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Abstract

We present a non-perturbative study of the equation of state in the deconfined phase of
Yang-Mills theories in D = 2 + 1 dimensions. We introduce a holographic model, based on
the improved holographic QCD model, from which we derive a non-trivial relation between
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the order of the deconfinement phase transition and the behavior of the trace of the energy-
momentum tensor as a function of the temperature T . We compare the theoretical predictions
of this holographic model with a new set of high-precision numerical results from lattice
simulations of SU(N) theories with N = 2, 3, 4, 5 and 6 colors. The latter reveal that,
similarly to the D = 3 + 1 case, the bulk equilibrium thermodynamic quantities (pressure,
trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly
perfect proportionality to the number of gluons, and can be successfully compared with the
holographic predictions in a broad range of temperatures. Finally, we also show that, again
similarly to the D = 3 + 1 case, the trace of the energy-momentum tensor appears to be
proportional to T 2 in a wide temperature range, starting from approximately 1.2 Tc, where
Tc denotes the critical deconfinement temperature.

PACS numbers: 11.10.Wx, 11.15.Ha, 11.15.Pg, 11.25.Tq, 12.38.Aw, 12.38.Gc, 12.38.Mh
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1 Introduction and motivation

The phase diagram of strongly interacting matter has been studied in an extensive experimental
program since the 1980’s. During the last decade, the main heavy ion collision facilities have
provided convincing evidence for the existence of a new state of matter, which is qualitatively
different from usual hadronic matter, and appears to behave as a nearly ideal fluid [1]. While
these results confirm the intuitive theoretical expectation that, at high temperatures or densi-
ties, asymptotic freedom leads to deconfinement, i.e. to the liberation of colored particles from
hadrons [2], they also reveal that the deconfined plasma is quite different from a gas of nearly
free quarks and gluons, and should be rather described as a strongly coupled fluid. This makes
the theoretical description of the equation of state of this system at temperatures close to de-
confinement particularly challenging: weak-coupling computations [3] have to be pushed to high
orders, but the convergence of perturbative expansions in thermal gauge theories is generally
poor, and the evaluation of high-order terms is complicated by the appearence of severe infrared
(IR) divergences [4]. The latter reveal the mathematically non-trivial structure of perturba-
tive expansions in finite-temperature QCD (with terms which are non-analytical in αs), and are
related to the existence of an ultra-soft, chromomagnetic energy scale, which retains an intrin-
sically non-perturbative nature, and to long-wavelength modes that are strongly coupled at all
temperatures.

As a consequence, numerical computations on the lattice are the main tool to derive the pre-
dictions of QCD at the temperatures probed in experiments, and in the last few years, various
collaborations have presented results for the QCD equation of state at vanishing chemical poten-
tial, obtained from simulations including dynamical quarks at or close to the physical point [5].1

At the same time, high-precision lattice results have also been obtained for various equilibrium
thermodynamic properties in SU(N) Yang-Mills theories with a large number of colors N , which
is a particularly interesting limit, for several reasons.2 First of all, the large-N limit at fixed
’t Hooft coupling λ = g2N and fixed number of flavors Nf [9] provides a natural interpreta-
tion for some non-trivial features of QCD (such as, for instance, the OZI rule [10]), and leads
to a topological classification of Feynman diagrams, in which the dominant contributions come
from planar graphs. This is suggestive of an analogy with similar expansions in closed string
theory [11]. Moreover, for N → ∞ one expects that all correlation functions of gauge-invariant
operators factorize, and that the functional integral describing a large-N gauge theory should be
dominated by a single “master” gauge field [12]; the translational invariance properties of the
latter are related to the ideas of large-N volume independence [13].

As it concerns the phase diagram of QCD-like theories, it is interesting to note that the

1By contrast, the progress in lattice simulations of the QCD equation of state at finite net baryon density has
been slower, due to the existence of a severe sign problem [6]. As a consequence, in this case one often obtains
useful insight from the numerical study of appropriate effective models, see, e.g., ref. [7].

2Some of the surprising mathematical properties arising in the large-N limit of a generic quantum theory are
related to the fact that, generally, the large-N limit can be interpreted as a sort of “classical limit”. The meaning
of this statement is made precise in ref. [8], with the definition of an appropriate basis of coherent states and a
classical Hamiltonian. The construction, however, can be carried out explicitly, and leads to an exact solution,
only for certain particularly simple models.
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large-N limit leads to interesting implications at finite density, including, in particular, a possible
“quarkyonic phase” [14]. Moreover, this limit is also important for applications of the conjec-
tured correspondence between gauge and string theories [15] to study the strongly interacting
plasma [16], since these computations are done in the infinite-N limit.

For these reasons, it is interesting to understand how much the thermal properties of strongly
interacting gauge theories depend on the number of colors. Recent lattice simulations of large-N
Yang-Mills theories at finite temperature [17,18] have revealed that, in the deconfined phase, the
bulk thermodynamic observables are essentially independent of N (except for a trivial propor-
tionality to the number of gluons), and that SU(3) [19] is close to the large-N limit.3 This result
is particularly interesting from a theoretical point of view, since it provides support to analytical
studies of the QCD plasma based on the approximation of an infinite number of colors, and,
furthermore, it can shed light onto the effective degrees of freedom relevant for the plasma near
deconfinement, and/or rule out possible effective models.

A different perspective on the hot QCD plasma is based on the study of non-Abelian gauge
theories in a lower-dimensional spacetime. While the case of D = 1 + 1 dimensions is essentially
trivial [21], in D = 2 + 1 these theories are characterized by rich dynamics [22], and share
many qualitative features with their D = 3 + 1 analogues. In particular, at low energies they
are characterized by a spectrum of color-singlet states with a finite mass-gap and by linear
confinement, and they exhibit a deconfining transition at a finite temperature Tc. Moreover,
these theories can also be studied using techniques inspired by the AdS/CFT correspondence:
comparing the results obtained from first-principle lattice computations with those derived from
the gauge/string duality can provide a useful test-bed for the application of holographic methods
to study strongly coupled systems in D = 2 + 1 dimensions, such as those relevant for condensed
matter systems at criticality [23]. Finally, one further motivation to look at the Yang-Mills
equation of state in 2 + 1 dimensions stems from the observation that, in D = 3 + 1, the trace
of the energy-momentum tensor in the deconfined phase appears to be proportional to T 2 over a
broad range of temperatures [18,19,24]. This behavior seems to be at odds with the expectation
from perturbative computations, which would rather predict a logarithmic dependence on the
temperature. In order to understand the physical origin of this characteristic behavior in the
physical case of D = 3 + 1, it is instructive to investigate whether the same phenomenon also
occurs for a generic SU(N) Yang-Mills theory in the lower-dimensional setup, given that the
theories in 3+1 and in 2+1 dimensions have both some similarities and some obvious qualitative
differences.

For these reasons, in this work we present a systematic study of finite-temperature SU(N)
Yang-Mills theories inD = 2+1 dimensions. Having already discussed the confining phase of these
theories in a previous work [25], in the present article we focus on the equilibrium thermodynamic
properties in the deconfined phase. In particular, we investigate the strongly coupled regime (close
to the deconfinement temperature Tc), where physical quantities cannot be reliably caculated via
weak-coupling expansions, and compare the theoretical results obtained from two different non-

3Similar findings have been obtained from large-N simulations at zero temperature, see, e.g., ref. [20] and
references therein.
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perturbative approaches: holographic computations based on the gauge/string correspondence,
and numerical simulations in the lattice regularization.

The structure of this paper is as follows. First, in section 2 we construct a holographic model,
which is expected to describe the deconfined finite-temperature phase of strongly coupled SU(N)
gauge theories in D = 2 + 1. Then, in section 3, we review the basic properties of SU(N) Yang-
Mills theories in 2 + 1 spacetime dimensions, and introduce their regularization on a Euclidean
lattice. Next, in section 4 we present a set of high-precision results from our numerical lattice
simulations of these theories, for different values of N ranging from 2 to 6. After discussing
the extrapolation to the thermodynamic and continuum limits, we investigate the dependence of
the pressure (p), of the trace of the energy-momentum tensor (or interaction measure, denoted
by ∆), and of the energy (ε) and entropy (s) densities on the number of colors, and compare
the prediction for ∆ to the holographic model. Section 5 includes a discussion of our findings
and their implications. The appendix A reports the details of the computation of the lattice
Stefan-Boltzmann limit in D = 2 + 1 and D = 3 + 1 dimensions.

2 A holographic model

2.1 Generalities

The gauge-gravity correspondence (“holography” for short) [15] successfully reproduces most of
the salient features of large-N gauge theories. Although the first examples of holography involved
supersymmetric and conformal quantum field theories, the correspondence was soon generalized
to more realistic examples, including theories with linear confinement and no supersymmetry [26],
hence in the same class as QCD. However, these models (sometimes referred to as models built in
a “top-down approach”), that stem from D-brane constructions in type IIA or IIB string theory,
generally have an infinite number of undesired scalar operators in their spectrum, arising from
the Kaluza-Klein modes on the internal extra-dimensions of the ten-dimensional parent theory.

In the meantime, an alternative “bottom-up” holographic approach has been developed [27]:
it uses minimal ingredients to model the desired features of confining gauge theories on the gravity
side, in a more direct and “economic” fashion. Our approach here consists of an advanced version
of the bottom-up construction, that is known as “improved holographic QCD” (IHQCD) [28,29]—
see ref. [30] for a review, and ref. [31] for similar constructions in the literature. In what follows,
we first explain and review the setup of IHQCD.

Holography generally associates the energy dependence of the field theory with a radial di-
rection r perpendicular to the D dimensions of the Minkowski spacetime in which the gauge
theory is defined. Therefore the most economic “bottom-up” approach to a D-dimensional QFT
involves a (D+ 1)-dimensional gravitational background. In addition, the holographic correspon-
dence associates a bulk field to each operator that is relevant or marginal in the IR.4 For pure
Yang-Mills theory, there are two such marginal operators: the energy-momentum tensor Tµν and

4Typically, the holographic description in bottom-up constructions is only reliable in the IR of the field theory,
because the far UV region of the background suffers from large curvature corrections. However, the reliable region
turns out to be quite large in IHQCD models [28].
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the gluon operator TrF 2/Λ4−D where Λ is the dynamically generated energy scale of the theory
(for D ≤ 4). The bulk fields that are dual to these operators are the metric gµν(r) and the dilaton
field φ(r). The dependence of these fields on the radial coordinate r corresponds to the renormal-
ization group scale dependence of the corresponding operators in the field theory. In particular,
the profile of φ(r) encodes how the (dimensionless) coupling constant g2

eff = g2/Λ4−D runs with
the energy.5 On the other hand, in order to make φ(r) run with r in a dynamical gravitational
setup, one needs to turn on a potential for it. Therefore, the minimal general relativity action of
the IHQCD is:

A = MD−1
P N2

∫
dD+1x

√
−g
[
R− ξ(∂φ)2 − V(φ)

]
+ · · · (1)

(where the ellipsis denotes some boundary counter-terms that should be introduced to render the
variational problem on geometries with a boundary well-defined; we will not need the explicit
form of these terms here). The coefficient ξ is an unspecified normalization constant6 that will not
play an important rôle in what follows. In particular, it can be absorbed into φ by a redefinition.
Note that the action is proportional to N2 and to a positive power of MP, which denotes a
“reduced” Planck mass,7 thus, in the large-N limit of the gauge theory, gravitational interactions
are suppressed. For convenience, we keep the normalization of the scalar kinetic term unspecified,
except that we assume ξ > 0. We also assume that the scalar potential has a single AdS minimum,
that corresponds to the UV limit of the dual field theory:

V ′(φ)

∣∣∣∣
φ=φUV

= 0, V(φUV ) =
D(D − 1)

`2
, (2)

where ` is the AdS length scale.

Vacuum solution: The solution to the action in eq. (1) that corresponds to the vacuum of the
dual field theory is of the form:

ds2 = b20(r)
(
dr2 + dx2

D−1 − dt2
)
, φ = φ0(r). (3)

Here the scale factor of the metric b0(r) is of the AdS form b0(r) = `/r only if the dilaton potential
is constant: V = D(D−1)/`2. More generally, when V is a non-trivial function of φ, the function
b0 attains the AdS form only in the UV, i.e. for r → 0, while it deviates from AdS in the IR
limit, i.e. for r → ∞. Its profile can be determined by solving the Einstein’s equations, given
the potential V(φ). The IR part of the geometry characterizes the confinement properties in the
vacuum of the dual field theory. In ref. [29], the various confining asymptotics were classified. In
particular, we shall be interested in the confining geometries (with gapped and discrete spectrum)
of the form:

b0(r)→ e−(rΛ)α+···, α > 1 for r →∞, (4)

5This is so, because in string theory the field eφ couples to the operator TrF 2/Λ4−D in the same way as the
dimensionless coupling g2/Λ4−D does.

6This coefficient was set to 4/3 in ref. [28], as motivated by embedding the theory in non-critical string theory.
7The actual Planck mass is the entire expression MPN

2/(D−1).
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where the integration constant Λ corresponds to the dynamically generated energy scale, and the
ellipsis denotes sub-leading terms that are typically logarithmic in r [29]. The parameter α is
directly related to the large-φ asymptotics of the dilaton potential in eq. (1). Using Einstein’s
equations, it is straightforward to show that eq. (4) follows from a potential of the form:

V(φ)→ const× φ
α−1
α e

2
√

ξ
D−1

φ
+ · · · (5)

where ξ is the normalization factor appearing in front of the kinetic term in eq. (1). Therefore,
α is a parameter of the action, rather than of the particular solution.

The glueball spectrum of the field theory can be obtained by solving the fluctuation equations
of the dilaton and the metric, which can generally be expressed as a Schrödinger equation of
the form −ψ′′(r) + VS(r)ψ(r) = m2ψ(r), where ψ denotes a generic glueball wave-function that
corresponds to normalizable fluctuations of the bulk fields.8

Here the Schrödinger potential VS has the following asymptotics:

VS(r) ∝ r−2 for r → 0; VS(r) ∝ rα for r →∞. (6)

Therefore we observe that the Schrödinger potential is bounded both in the ultraviolet (UV) and
in the IR limits, hence the glueball spectrum is gapped and discrete, if and only if α > 1 [29].
We will take α > 1 in the rest of our discussion. In particular, in the limit of large mass, one can
use the WKB approximation to write down an approximate expression for the glueball spectra:

m2
n → Cnα−1, for n� 1, (7)

where C is a constant that depends on the particular model and on the type of glueball.

Thermodynamics: The temperature is introduced by Wick-rotating the time direction t→ iτ
and compactifying the Euclidean time: τ ∼ τ + 1/T .

ds2 = b20(r)
(
dr2 + dx2

D−1 + dτ2
)
, φ = φ0(r). (8)

This geometry corresponds to the thermal ensemble in the confined phase, that we call the thermal
gas (TG) solution. When evaluated on the TG solution, the action in eq. (1) yields the free energy
of the dual theory. Neglecting the action counter-terms—which are denoted by the ellipsis in
eq. (1)—, the result turns out to be divergent, due to the infinite volume of the asymptotic AdS
space. Here we shall adopt a particular choice of renormalization, which corresponds to tuning
the counter-terms, so that the on-shell thermal gas action vanishes.9

8The Schrödinger potential is obtained from the background geometry by fluctuating the bulk fields on the
given background and performing a field redefinition to attain the Schrödinger form. For example, in the case of
spin-2 glueballs, it is simply determined by the scale factor of the metric as: VS(r) = (D − 1) log′′(b0)/2 + [(D −
1) log′(b0)/2]2 [29]. In subsection 6.2 of ref. [29], it is also shown that the spectrum is bounded from below, as the
Hamiltonian that appears in the Schrödinger problem can be proven to be positive (semi-)definite.

9Note that this does not mean that the gas of glueballs in the confined phase has trivial thermodynamics: the
non-trivial behavior will be encoded in the determinant of bulk fluctuations around this solution, hence it will be
suppressed by 1/N2 with respect to the classical saddle-point solution (that, for the TG, is set to zero by our choice
of the counter-term action).
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The deconfined phase of the field theory is described by another solution with the same UV
asymptotics, the black-hole (BH) background:

ds2 = b2(r)
[
f−1(r)dr2 + dx2

D−1 + dτ2f(r)
]
, φ = φ(r). (9)

The scale factor b(r) and the dilaton φ(r) are generally different from their counterparts in the
thermal gas, eq. (8). The blackness function f(r) can be solved in terms of b(r) using Einstein’s
equations as:

f(r) = 1−
∫ r

0 dr
′b(r′)1−D∫ rh

0 dr′b(r′)1−D . (10)

It is a monotonically decreasing function starting as f = 1 at r = 0 and vanishing at r = rh.
The latter corresponds to the event horizon of the black-hole, where the 00-component of the BH
metric in eq. (9) vanishes. The temperature of the deconfined gluonic ensemble is given by the
Hawking temperature of the BH:

T = −f
′(rh)

4π
. (11)

The location of the horizon rh determines the temperature of the system. The entropy density of
the ensemble is given by the Bekenstein-Hawking entropy:

s(rh) =
S

VD−1N2
= 4π [MPb(rh)]D−1 , (12)

where we defined the entropy density dividing the total entropy by the total spatial volume and
by the square of the number of colors.10 In order to obtain s as a function of T , one has to invert
the variables using eq. (11).

The free energy of the deconfined phase is given by the value of the action in eq. (1), evaluated
on the BH background. As we have fixed the counter-terms for the gravity action in eq. (1) by
the requirement that they cancel the on-shell value of the TG action A(TG), the free energy is
given by F = A(BH)−A(TG), hence the terms denoted by the ellipsis in eq. (1) can be ignored,
because they cancel in the difference.

A practical way to determine the thermodynamics of the gluon plasma is as follows. The
general relativistic system satisfies the first law of thermodynamics (see ref. [32] and references
therein), therefore one can obtain the free energy density directly by integrating the entropy,

f(rh) =
F

VD−1N2
=

∫ ∞
rh

s(r′h)
dT (r′h)

dr′h
dr′h. (13)

Here the functions s(rh) and T (rh) are defined in eq. (12) and in eq. (11). The reason for the
upper bound of integration is as follows. As the location of the horizon rh tends to infinity, the size
of the BH becomes smaller and smaller and for rh →∞ the BH and TG solutions coincide [32].
Therefore, the difference between the actions of the two solutions, hence the free energy F , should

10More precisely, it should be divided by N2 − 1, but we work in the large-N limit where the difference becomes
irrelevant.
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vanish. One can also notice this by comparing the metric functions b(r) and b0(r) of the BH and
of the TG solutions in the limit rh → ∞, and observe that the difference b(r) − b0(r) vanishes
exponentially in rh [32, 33], in the entire region 0 ≤ r < rh.

Once the free energy is determined as in eq. (13), one can change the variable to T instead
of rh, using eq. (11), and obtain the free energy F (T ). Given F (T ), all other thermodynamic
variables follow by standard thermodynamic identities. In particular, one can demonstrate [32]
the existence of a Hawking-Page phase transition at a finite temperature Tc, if the parameter α
in eq. (4) satisfies the condition: α ≥ 1 [34]. The Hawking-Page transition corresponds to the
confinement-deconfinement transition in the dual field theory.

We are particularly interested in the behavior of the interaction measure ∆ as a function of
T . We define the normalized interaction measure by:

∆̃(T ) =
∆

N2TD
= D

f

TD
+

s

TD−1
, (14)

where we used the standard thermodynamic relation: ∆ = (DF + ST )/VD−1. The result can
be immediately obtained, once the black-hole geometry is found, using the formulas given above.
This is carried out explicitly in the next subsection.

2.2 Model construction

In this subsection, we shall discuss a general holographic construction that describes a normalized
interaction measure ∆̃ which decays with the temperature as 1/T in D = 2 + 1 dimensions. A
more ambitious aim would be to construct a holographic model that fits all lattice data presented
in section 4. This would certainly be possible by engineering the dilaton potential and fixing
the parameters of the model, which are the parameters in the dilaton potential, the integration
constants of the equations of motion for b(r) and φ(r), and MP. This aim was successfully
achieved in the case of D = 3 + 1 [18, 34, 35]. Here, however, we restrict our investigation to the
general behavior of the interaction measure and leave a more detailed holographic construction
to future work.

For this purpose, one can use the following simple, semi-analytic construction. Instead of
starting from a given dilaton potential and obtaining the metric functions b(r) and f(r) by
solving the Einstein’s equations, one can simply make an Ansatz for the scale factor b(r), obtain
f(r) from eq. (10), and derive the thermodynamic functions using the formulas presented in the
previous subsection. Although this method is not exact but only approximate,11 it turns out to
provide a good approximation to thermodynamics in a large range of temperatures, as has been
discussed in ref. [36]. The general conclusion, that we derive in the following, will be independent
of the details of this approximation.

At this point, the question is: What Ansatz should one take for the scale factor b(r)? To
answer this question, we first recall that b(r) tends to its TG analogue b0(r) both in the UV and

11In particular, the solution that one finds in this manner does not solve Einstein’s equations for a given dilaton
potential V (φ), but rather determines the potential. This potential will generally depend on rh beyond a certain
value of φ, where the approximation breaks down [36].
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in the IR limits, therefore eq. (4) leads to:

b(r) → e−(rΛ)α+···, as r →∞ (15)

b(r) → `

r
+ · · · as r → 0, (16)

where the ellipsis denotes subleading terms. A simple Ansatz that satisfies both limits is:12

b(r) =
`

r
e−(rΛ)α , with α > 1. (17)

As discussed after eq. (4), the parameter α controls the properties of the theory in the IR. In
particular, α should be larger than 1 for a confining theory. Interestingly, α also controls the
nature of the confinement-deconfinement phase transition at Tc: The transition tends to become
a continuous one (in particular, a second-order one) as α → 1 [33, 37]. Here we show that the
parameter α also controls the decay of the interaction measure in the range of temperatures
between Tc and some intermediate value Ti � Tc. The interaction measure is obtained from
eq. (14) by numerical integration.13 Fig. 1 shows the interaction measure ∆ (normalized dividing
by T 3N2) as a function of the temperature T (in units of the deconfinement temperature Tc), for
different values of α, in the case of D = 2 + 1 spacetime dimensions. We observe that the curve
becomes steeper with increasing values of α; in section 4, we show a comparison of the curve
corresponding to α = 3/2 to the numerical results obtained from lattice simulations, see fig. 3.
One technicality in our present calculation is the value of Tc. In general it is a number of the
same order as Λ:

Tc = c0Λ, (18)

with c0 being some constant depending on the model. In order to determine c0 (for a given Λ),
we search for a value rc, such that for rh = rc the free energy difference vanishes: f(rc) = 0. By
definition, this point corresponds to the phase transition. The transition temperature Tc is then
obtained by evaluating eq. (11) at rh = rc.

2.3 General conclusions from holography

One can understand the dependence of the slope of the reduced interaction measure on the
parameter α semi-analytically as follows. From eq. (14), one can write:

∆̃(T ) =
∆

N2TD
= D

f

TD
+

s

TD−1
=

s

TD−1
− D

TD

∫ T

Tc

s(T̃ )dT̃ , (19)

12Although this is a well-motivated Ansatz, clearly it is not the most general behavior for the scale factor. In
particular, in the intermediate r region, a less restrictive Ansatz, parametrized by variables in addition to α, would
allow for a better fit of the lattice data, especially near Tc. However, as emphasized at the beginning of this
subsection, such a general construction is not our primary purpose in this paper.

13The upper integration limit in eq. (14) can be chosen to be a large enough number, so that the change in the
integral is numerically negligible if the integration limit is pushed to larger values.
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Figure 1: Comparison of the interaction measure ∆ (normalized by T 3 and by N2) that follows
from the holographic construction, for different choices of the parameter α. The solid (orange)
curve is obtained for α = 3/2, the dashed (brown) curve corresponds to α = 2, and finally the
dotted (maroon) curve is the result for α = 3.

where, again, we used the standard thermodynamic relation ∆ = (DF + ST )/VD−1 and we
rewrote the free energy F using the first law as

F (T ) = −
∫ T

Tc

S(T̃ )dT̃ (20)

(where the choice for the lower bound of the integral comes from the requirement that F (Tc) = 0
at the transition). Note that, for extremely high temperatures, the expression on the right-hand
side of eq. (19) vanishes, by asymptotic conformality of the theory. Technically, for very large T
the leading-order term in a 1/T expansion of the integral cancels the first term in eq. (19). The
contribution that we seek for is the sub-leading term of the integral in 1/T .

For large enough temperatures T/Λ� 1, one can use the asymptotically conformal result to
relate T to rh. This follows from the AdS black-hole expression where the blackness function in
eq. (9) becomes: f = 1− (rh/r)

D. As the background turns into the asymptotically AdS BH for
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large T , substituting this expression in eq. (11) one finds:

T ≈ D

4πrh
, for T � Λ. (21)

Using this expression in eq. (17) and in eq. (12), one immediately obtains an approximate ex-
pression from eq. (19) as:

∆̃(T ) = c1

[
e
−c2

(
T
Tc

)−α
− D

TD

∫ T

Tc

dT̃ T̃D−1e
−c2

(
T̃
Tc

)−α]
, (22)

where we defined the constants:

c1 = 4π

(
4πMP`

D

)D−1

, c2 = (D − 1)

(
D

4πc0

)α
, (23)

while c0 is defined in eq. (18). Evaluating the integral in eq. (22) for large T yields:

∆̃(T ) ≈ c1c2α

(D − α)

(
T

Tc

)−α [
1 +O

(
T

Tc

)−α]
. (24)

Clearly, this expression is valid only for α 6= D. The case α = D should be treated separately,
and one finds:

∆̃(T ) ≈ c1c2 D log

(
T

Tc

)(
T

Tc

)−D [
1 +O

(
T

Tc

)−D]
. (25)

The conclusion of this semi-analytic calculation is that, as T increases, the normalized inter-
action measure falls off as a function of T/Tc, and the precise shape of the fall-off is a power-law
determined by the parameter α. In particular, this power is not directly related to the spacetime
dimensionality D, but rather to the nature of the deconfinement transition, which is determined
by the value of the exponent α in eq. (4).

This is in agreement with known results from lattice computations. In particular:

• In D = 3+1 dimensions, for pure Yang-Mills theory one expects linear confinement with an
asymptotically linear glueball spectrum. Then, eq. (7) determines α = 2 and from eq. (24)
one expects ∆̃ ∼ 1/T 2 for some range of temperatures above Tc. This has indeed been
observed in lattice simulations [18,19,24].

• In D = 2 + 1 dimensions, the confinement-deconfinement transition tends towards being
continuous. In particular, for N = 2 and 3 it is known to be a second-order transition,
and for N = 4 it may be continuous or a weakly first-order one; a general statement that
one can make is that Yang-Mills theories in 2 + 1 dimensions are more inclined to exhibit
continuous or weakly first-order transitions than in D = 3 + 1 [38–40]. On the other hand,
as we discussed above, the nature of the transition in holography is determined by the
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exponent α. For D = 2 + 1 one expects14 it to be smaller than 2. Furthermore, in order to
have confinement at zero temperature, α should also be larger than 1, see eq. (4). Therefore
we expect 1 < α < 2 for the D = 2 + 1 theories under study. Indeed, as discussed in sec. 4,
we found that α = 3/2 gives a very good fit to the lattice results.

One should be cautious with the various approximations that we made in this section. First of
all, we adopted a semi-analytic approach in determining the holographic background, by setting
the scale factor of the metric via eq. (17). In the well-studied case of 3 + 1 dimensions, this
approximation works quite well, as shown in ref. [36]. Guided by these results, we made an
educated guess for the scale factor of the metric. Another approximation is to treat the relation
between T and rh as in the case of AdS, eq. (21). Strictly speaking, this is only valid for large
T , where rh is small enough, so that the asymptotically AdS region sets in. However, numerical
studies show that this is also a good approximation in a large range of temperatures, ranging
all the way from the limit of infinite T down to near Tc [35, 36]. The final approximation is the
large-N limit. Although we believe that the first two approximations can be justified at least in
a finite range of temperatures, the validity of the latter cannot be assessed by simple arguments,
but should be checked through case-by-case studies. In the case of 3 + 1 dimensions, the SU(N)
Yang-Mills lattice data show that, indeed, the equilibrium thermodynamic quantities per gluon
are essentially independent of N [18], and agree well with holographic calculations [35, 41]. We
hope that this general conclusion also holds for theories in 2 + 1 dimensions. This should be
checked by a thorough study of holographic models in D = 2 + 1, that we plan to pursue in the
future. In the following sections, after introducing the setup to study SU(N) Yang-Mills theories
in D = 2 + 1 dimensions on the lattice, we compare the lattice results for the equation of state
with the predictions of the holographic model that we discussed in this section.

3 Yang-Mills theories in 2 + 1 dimensions

The continuum formulation of Yang-Mills theories with SU(N) gauge group inD = 2+1 spacetime
dimensions can be defined via the Euclidean functional integral:

Z =

∫
DAe−SE

, SE =

∫
d3x

1

2g2
0

TrF 2
αβ, (26)

where g2
0 (which has the dimensions of an energy) is the bare square gauge coupling, Fαβ(x)

denotes the non-Abelian field strength tensor, and the functional integration is done over the
non-Abelian gauge field Aµ(x), taking values in the adjoint representation of the algebra of the
gauge group. Like in D = 3 + 1, SU(N) Yang-Mills theories are also asymptotically free in
D = 2 + 1 dimensions; since g2

0 is dimensionful, perturbative computations for processes at a
momentum scale k can be organized as series in powers of the ratio g2

0/k [42].

14In D = 2 + 1 dimensions, one is tempted to set α = 1 for the continuous transitions for N = 2 and 3, by
the arguments in refs. [33, 37]. However, these arguments hold in the large-N limit, and α should receive 1/N
corrections for finite, and small, values of N .
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To make the definition in eq. (26) mathematically well-defined at the non-perturbative level,
one can introduce a gauge-invariant lattice regularization. The common choice is a regularization
on a cubic, isotropic lattice Λ of spacing a, which allows one to trade the continuum field Aµ(x)
for an at most countable (and finite, if the spacetime is truncated to a finite volume) set of
matrices Uµ(x), which are defined on the oriented links joining nearest-neighbor lattice sites.
The Uµ(x) matrices represent parallel transporters on the lattice links, and take values in the
adjoint representation of the gauge group. Their dynamics is defined by:

ZL =

∫ ∏
x∈Λ

3∏
α=1

dUα(x)e−S
E
L , (27)

where dUα(x) denotes the Haar measure for each Uα(x), and SE
L is the Wilson gauge action [43]:

SE
L = β

∑
x∈Λ

∑
1≤α<β≤3

[
1− 1

N
ReTrUαβ(x)

]
, with: β =

2N

g2
0a
, (28)

which tends to SE in the näıve (i.e. tree-level) continuum limit a → 0, with corrections O(a2),
and which, being defined in terms of the trace of the plaquette variable:

Uαβ(x) = Uα(x)Uβ(x+ aα̂)U †α(x+ aβ̂)U †β(x), (29)

is exactly gauge-invariant at all values of the lattice spacing a.
The expectation value of a physical observable O on the lattice is defined by:

〈O〉 =
1

ZL

∫ ∏
x∈Λ

3∏
α=1

dUα(x) O e−S
E
L . (30)

This quantity is a ratio of high-, but finite-dimensional, finite, ordinary group integrals, and
can be estimated numerically by importance sampling over an ensemble of configurations of link
matrices.

Previous lattice computations [38–40] have shown that, similarly to the D = 3 + 1 case,
also D = 2 + 1 non-Abelian gauge theories exhibit linear confinement at low energy (i.e. the
interquark potential V (r) grows as σr at large distances r) and a gapped, discrete spectrum of
color-singlet glueball states. Furthermore, they also undergo a deconfining phase transition at a
finite temperature Tc, associated with the spontaneous breakdown of a global center symmetry.

In order to “set the scale” (i.e., to determine the value of the spacing a as a function of β)
we used the accurate non-perturbative results reported in ref. [38], which lead to the following
expression for the temperature (in units of Tc) as a function of β:

T

Tc
=

β − 0.22N2 + 0.5

Nt · (0.357N2 + 0.13− 0.211/N2)
. (31)

The statistical and systematic uncertainties in this scale determination are set by those on the
value of the critical temperature over the square root of the zero-temperature string tension σ in
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the continuum limit and in the large-N limit from ref. [38]. The latter reports Tc/
√
σ = 0.9026(23)

in the N →∞ limit of this ratio, with a finite-N correction term proportional to N−2 (and valid
down to N = 2), whose coefficient is 0.880(43). So our uncertainty on the temperature scale can
be estimated to be of the order of 1%, and does not have a real impact on our analysis (hence,
for the sake of clarity, in our plots we do not show the errorbars on the temperature). Another
potential source of systematic uncertainties is given by the choice of the physical observable to
set the scale: since all numerical simulations are performed at finite values of the spacing a,
the determination of the physical scale using different observables can be affected by different
discretization artifacts; however, the quantitative effect of the induced systematic uncertainty is
small, O(a2). For a comparison with alternative non-perturbative definitions of the scale, see,
e.g., refs. [39,40,44]. Finally, note that, in principle, one could also use a perturbative definition of
the scale; in particular, for the D = 3+1 case high-order perturbative computations in the lattice
scheme are available in the literature [45]. However, since in the present work we are interested
in a temperature regime where non-perturbative effects are expected to be non-negligible, our
determination of the scale is completely non-perturbative.

In our simulations, we generated the gauge configurations using code implementing a 3 + 1
combination of local overrelaxation and heat-bath updates on SU(2) subgroups [46]; for part of
our simulations, we also used the Chroma suite [47]. In the following, we denote the cardinality
of our configuration ensembles as nconf. Having defined the lattice action via eq. (28), the only
parameters that fix the physical setup of our simulations are the number of colors N , the Wilson
gauge action parameter β, and the sizes of the lattice along the space-like and time-like directions,
which can be expressed in units of the lattice spacing a as aNs and aNt, respectively. As usual
in a Euclidean QFT setup (assuming periodic boundary conditions for the bosonic fields), the
latter quantity is related to the physical temperature via aNt = T−1.

The parameters of the simulations that we performed for this work are summarized in table 1;
we chose Ns � Nt, which guarantees a good approximation of the thermodynamic limit [48]. In
fact, finite-volume effects in the T > Tc phase are known to be strongly suppressed, due to the
screening phenomenon in the deconfined plasma. Note that, as pointed out in ref. [48] (for the
D = 3 + 1 case), the thermodynamics of a gas of free gluons is sensitive to finite-volume correc-
tions, which depend on the product of the linear spatial size of the lattice times the temperature.
In the limit of very high temperatures, such corrections lead to quantifiable corrections to ordi-
nary thermodynamic relations. However, at the relatively moderate temperatures probed in the
present lattice simulations, the numerical evidence from all previous studies (both in D = 3 + 1
and in D = 2 + 1 dimensions) indicates that screening makes finite-volume corrections essentially
negligible for simulations on lattices with Ns/Nt ≥ 4. In particular, the accurate numerical study
of SU(3) thermodynamics in D = 2 + 1 dimensions presented in ref. [39] provided convincing
evidence for the strong suppression of finite-volume effects. On the other hand, deviations from
the thermodynamic limit in the confining phase are exponentially suppressed by the finiteness of
the mass gap: if m0 denotes the mass of the lightest glueball, then, typically, lattices of linear
size aNs ≥ 4/m0 are such, that systematic effects due to the volume finiteness play an essen-
tially negligible rôle in the lattice computation error budget (which is dominated by finite-cutoff
effects, and by statistical uncertainties due to the finite cardinality of the sampled configuration
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ensemble). The results at zero temperature are obtained from simulations on cubic lattices of
volume (aNs)

3. In addition to the simulations listed in table 1, for the SU(2) and SU(4) gauge
groups we also analyzed the configurations corresponding to the Nt = 6 and Nt = 8 ensembles
(and their respective T = 0 counterparts) taken from ref. [25].

The equation of state of Yang-Mills theories in D = 2 + 1 dimensions can be easily obtained
from elementary thermodynamic identities. Let Z(T, V ) denote the partition function for an
isotropic system of two-dimensional “volume” V at temperature T ; in the thermodynamic limit
V →∞, the pressure p is related to the free energy F = −T lnZ by pV = −F , and to the trace
of the energy-momentum tensor ∆ = Tµµ via:

∆

T 3
= T

d

dT

( p

T 3

)
. (32)

As discussed above, deviations from the thermodynamic-limit relation pV = −F due to the
finiteness of the lattice volume can be neglected at the temperatures investigated in this work.
Finally, the energy and entropy densities (denoted as ε and s, respectively) can be obtained from
ε = ∆ + 2p and sT = ∆ + 3p.

Our determination of the equation of state on the lattice is done according to the “integral
method” [49]: the trace of the energy-momentum tensor is extracted from differences of 〈U2〉T ,
the expectation value of the average trace of the plaquette at a temperature T :

∆ =
3

a3

∂β

∂ ln a
(〈U2〉T − 〈U2〉0) , (33)

so that the pressure is obtained by integration over β:

p =
3

a3

∫ β

β0

dβ′ (〈U2〉T − 〈U2〉0) , (34)

starting from a lower integration extremum β0 corresponding to a temperature sufficiently deep in
the confined phase. We performed the numerical evaluation of the integral in eq. (34) comparing
the trapezoid rule with the method described by eq. (A.4) in ref. [50], which is characterized by
systematic errors O(n−4

β ). Since our scan in β values is very fine, the systematic error related to
the choice of the numerical integration method has a negligible rôle in the error budget.

4 Numerical results

In this section, we present our numerical results for the basic equilibrium thermodynamic proper-
ties in D = 2 + 1 SU(N) Yang-Mills theories with N = 2, 3, 4, 5 and 6 colors, and compare them
to the predictions from the holographic model introduced in section 2. By virtue of asymptotic
freedom, one expects that in the high-temperature limit the thermodynamics of these theories
reduces to that of a gas of non-interacting gluons, whose equation of state in the continuum reads:

p

T 3
= (N2 − 1)

ζ(3)

2π
, (35)
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N N2
s ×Nt nβ β-range nconf at T = 0 nconf at finite T

2 483 218 [7.2, 65.0] 2× 105 —
902 × 6 — 5× 105

643 157 [10.5, 90.0] 2× 105 —
1202 × 8 — 5× 105

3 482 × 6 101 [16.4, 146.4] 1× 105 8× 105

642 × 8 127 [15.0, 189.6] 5× 104 4× 105

4 482 × 6 261 [30.0, 246.0] 2× 104 1.6× 105

642 × 8 336 [39.0, 324.9] 1.5× 104 1.2× 105

5 482 × 6 150 [43.5, 386.5] 1× 105 8× 105

642 × 8 46 [60.0, 510.0] 1× 104 8× 104

6 482 × 6 129 [66.0, 561.0] 2.5× 104 2× 105

Table 1: Parameters of the new lattice simulations performed for this work: N denotes number of
colors, Nt and Ns are, respectively, the lattice sizes along the time-like and space-like directions
(in units of the lattice spacing). nβ denotes the number of β-values (i.e. of temperatures) that
were simulated, in each βmin ≤ β ≤ βmax interval; the T = 0 and finite-T statistics at each
β-value are shown in the last two columns. For N > 2, all T = 0 simulations were performed on
lattices of size (aNs)

3. Our analysis also includes part of the data from the simulations reported
in ref. [25].

where ζ(3) ' 1.20205690316 . . . is Apéry’s constant. On the lattice, eq. (35) is affected by cutoff
corrections:

pL

T 3
= (N2 − 1)

ζ(3)

2π
R̃I(Nt) , (36)

where the correction factor R̃I(Nt) can be either estimated numerically or evaluated analytically,
order by order in an expansion in powers of N−2

t [51]. For the Wilson action and the integral
method that we used in this work, the latter computation yields:

R̃I(Nt) = 1 +
7

4

1

N2
t

ζ(5)

ζ(3)
+

227

32

1

N4
t

ζ(7)

ζ(3)
+

8549

128

1

N6
t

ζ(9)

ζ(3)
+O

(
(π/Nt)

8
)

(37)

(see the appendix A for details). However, it is important to stress that the cutoff artifacts
encoded by this correction factor are suppressed at temperatures close to Tc, and hence we do
not rescale our numerical results by R̃I(Nt).

Since the right-hand side of eq. (35) is proportional to the number of gluon degrees of freedom
(one transverse polarization state for each of the N2 − 1 color d.o.f.), in the deconfined phase it
is natural to normalize the dimensionless ratios p/T 3, ∆/T 3, ε/T 3 and s/T 2 obtained in gauge
theories with a different number of colors, by dividing them by N2 − 1. Note, however, that,
while this is expected to make the results from different groups collapse onto the same curve in
the limit of very high temperatures, in principle there is no obvious reason to expect the same
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to be true also at moderate temperatures close to Tc, where the deconfined plasma is far from
being weakly coupled (and the thermodynamics could perhaps be dominated by different degrees
of freedom, with unknown scaling properties with N).

Figure 2 shows our results for the pressure per gluon, in units of T 3, as a function of T/Tc. The
plot shows the results that we obtained for the various gauge groups, from simulations on lattices
with Nt = 6 sites in the compactified Euclidean time direction, and for the corresponding space-
like volumes listed in table 1. As we shall discuss in the following, simulating finite-temperature
lattices at this value of Nt turns out to be an optimal choice, given that it allows one to reach very
precise numerical results for the plaquette differences appearing in eq. (34), while keeping the
systematic effects due to the finiteness of the lattice cutoff under control. The first, striking result
manifest from fig. 2 is the nearly perfect scaling of p with N2 − 1: in the deconfined phase, the
numerical results of the pressure per gluon collapse on the same curve, for all the gauge groups
that we simulated (denoted by symbols of different colors). This is analogous to what happens
in 3 + 1 dimensions [17,18], and can be clearly contrasted to the behavior in the confining phase,
where, on the contrary, all bulk thermodynamic quantities scale proportionally to O(N0), i.e.
are independent of N , in the large-N limit [25]. While in principle it is reasonable to expect
that the equation of state should be qualitatively similar in all of these theories, the remarkable
quantitative agreement among different gauge groups that our results reveal is completely non-
trivial. Generally, for SU(N) gauge theories without quark fields, the leading-order finite-N
corrections with respect to the large-N limit are expected to be proportional to N−2, and hence
could amount to relative deviations of the order of 10% for SU(3), or even larger for SU(2). On the
contrary, our high-precision lattice results do not reveal any statistically significant evidence15

of such dependence on N . Figure 2 also reveals that the approach to the continuum Stefan-
Boltzmann limit (which is about 0.1913 . . . , out of the vertical axis range) is relatively slow: at
temperatures slightly above 7 Tc, the pressure is still approximately 15% off from the Stefan-
Boltzmann value, indicating that the plasma is still far from an ideal gas of free massless gluons.
A qualitatively similar feature is also observed for Yang-Mills theories in 3 + 1 dimensions [18,19]
(for which, however, it is important to observe that the energy scale dependence of the physical
coupling is different). Finally, figure 2 also shows the prediction (solid orange curve) from the
holographic model discussed in section 2, for α = 3/2. Since the holographic prediction for
p/[T 3(N2 − 1)] is obtained by integration of ∆/[T 4(N2 − 1)] over T , based on eq. (32), we fixed
the integration constant by imposing consistency of the holographic model with the lattice data
at high temperatures.16

15The only differences among results corresponding to different gauge groups can be interpreted as statistical
fluctuations, and/or in terms of the small systematic uncertainty related to the scale setting, as discussed in
section 3 (for the sake of clarity, the horizontal errorbars associated with the accuracy limits on our temperature
determination are not displayed in the figures).

16Note that the approximations involved in the construction of the simple holographic model considered here
lead to some deviations from the lattice data for temperatures close to the transition region, and, in particular, to
an unphysical non-vanishing value for p/[T 3(N2 − 1)] for T → T+

c . Since the pressure is a continuous function of
the temperature, this would imply a non-vanishing value for p/[T 3(N2−1)] also for T → T−c , in clear contradiction
with the fact that the number of physical degrees of freedom in the confining phase scales like O(N0), not like
O(N2), at large N .
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Pressure

Figure 2: The pressure per gluon degree of freedom, in units of T 3, as a function of the temperature
(in units of Tc), for the gauge groups SU(2) (brown), SU(3) (black), SU(4) (green), SU(5) (blue)
and SU(6) (magenta). The plot shows the results obtained from simulations on lattices with
Nt = 6. The solid orange curve is the corresponding prediction from the holographic model
discussed in section 2, for α = 3/2, as obtained by numerical integration of ∆/[T 4(N2 − 1)] over
T , with an integration constant fixed by imposing consistency of the holographic model with the
lattice data at high temperatures.
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Trace of the energy-momentum tensor

Figure 3: Same as in fig. 2, but for the trace of the energy-momentum tensor per gluon, in units of
T 3. The solid orange curve is the corresponding prediction from the holographic model discussed
in section 2, for α = 3/2. Note that, in principle, the holographic model could be refined, to
match the lattice data also at temperatures lower than 2.5 Tc, through an appropriate choice of
the dilaton potential. We postpone a more detailed discussion about this issue to future work.

Figure 3 shows our results for the temperature dependence of the trace of the energy-momentum
tensor ∆, normalized in units of T 3 and per gluon. The data shown in this plot are the same
that we used to evaluate the pressure in fig. 2, hence in the deconfined phase they show the
same, approximately perfect, proportionality to N2 − 1. For this observable, however, one also
clearly sees that, in the confining phase (in which the number of physical states is independent of
N—except for the special case N = 2: see ref. [25] for a discussion), the results corresponding to
different gauge groups do not follow this proportionality law. This effect was not clearly visible
in fig. 2, because the pressure and the interaction measure are related to each other by eq. (32),
and the signal for p at T < Tc is much smaller than at T > Tc.

Since p is obtained by numerical integration according to eq. (34), whereas ∆ is directly related
to the plaquette expectation values, see eq. (33), it is most natural to compare the lattice results
and the predictions of our holographic model for the interaction measure. This is shown by the
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Figure 4: Same as in fig. 2, but for the energy density per gluon, in units of T 3.

orange line in fig. 3, which corresponds to the prediction for α = 3/2, as discussed in section 2. As
one can see, our holographic model accurately captures the non-trivial temperature dependence
of ∆ for all temperatures T & 2.5 Tc. This good quantitative agreement breaks down in the region
of temperatures closer to Tc, where the holographic curve falls below the lattice results, and the
agreement is only qualitative. While in principle the holographic prediction could be adjusted
to fit the lattice data over an even broader temperature range (by including more terms in the
dilaton potential), we emphasize that, even for the simple setup discussed here, the model already
gives a quantitatively correct description for the high-temperature fall-off of ∆/[T 3(N2−1)] and,
as discussed in section 2, it relates it to the nature of the deconfinement phase transition.

Our lattice results for the other two equilibrium thermodynamic quantities (the energy and
the entropy density) are shown in fig. 4 and in fig. 5, respectively. Being linear combinations of
the pressure and the interaction measure, these quantities obviously exhibit the same, accurate
proportionality to N2−1 as p and ∆, and reveal the same type of mismatch between lattice data
and the holographic prediction for temperatures close to Tc.

Another interesting problem that we investigated in our simulations is the following: In D =
3 + 1 dimensions, several authors observed that, in the deconfined phase, the trace of the energy-

19



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
T / T

c

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

s
 /

 [
 T

2
 (

 N
2
 -

 1
 )

 ]

SU(2)

SU(3)

SU(4)

SU(5)

SU(6)

holographic model, for α = 3 / 2

Entropy density

Figure 5: Same as in fig. 2, but for the entropy density per gluon, in units of T 2.
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momentum tensor appears to be proportional to T 2 over a rather broad temperature range [18,
19,24]. Since several different interpretations have been proposed for this phenomenon [24], it is
interesting to investigate whether a similar effect also occurs in D = 2+1 dimensions. We address
this issue in figure 6, by showing our results for the dimensionless ratio ∆/[T 3(N2 − 1)], plotted
as a function of Tc/T : if, in the temperature range under consideration, the interaction measure
is dominated by a contribution proportional to T 2, this should result in a linear behavior in the
plot. This is indeed clearly seen in the figure, hence we confirm that, similarly to the D = 3 + 1
case, also in D = 2 + 1 dimensions there is a large temperature interval, starting from the value
where ∆/[TD(N2−1)] has its maximum, in which the interaction measure of Yang-Mills theories
exhibits a quadratic dependence on T . This figure also shows that, at least in the temperature
range T ≥ 2.5 Tc, the holographic model captures this type of temperature dependence very well.

The implications of this result are twofold. On the one hand, our finding can be useful to
shed light on the nature of the phenomenon in D = 3 + 1. In particular, due to the qualitative
differences of Yang-Mills theories in 2 + 1 versus 3 + 1 dimensions, our result might help to
rule out some mechanisms that have been proposed to explain the phenomenon in D = 3 + 1,
if they are expected to be at work also in the lower-dimensional case. On the other hand,
our holographic model leads quite naturally to a power-law decay of ∆/[TD(N2 − 1)] with the
temperature, and, even more interestingly, it suggests a connection between the order of the
deconfining phase transition, and the exponent of such power-law decay. As discussed above, the
fact that, in general, the deconfinement transition tends towards being more discontinuous when
the spacetime dimensionality increases from 2 + 1 to 3 + 1, can thus be directly related to the
change from a 1/T to a 1/T 2 fall-off for ∆/[TD(N2 − 1)].

Finally, we conclude this section with a discussion of the finite-cutoff effects affecting our
lattice results. As we mentioned, most of the results presented in this paper are based on finite-
temperature simulations using lattices with Nt = 6 sites in the compactified Euclidean time
direction. One may wonder, whether the corresponding results are close enough to the continuum
limit or not. According to our analytical expansion of the R̃I(Nt) factor in eq. (37), it turns out
that, for this value of Nt, the lattice Stefan-Boltzmann limit (evaluated with the integral method
and the Wilson action on an isotropic cubic lattice) differs from the value in the continuum
by approximately 5%: an effect much larger than the statistical uncertainties and the other
systematic errors affecting our data. Thus, in principle one may be tempted to rescale all our
lattice results by dividing by R̃I(Nt). Since R̃I does not depend on N , this would not change the
fact that the thermodynamic quantities are nearly perfectly proportional to the number of gluons,
but would lead to slightly different (smaller) numerical values for p, ∆, ε and s. However, in the
temperature region investigated in this study, this näıve rescaling of the results would not be
correct: the physical reason is that the distortion of the Stefan-Boltzmann limit encoded by R̃I is
due to modes near the lattice cutoff, and those are not relevant for the physics at temperatures of
the order of Tc. For this reason, we chose not to rescale our numerical results by R̃I , but rather to
repeat our simulations (except for the computationally most demanding gauge group SU(6)) at
the same temperatures and at the same space-like volumes, on finer lattices, with Nt = 8. Given
that the leading discretization effects of the Wilson action are O(a2), this corresponds to reducing
the lattice artifacts by approximately a factor 2. From eq. (34) (in which the plaquette mean
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Figure 6: Similarly to what happens in D = 3 + 1 dimensions [18], in the deconfined phase
there exists a temperature regime, in which the trace of the energy-momentum tensor ∆ appears
to be proportional to T 2. This is exhibited very clearly by the linear behavior of the data
displayed in this plot, showing the dimensionless ratio ∆/[(N2− 1)T 3], as a function of Tc/T , for
temperatures (approximately) starting from 1.1 Tc (near the maximum in figure 3). The figure
shows the results of our simulations on lattices with Nt = 6, with the same color code as in fig. 2,
and the corresponding prediction from the holographic model (solid orange line).
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values are always O(1), for any Nt) it is also easy to see that, when Nt is increased, the difference
appearing in the integrand on the right-hand side is affected by a fast decay of the signal-to-noise
ratio. As a consequence, it would become extremely difficult to get sufficiently precise results
from much finer lattices. Fortunately, however, the discrepancy between our Nt = 6 and Nt = 8
results for the equilibrium thermodynamic quantities considered in this work appears to be very
small, as figure 7 shows. This holds in the whole range of temperatures that we studied, and for
all values of N from 2 to 5. Since our Nt = 6 and Nt = 8 data sets yield compatible results, we
did not attempt a continuum extrapolation of the thermodynamic quantities, and we can safely
state that, to the level of precision we reached, our results from the Nt = 6 lattices are already
compatible with the continuum limit.

5 Conclusions

In this work, we presented a non-perturbative study of the equilibrium thermodynamic properties
in the deconfined phase of (non-supersymmetric) SU(N) Yang-Mills theories in 2 + 1 dimensions,
using holographic computations and numerical simulations based on the lattice regularization.
This allowed us to combine the advantages of both tools: the former enables one to gain analytical
insight on the dynamical properties of these strongly coupled systems, while the latter (once the
thermodynamic and continuum limits are taken) provides numerical results obtained from an ab
initio approach, directly based on the microscopic definition of the theories for any number of
colors, without any assumption or uncontrolled systematic uncertainty.

First, we introduced a holographic bottom-up model, inspired by the IHQCD model [28–
30], which describes the non-trivial dynamics of these strongly interacting non-Abelian gauge
theories in the large-N limit. This model reveals a non-trivial relationship between the order of
the deconfinement phase transition, and the dependence of the trace of the energy-momentum
tensor ∆ on the temperature. In particular, for non-Abelian gauge theories in 2 + 1 dimensions
(which, typically, are characterized by a tendency towards a second-order or a weaker first-order
transition than in 3+1 dimensions), at temperatures of the order of Tc the model favors a behavior
approximately compatible with a 1/T decay for the dimensionless ratio ∆/T 3.

Then, we defined the non-perturbative regularization of SU(N) Yang-Mills theories on a
(2+1)-dimensional Euclidean lattice, and performed a set of high-precision numerical simulations
to study their equation of state at T ≥ Tc. We compared the results obtained for different
numbers of colors, up to N = 6, and found that the trace of the energy-momentum tensor and
the related bulk thermodynamic quantities per gluon are independent of N , reflecting a strikingly
accurate scaling of the equation of state in the deconfined phase, over the whole temperature
range that we probed (up to about 7.5 Tc). This holds for all the gauge groups that we studied,
including SU(2), and—at least for these equilibrium thermodynamic observables—supports the
potential quantitative relevance of analytical computations relying on the large-N limit (including,
in particular, those based on the gauge/gravity correspondence). We also found that, in all
the theories that we simulated, ∆ exhibits a clear, characteristic quadratic dependence on the
temperature. Both these findings are analogous to those which have been obtained for non-
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Figure 7: Cutoff dependence of the trace of the energy-momentum tensor in units of T 3: the
plots show the results obtained at temperatures ranging from approximately 0.7 Tc to 7.5 Tc,
from simulations on lattices with Nt = 6 (circles) and 8 (triangles), for four of the gauge groups
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Abelian gauge theories in 3 + 1 dimensions [18, 19, 24]. Finally, we compared the lattice results
with the prediction of our holographic model, finding good quantitative agreement, at least for
temperatures not too close to Tc.

In the future, we plan to extend the present study, by investigating the holographic model in
more detail, and by looking at different observables, which could be compared with the results of
lattice simulations.
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A Lattice cutoff corrections to the Stefan-Boltzmann limit in
2 + 1 and 3 + 1 dimensions

In this appendix, following the calculation in ref. [51], we derive the correction to the Stefan-
Boltzmann limit due to cutoff effects on the lattice, for the Wilson discretization of SU(N)
Yang-Mills theory in D = d+ 1 dimensions, for d = 2 and 3. Our goal is to evaluate the first few
terms of the correction to the Stefan-Boltzmann limit, in an expansion in powers of N−2

t , where
Nt denotes the number of lattice points in the Euclidean time direction. We take Ns, the number
of lattice sites along the space-like directions, to be infinite (corresponding to the thermodynamic
limit).

Throughout this appendix, we work in lattice units, i.e., we set the lattice spacing a to unity,
and denote the pressure as p, the spatial volume as V , and the temperature as T . Moreover, in
the following, we use the ∼= notation to mean equality of two quantities, up to terms which are
negligible to the order of precision of our computation.

Notation used throughout this calculation includes:

ω =

√√√√ d∑
i=1

sin2(pi/2), x = 2arsinh(ω), yi = Nt sin(pi/2),

y = Ntω, t = 2y, g = − y3

3N2
t

+
3y5

20N4
t

− 5y7

56N6
t

, h =
1

e2y − 1
,

so that:

g2 ∼=
y6

9N4
t

− y8

10N6
t

, g3 ∼= −
y9

27N6
t

,
∂g

∂y
= − y2

N2
t

+
3y4

4N4
t

− 5y6

8N6
t

.

Elementary identities used in this calculation include:
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arcsin(x) =
∞∑
k=0

(2k)!

22k(k!)2

x2k+1

2k + 1
and arsinh(x) =

∞∑
k=0

(−1)k
(2k)!

22k(k!)2

x2k+1

2k + 1
,

as well as:

Γ(s+ 1)ζ(s+ 1) =

∫ ∞
0

dt
ts

et − 1

1

2s+1
Γ(s+ 1)ζ(s+ 1) =

∫ ∞
0

dy
ys

e2y − 1

Γ(s+ 1)ζ(s) =

∫ ∞
0
dt ts(h+ h2)

Γ(s+ 1)ζ(s− 1) =

∫ ∞
0
dt ts(2h3 + 3h2 + h)

Γ(s+ 1)ζ(s− 2) =

∫ ∞
0
dt ts(6h4 + 12h3 + 7h2 + h)

and the expansion:

1

e2y+g − 1
∼= h+

(
y3

3N2
t

− 3y5

20N4
t

+
5y7

56N6
t

)
(h+ h2) +

(
y6

18N4
t

− y8

20N6
t

)
(2h3 + 3h2 + h)

+
y9

162N6
t

(6h4 + 12h3 + 7h2 + h).

Furthermore, we also use the following finite-sum formula [52]:

Nt−1∑
l=1

ln

[
ω2 + sin2

(
πl

Nt

)]
= 2 ln

sinh(Ntx/2)

2Nt−1 sinh(x/2)

and the limit:

lim
Nt→∞

1

Nt

Nt−1∑
l=0

ln

[
ω2 + sin2

(
πl

Nt

)]
= x− 2 ln 2,

implying:

1

Nt

Nt−1∑
l=0

ln

[
ω2 + sin2

(
πl

Nt

)]
− lim
Nt→∞

1

Nt

Nt−1∑
l=0

ln

[
ω2 + sin2

(
πl

Nt

)]
=

2

Nt
ln
(
1− e−Ntx

)
.

Finally, in the following we use Z1DOF to denote the partition function for one bosonic, massless
degree of freedom on the lattice.

We concentrate on the integral method for the lattice determination of the pressure [49], in
which p(T ), the pressure at a given temperature T , is defined with respect to its value at T = 0.
The thermodynamic definition of the pressure reads:

p = T
∂

∂V
lnZ,
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and, for an isotropic system, in the thermodynamic limit it reduces to:

p =
T

V
lnZ.

A.1 D = 3 + 1

The pressure can be written as:

p = 2(N2 − 1)
T

V
lnZ1DOF =

2(N2 − 1)

NtN3
s

ln

∏
~p

∏
p4

 4∑
µ=1

sin2(pµ/2)

−1/2

= −N
2 − 1

Nt

1

(2π)3

∫
([−π,π])3

d3p

Nt−1∑
l=0

ln

[
ω2 + sin2

(
πl

Nt

)]
. (A.1)

Thus, taking into account that in the integral method the pressure is defined w.r.t. to its value
at T = 0 (obtained as the Nt →∞ limit):

p

T 4
= −2

(N2 − 1)N3
t

π3

∫
([0,π])3

d3p ln
(
1− e−Ntx

)
.

Changing variables to yi = Nt sin(pi/2), and expanding pi as:

pi = 2 arcsin

(
yi
Nt

)
∼= 2

yi
Nt

+
1

3

(
yi
Nt

)3

+
3

20

(
yi
Nt

)5

+
5

56

(
yi
Nt

)7

,

so that:
∂pi
∂yj
∼=

2

Nt
δij

(
1 +

y2
i

2N2
t

+
3y4
i

8N4
t

+
5y6
i

16N6
t

)
,

one gets: ∣∣∣∣det

(
∂pi
∂yj

)∣∣∣∣ ∼= 8

N3
t

{
1 +

y2

2N2
t

+
1

N4
t

[
3(y4

1 + y4
2 + y4

3)

8
+
y2

1y
2
2 + y2

1y
2
3 + y2

2y
2
3

4

]
+

1

N6
t

[
5(y6

1 + y6
2 + y6

3)

16
+

3(y4
1y

2
2 + y4

1y
2
3 + y4

2y
2
1 + y4

2y
2
3 + y4

3y
2
1 + y4

3y
2
2)

16
+
y2

1y
2
2y

2
3

8

]}
and therefore (by rotational symmetry):

d3p ∼= d3y · 8

N3
t

(
1 +

y2

2N2
t

+
9y4

3 + 6y2
1y

2
3

8N4
t

+
15y6

3 + 18y2
1y

4
3 + 2y2

1y
2
2y

2
3

16N6
t

)
. (A.2)
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Thus the dimensionless ratio p/T 4 can be written as:

p

T 4
∼= −2

N2 − 1

π3

∫
([−Nt,Nt])3

d3y

[
1 +

y2

2N2
t

+
1

8N4
t

(9y4
3 + 6y2

1y
2
3)

+
1

16N6
t

(15y6
3 + 18y2

1y
4
3 + 2y2

1y
2
2y

2
3)

]
· ln
(
1− e−Ntx

)
∼= −2

N2 − 1

π3

∫
R3

d3y ln
(
1− e−Ntx

)
− N2 − 1

N2
t π

3

∫
R3

d3y y2 ln
(
1− e−Ntx

)
−9(N2 − 1)

4N4
t π

3

∫
R3

d3y y4
3 ln

(
1− e−Ntx

)
− 3(N2 − 1)

2N4
t π

3

∫
R3

d3y y2
1y

2
3 ln

(
1− e−Ntx

)
−15(N2 − 1)

8N6
t π

3

∫
R3

d3y y6
3 ln

(
1− e−Ntx

)
− 9(N2 − 1)

4N6
t π

3

∫
R3

d3y y2
1y

4
3 ln

(
1− e−Ntx

)
−N

2 − 1

4N6
t π

3

∫
R3

d3y y2
1y

2
2y

2
3 ln

(
1− e−Ntx

)
. (A.3)

The last expression can be readily evaluated, using the formulas listed above and integration by
parts. In particular, the first two terms are:

− 2
N2 − 1

π3

∫
R3

d3y ln
(
1− e−Ntx

) ∼= N2 − 1

π2

[
2ζ(4) +

5

N2
t

ζ(6) +
91

8N4
t

ζ(8) +
205

8N6
t

ζ(10)

]
and:

− N2 − 1

N2
t π

3

∫
R3

d3y y2 ln
(
1− e−Ntx

) ∼= N2 − 1

π2

[
3

N2
t

ζ(6) +
105

4N4
t

ζ(8) +
1449

8N6
t

ζ(10)

]
.

Next, note that, introducing the following polar parametrization for the yi coordinates:
y1 = y sin θ cosφ
y2 = y sin θ sinφ
y3 = y cos θ

and denoting c = cos θ, one gets:

− 9(N2 − 1)

4N4
t π

3

∫
R3

d3y y4
3 ln

(
1− e−Ntx

) ∼= −9(N2 − 1)

2π2N4
t

∫ 1

−1
dc c4

∫ ∞
0
dy y6 ln

(
1− e−2y−g)

∼=
18(N2 − 1)

35π2N4
t

∫ ∞
0
dy

y7

e2y+g − 1

[
1− y2

2N2
t

]
∼= 81

N2 − 1

8π2

[
1

N4
t

ζ(8) +
21

N6
t

ζ(10)

]
.

Similarly:

−3(N2 − 1)

2N4
t π

3

∫
R3

d3y y2
1y

2
3 ln

(
1− e−Ntx

)
∼= −3(N2 − 1)

2π2N4
t

∫ 2π

0
dφ cos2 φ

∫ 1

−1
dc c2(1− c2)

∫ ∞
0
dy y6 ln

(
1− e−2y−g)

∼= 9
N2 − 1

4π2

[
1

N4
t

ζ(8) +
21

N6
t

ζ(10)

]
.
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The remaining terms evaluate to:

−15(N2 − 1)

8N6
t π

3

∫
R3

d3y y6
3 ln

(
1− e−Ntx

)
∼= −15(N2 − 1)

4π2N6
t

∫ 1

−1
dc c6

∫ ∞
0
dy y8 ln

(
1− e−2y−g)

∼=
N2 − 1

8π2

[
675

N6
t

ζ(10)

]
,

to:

−9(N2 − 1)

4N6
t π

3

∫
R3

d3y y2
1y

4
3 ln

(
1− e−Ntx

)
∼= −9(N2 − 1)

4π3N6
t

∫ 2π

0
dφ cos2 φ

∫ 1

−1
dc c4(1− c2)

∫ ∞
0
dy y8 ln

(
1− e−2y−g)

∼=
N2 − 1

4π2

[
81

N6
t

ζ(10)

]
and finally:

−N
2 − 1

4N6
t π

3

∫
R3

d3y y2
1y

2
2y

2
3 ln

(
1− e−Ntx

)
∼= −N

2 − 1

4π3N6
t

∫ 2π

0
dφ cos2 φ sin2 φ

∫ 1

−1
dc c2(1− c2)2

∫ ∞
0
dy y8 ln

(
1− e−2y−g)

∼=
N2 − 1

4π2

[
3

N6
t

ζ(10)

]
.

Plugging these results into eq. (A.3), one eventually ends up with:

p

T 4
∼=
N2 − 1

π2

[
2ζ(4) +

8

N2
t

ζ(6) +
50

N4
t

ζ(8) +
572

N6
t

ζ(10)

]
. (A.4)

Noting that:

ζ(4) =
π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, and ζ(10) =

π10

93555
,

eq. (A.4) can be rewritten as:
p

T 4
=
π2

45
(N2 − 1) ·RI(Nt), (A.5)

where:

RI(Nt) = 1 +
8

21

(
π

Nt

)2

+
5

21

(
π

Nt

)4

+
52

189

(
π

Nt

)6

+O
(
(π/Nt)

8
)
, (A.6)

which reproduces the expression given in ref. [51], and extends it to the next order in powers of
(π/Nt)

2.
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A.2 D = 2 + 1

An analogous calculation can be done for a system in D = 2 + 1 dimensions, for which eq. (A.1)
gets replaced by:

p = (N2 − 1)
T

V
lnZ1DOF

=
N2 − 1

NtN2
s

ln

∏
~p

∏
p3

 3∑
µ=1

sin2(pµ/2)

−1/2

= −N
2 − 1

2Nt

1

(2π)2

∫
([−π,π])2

d2p

Nt−1∑
l=0

ln

[
ω2 + sin2

(
πl

Nt

)]
, (A.7)

while eq. (A.2) gets replaced by:

d2p ∼= d2y · 4

N2
t

(
1 +

y2

2N2
t

+
3y4

1 + y2
1y

2
2

4N4
t

+
5y6

1 + 3y4
1y

2
2

8N6
t

)
. (A.8)

Accordingly, the Stefan-Boltzmann limit for the dimensionless ratio p/T 3, as evaluated on a finite
lattice using the integral method, reads:

p

T 3
= −(N2 − 1)N2

t

π2

∫
([0,π])2

d2p ln
(
1− e−Ntx

)
∼= −N

2 − 1

π2

∫
([−Nt,Nt])2

d2y

[
1 +

y2

2N2
t

+
3y4

1 + y2
1y

2
2

4N4
t

+
5y6

1 + 3y4
1y

2
3

8N6
t

]
ln
(
1− e−Ntx

)
∼= −N

2 − 1

π2

∫
R2

d2y ln
(
1− e−Ntx

)
− N2 − 1

2N2
t π

2

∫
R2

d2y y2 ln
(
1− e−Ntx

)
−3(N2 − 1)

4N4
t π

2

∫
R2

d2y y4
1 ln

(
1− e−Ntx

)
− N2 − 1

4N4
t π

2

∫
R2

d2y y2
1y

2
2 ln

(
1− e−Ntx

)
−5(N2 − 1)

8N6
t π

2

∫
R2

d2y y6
1 ln

(
1− e−Ntx

)
− 3(N2 − 1)

8N6
t π

2

∫
R2

d2y y4
1y

2
2 ln

(
1− e−Ntx

)
. (A.9)

Similarly to the D = 3 + 1 case, each term appearing in the last expression can be evaluated
separately. In particular, one easily finds that:

− N2 − 1

π2

∫
R2

d2y ln
(
1− e−Ntx

) ∼= N2 − 1

2π

[
ζ(3) +

1

N2
t

ζ(5) +
1

N4
t

ζ(7) +
1

N6
t

ζ(9)

]
and

− N2 − 1

2N2
t π

2

∫
R2

d2y y2 ln
(
1− e−Ntx

) ∼= 3
N2 − 1

8π

[
1

N2
t

ζ(5) +
5

N4
t

ζ(7) +
21

N6
t

ζ(9)

]
.

Next, introducing the following polar parametrization for the yi coordinates:{
y1 = y cos θ
y2 = y sin θ

,
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it is easy to prove that:

−3(N2 − 1)

4N4
t π

2

∫
R2

d2y y4
1 ln

(
1− e−Ntx

) ∼= −3(N2 − 1)

4π2N4
t

∫ 2π

0
dθ cos4 θ

∫ ∞
0
dy y5 ln

(
1− e−2y−g)

∼= 135
N2 − 1

128π

[
1

N4
t

ζ(7) +
14

N6
t

ζ(9)

]
,

while:

−N
2 − 1

4N4
t π

2

∫
R2

d2y y2
1y

2
2 ln

(
1− e−Ntx

) ∼= −N2 − 1

4π2N4
t

∫ 2π

0
dθ cos2 θ sin2 θ

∫ ∞
0
dy y5 ln

(
1− e−2y−g)

∼= 15
N2 − 1

128π

[
1

N4
t

ζ(7) +
14

N6
t

ζ(9)

]
.

Similarly:

−5(N2 − 1)

8N6
t π

2

∫
R2

d2y y6
1 ln

(
1− e−Ntx

) ∼= −5(N2 − 1)

8π2N6
t

∫ 2π

0
dθ cos6 θ

∫ ∞
0
dy y7 ln

(
1− e−2y−g)

∼=
N2 − 1

1024π

[
7875

N6
t

ζ(9)

]
and:

−3(N2 − 1)

8N6
t π

2

∫
R2

d2y y4
1y

2
2 ln

(
1− e−Ntx

)
∼= −3(N2 − 1)

8π2N6
t

∫ 2π

0
dθ cos4 θ sin2 θ

∫ ∞
0
dy y7 ln

(
1− e−2y−g)

∼=
N2 − 1

1024π

[
945

N6
t

ζ(9)

]
,

so that the final result reads:

p

T 3
∼=
N2 − 1

π

[
1

2
ζ(3) +

7

8

1

N2
t

ζ(5) +
227

64

1

N4
t

ζ(7) +
8549

256

1

N6
t

ζ(9)

]
. (A.10)

Eq. (A.10) can be recast in the form:

p

T 3
=
N2 − 1

2π
ζ(3) · R̃I(Nt), (A.11)

with:

R̃I(Nt) = 1 +
7

4

1

N2
t

ζ(5)

ζ(3)
+

227

32

1

N4
t

ζ(7)

ζ(3)
+

8549

128

1

N6
t

ζ(9)

ζ(3)
+O

(
N−8
t

)
. (A.12)
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In contrast to the D = 3 + 1 case, the latter expression cannot be rewritten as a simple power
series in (π/Nt)

2 with rational coefficients, because, for odd values of x, the πx/ζ(x) ratio is not
just an integer (or a rational) number. However, note that, defining:

S±(n) =

∞∑
k=1

1

kn (e2πk ± 1)
,

it is possible to write:

ζ(3) =
7

180
π3 − 2S−(3) ' 1.20205690316 . . .

ζ(5) =
1

294
π5 − 72

35
S−(5)− 2

35
S+(5) ' 1.0369277551 . . .

ζ(7) =
19

56700
π7 − 2S−(7) ' 1.0083492774 . . .

ζ(9) =
125

3704778
π9 − 992

495
S−(9)− 2

495
S+(9) ' 1.0020083928 . . .
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