two free parameters c8 and c9 from boundary conditions that we

discuss presently.

Boundary conditions for Ω̃(2). Let us discuss appropriate boundary conditions for

Ω̃(2). Here we can use our previous experience with the integral Ω(2), which at the integrand

level differs from Ω̃(2) only by the numerator in one of the pentagon subintegrals. In fact,

the numerators of the two integrals are given by

N(Ω̃(2)) = (4612)(2346)(AB13)(CD(561) ∩ (345)) , (E.12)

N(Ω(2)) = (2345)(5612)(3461)(AB13)(CD46) . (E.13)

Previously it was observed that the integrands of these two integrals reduce to the integrand

of a penta-box integral in the soft limit p5 → 0, or equivalently Z5 → αZ4 + βZ6, as

shown in figure 4 [20]. Unfortunately, the penta-box integral is infrared divergent, so that

the limit is more subtle at the level of integrals. However, we can use the fact that the

numerator N(Ω̃(2)) + N(Ω(2)) vanishes linearly in the soft limit. Because the explicitly
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known penta-box integral [20] only has logarithmic divergences, we expect the following

boundary condition to hold,

lim
τ→0

(Ω̃(2) +Ω(2))(ξ1τ, ξ2τ, 1− τ) = 0 . (E.14)

Here we have parametrized the soft limit for the cross-ratios u, v, w by τ → 0.6 We have

verified equation (E.14) at the symbol level. In the following we will assume it holds also

at the level of functions.

A related observation is that Ω(2) vanishes in cyclically related soft limits,

lim
τ→0

Ω(2)(1− τ, ξ1τ, ξ2τ) = 0 . (E.15)

This vanishing can in fact be understood as a property of the pentagon sub-integral. Since

Ω̃(2) contains the same sub-integral as Ω(2), we expect the same boundary condition to

hold, i.e.

lim
τ→0

Ω̃(2)(1− τ, ξ1τ, ξ2τ) = 0 . (E.16)

We find that imposing the two boundary conditions (E.14) and (E.16) fixes all but one

of the beyond-the-symbol ambiguities in eq. (E.10),

c1=1−c9/5 , c2=−c9/5−2 , c3=3/2 , c4=−1 , c5=0 , c6=0 , c7=2 , c8=0 . (E.17)

Comparing to eq. (E.11), we see that the two solutions are compatible with each other,

which is a non-trivial cross check. Moreover, taken together they uniquely fix all the

beyond-the-symbol parameters, and we have finally,

c1=1 , c2=−2 , c3=3/2 , c4=−1 , c5 = 0 , c6 = 0 , c7 = 2 , c8 = 0 , c9 = 0 . (E.18)

F Useful variables

In this paper, we found it useful to work with several sets of variables. We can express the

letters appearing in our symbols in terms of four-brackets of twistors,

u =
(6123)(3456)

(6134)(2356)
, v =

(1234)(4561)

(1245)(3461)
, w =

(2345)(5612)

(2356)(4512)
, (F.1)

1−u =
(1356)(2346)

(1346)(2356)
, 1−v =

(2461)(3451)

(2451)(3461)
, 1−w =

(3512)(4562)

(3562)(4512)
, (F.2)

yu =
(2361)(2456)(3451)

(2351)(2461)(3456)
, yv =

(3462)(3512)(4561)

(3412)(3561)(4562)
, yw =

(1246)(1356)(2345)

(1256)(1345)(2346)
.

(F.3)

6There is a slight abuse of notation here since, strictly speaking, Ω̃(2) should be thought of as a function

of the y variables. However, in the soft limit, its parity-odd piece vanishes, justifying the use of the u

variables.
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Since the twistors are redundant, it can sometimes be useful to have a particular para-

metrization for them, e.g.

Z1 =(1, 1, γ, 1) , Z2 = (1, 0, 0, 0) , Z3 = (0, 1, 0, 0) ,

Z4 =(0, 0, 1, 0) , Z5 = (0, 0, 0, 1) , Z6 = (1, α, 1, β) , (F.4)

with

α =
1− yuyvyw
1− yvyw

, β =
1− yuyvyw
1− yw

, γ =
1− yw
1− yuyw

. (F.5)

Although the y variables are constructed using square roots of the original cross ratios u,

v and w, the cross ratios themselves are rational combinations of the variables yu, yv and

yw. The explicit relations are,

u =
yu(1−yv)(1−yw)
(1−ywyu)(1−yuyv)

, v =
yv(1−yw)(1−yu)
(1−yuyv)(1−yvyw)

, w =
yw(1−yu)(1−yv)

(1−yvyw)(1−ywyu)
, (F.6)

1−u =
(1− yu)(1− yuyvyw)
(1− ywyu)(1− yuyv)

, 1−v =
(1− yv)(1− yuyvyw)
(1− yuyv)(1− yvyw)

, (F.7)

1−w =
(1− yw)(1− yuyvyw)
(1− yvyw)(1− ywyu)

,
√
∆ =

(1− yu)(1− yv)(1− yw)(1− yuyvyw)
(1− yuyv)(1− yvyw)(1− ywyu)

, (F.8)

where we have picked a particular branch of
√
∆.
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