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1 Introduction

An accurate description of material in the ATLAS inner detector is crucial to the understanding
of tracking performance, as well as other reconstructed objects such as electrons, jets and miss-
ing transverse momentum. Traditionally, photon conversions, which are sensitive to the radiation
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length of material, are used to map the detector. To quantify the amount of material in terms of
interaction lengths, the measurement must be converted from radiation lengths, which requires a
very precise knowledge of the actual composition of the material, or a direct measurement of quan-
tities sensitive to the interaction length must be made. This paper describes a direct measurement
using the reconstruction of secondary vertices due to hadronic interactions of primary particles,
and is based on a careful comparison of the secondary vertex yield in data with a simulation of the
ATLAS inner detector. The simulation implements precise information about the inner detector
components, and this study aims to validate its correctness.

In addition to directly probing the number of hadronic interaction lengths of material, another
advantage of studying such interactions is the excellent spatial resolution of the resulting recon-
structed secondary vertices. This property is exploited to study the precise location of the material.
Since hadronic interactions vertices usually result from low to medium energy primary hadrons
(with average momentum, 〈p〉 around 4 GeV, and with about 96% having p < 10 GeV) the outgo-
ing particles have low energy and large opening angles between them. This contrasts with photon
conversions, where the opening angle between the outgoing electron-positron pair is close to zero.
Consequently, the technique presented here has a much improved spatial resolution. Hadronic in-
teractions will often produce more than two outgoing particles with momenta high enough to be
reconstructed by the tracking system. An inclusive vertex finding and fitting package is used to
reconstruct these vertices.

This paper is structured as follows: section 2 gives a brief description of the inner detector,
section 3 gives details of the data sample and track selection criteria used in this analysis, and sec-
tion 4 contains a description of the vertex-finding algorithm. Section 5 contains qualitative results
from data and comparisons with Monte Carlo simulations (MC). Section 6 describes the various
systematic uncertainties, which are used in section 7 to make quantitative comparisons with MC.

2 Inner detector

The inner detector consists of a semi-conductor pixel detector, a semi-conductor microstrip detector
(SCT), and a transition radiation tracker (TRT), all of which are surrounded by a solenoid magnet
providing a 2 T field [1, 2]. It extends from a radius1 of about 45 mm to 1100 mm and out to |z| of
about 3100 mm. A quarter section of the inner detector is shown in figure 1. It provides excellent
track impact parameter and momentum resolution over a large pseudorapidity range (|η | < 2.5),
and determines the positions of primary and secondary vertices.

In the barrel region, the precision detectors (pixel and SCT) are arranged in cylindrical layers
around the beam pipe, and in the endcaps they are assembled as disks and placed perpendicular to
the beam axis. The TRT is made of drift tubes, which are parallel to the beam axis in the barrel
region, and extend radially outward in the endcap region. The envelope of the barrel pixel detec-
tor covers the radial region from 45 mm to 242 mm, which includes the active layers, as well as
supports, and extends to about ±400 mm in z. The barrel SCT envelope ranges from 255 mm to

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of
the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y
axis points upward. Cylindrical coordinates (R,φ) are used in the transverse plane, φ being the azimuthal angle around
the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η =− ln tan(θ/2).
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Figure 1. Plan view of a quadrant of the inner detector showing each of the major detector elements with
their active dimensions and envelopes. The lower part shows a zoom of the pixel region.

549 mm, and the barrel TRT sub-system covers the radial range from 554 to 1082 mm. The latter
two sub-systems extend to about ±800 mm in z. Outside the beam pipe, the regions without ma-
terial are filled with different gases, N2 and CO2 in the silicon and TRT volumes, respectively, and
for simplicity they are referred to as air gaps.

All pixel sensors in the pixel detector, in both barrel and end-cap regions, are identical and
have a nominal size of 50×400 µm2, and there are approximately 80.4 million readout channels.
The pixel detector in the barrel region has three layers, containing 22, 38, and 52 staves in azimuth,
respectively. The layers are concentric with the beam pipe. Each stave contains 13 modules along
z, and each module contains about 47000 individual pixels. A ‘zoomed-in’ view of a module can
be seen in figure 4.4 of ref. [2]. In the SCT barrel region there are small angle stereo strips in
each layer, with one set parallel to the beam direction to measure R− φ and the other set at an
angle of 40 mrad, which allows for a measurement of the z-coordinate. The endcap SCT detector
has a set of strips running radially outward and a set of stereo strips at an angle of 40 mrad to the
former. The total number of readout channels in the SCT is approximately 6.3 million. The TRT
consists of 298,000 drift tubes with diameter 4 mm, and provides coverage over |η | < 2.0. The
material measurements in this paper are focused mainly on the beam pipe and the pixel detector in
the barrel region.
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3 Data samples, track selection and reconstruction

3.1 Data samples

The data used in this analysis were collected during March-June 2010 in proton-proton collisions
at a center-of-mass energy of 7 TeV. During this initial period the instantaneous luminosity was
approximately 1027−1029 cm−2 s−1. Data were collected using minimum bias triggers [3] and cor-
respond to approximately 19 nb−1 of integrated luminosity. Later runs with higher instantaneous
luminosity were not used. The minimum bias triggers collect single-, double- and non-diffractive
events, with the majority belonging to the last category. In order to facilitate comparisons with MC,
single- and double-diffractive contributions are effectively removed from the data and the remain-
ing events are compared with a simulated sample of non-diffractive events [3]. This is achieved
by requiring a large track multiplicity at the primary vertex. This approach works best when the
number of additional pp interactions per event (pile-up) is small, and so only the low luminosity
runs are used. It is required that there be exactly one reconstructed primary vertex in the event, and
that it should have at least 11 associated tracks; this requirement is expected to keep less than 1%
of single- and double-diffractive events, while retaining ∼ 68% of non-diffractive events. At this
stage there are ∼ 40.9 (13.5) million events in data (MC), respectively. MC events are weighted
such that the mean and width of the z-coordinate distribution of the primary vertex position match
the data. MC events were generated using PYTHIA6 [4] with the AMBT1 tune [5], simulated with
GEANT4 [6], and processed with the same reconstruction software as data. The ATLAS simulation
infrastructure is described elsewhere [7].

3.2 Track selection

Since the main goal of the track reconstruction software is to find particles originating from the
primary vertex, it puts stringent limits on the allowed values of transverse and longitudinal im-
pact parameters. As a result, the reconstruction efficiency for secondary track candidates strongly
depends on both R- and z-coordinates of the vertex they originate from.

In order to reconstruct secondary interactions, well-measured secondary track candidates
should be selected, and tracks coming from the primary vertex rejected in order to reduce com-
binatorial background. Tracks are required to have: (a) transverse momentum above 0.3 GeV,
(b) transverse impact parameter relative to the primary vertex of at least 5 mm, and (c) fit χ2/dof
< 5. The impact parameter requirement removes more than 99% of the primary tracks, as well as
many tracks produced in K0

S decays and γ conversions. In general, particles produced in secondary
hadronic interactions have much larger impact parameters, especially in comparison to γ conver-
sions, which tend to point back to the primary vertex. There is no requirement on the number of
hits in the pixel detector, since that would limit the scope of this analysis to a radius less than that of
the third layer. However, tracks are required to have at least one hit in the SCT. Constraints on the
track reconstruction are such that the efficiency to find tracks arising from secondary vertices with
|z| > 300 mm is very low, consequently this region is not considered when making quantitative
comparisons of the rate of vertex yields per event in data and MC.
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3.3 Track reconstruction in data and MC

Extensive studies of track reconstruction algorithms have been performed in data and MC and
generally the data are found to be well simulated by the MC, but there is some disagreement in the
number of reconstructed primary tracks [3]. This has a cascade effect on the analysis, in that having
more primary particles in data implies that there will be more secondary interactions, leading to
more secondary particles that can further interact in outer layers. Hence, when comparing the
number of reconstructed secondary vertices per event in data and MC, the raw yield in MC is
multiplied by a correction factor. To determine this correction, all reconstructed primary tracks are
extrapolated to find their intersections with inner detector material layers, and only tracks which
intersect a layer with |z| < 300 mm are considered further. To account for the fact that primary
tracks produced at small polar angles travel through more material thus resulting in a higher
interaction probability, each track is weighted by 1/sinθ , where θ is its polar angle. The ratio
of the weighted sum of the number of tracks (in data and MC) gives average correction factors,
which are estimated to be 1.072 at the beam pipe, 1.071, 1.061, and 1.059 at the first, second and
third pixel detector layers, respectively, and 1.057 at the first SCT layer. These scaling factors are
also used when comparing various distributions in data and MC.

The momentum spectra of primary tracks in data and MC agree reasonably well. Figure 2
shows the momentum spectra of primary tracks that intersect the beam pipe with |z| < 300 mm,
after weighting as described above. Differences in the momentum spectrum could also lead to
mismodelling of interactions. This is checked by reweighting the MC momentum spectrum to
match the data, and no significant effect was observed.

4 Description of vertex reconstruction and resolution

4.1 Vertex reconstruction

A pp collision event may have decays of short-lived particles, K0
S and Λ decays, γ conversions,

and several material interaction vertices with a priori unknown multiplicity. Clean detection of
material nuclear interactions requires reconstruction and elimination of all other secondary vertices.
A universal vertex finder, designed to find all vertices in the event, is used in this analysis.

The algorithm starts by finding all possible intersections of pairs of selected tracks. It assumes
that these two secondary tracks are coming from a single point and determines the vertex position
and modifies track parameters to satisfy this assumption. Differences between the measured track
parameters and the recalculated ones define the vertex χ2. The reconstructed two-track vertices de-
fine the full vertex structure in the track set because any N-track vertex is simply a union of corre-
sponding two-track sub-vertices. Requiring these vertices to have an acceptable χ2 (< 4.5) removes
∼ 85% of random pairings, and MC studies indicate that more than 83% of nuclear interaction ver-
tices are retained. To further reduce the number of fake vertices from random combinatorics, tracks
must not have hits in silicon layers at a radius smaller than the radius of the reconstructed vertex,
and must have hits in some layers that are at larger radii than the vertex. Vertices that fail this
criterion are removed from the list of selected two-track vertices. According to MC, this proce-
dure removes, depending on radius, anywhere from half to two-thirds of the initial set of two-track
vertices, with only a 2-10% reduction in efficiency for reconstructing nuclear interaction vertices.
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Figure 2. Momentum spectrum of primary tracks intersecting the beam pipe at |z|< 300 mm in data (points)
and MC (filled histogram). The two spectra are normalized to unity.

To finalize vertex finding, the total number of vertices in the event is minimized by merging
the two-track candidates that are nearby; this decision is based on the separation between vertices
combined with the vertex covariance matrices. Initially, any track can be used in several two-track
vertices. Such cases also must be identified and resolved so that all track-vertex associations
are unique. The algorithm performs an iterative process of cleaning the vertex set, based on
an incompatibility-graph approach [8]. At each step it either identifies two close vertices and
merges them, or finds the worst track-vertex association for multiply assigned tracks and breaks
it. Iterations continue until no close vertices or multiply-assigned tracks are left. This algorithm
successfully works on events with track multiplicity up to ∼200, which is significantly larger than
the average multiplicity in events used in this analysis (∼ 50 tracks/event).

4.2 Vertex resolutions

The spatial resolution of the reconstructed vertices depends on the quality of track reconstruction.
MC studies indicate that the resolution for hadronic interaction vertices is 200-300 µm (in both
R and z) for reconstructed vertices with R ≤ 100 mm and ∼ 1 mm for vertices at larger radii.
The resolution along the φ coordinate, i.e., transverse to R, is 100-140 µm, depending on the
radius of the vertex. At smaller radius, tracks have more hits in the pixel and SCT detectors, so
their parameters are better determined. In contrast, the radial resolution in photon conversions
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Figure 3. Non-diffractive MC: (a) z and (b) R resolutions for vertices reconstructed in the beam pipe.

is approximately 5 mm [1]. Figure 3 presents the z (left) and R (right) resolutions for nuclear
interaction vertices reconstructed at the beam pipe, where the signal is fitted with a sum of two
Gaussian functions (with a common mean), and the background is represented by a first-order
polynomial. The width of the core and the fraction of entries in it varies with radius: at the
beam pipe they range from 120 µm to 150 µm, and 50% to 54%, for R and z, respectively. The
corresponding numbers for the φ -coordinate are 60 µm, and 65%, respectively. Resolutions for
vertices with more than two tracks are slightly better than for vertices with only two tracks. For
instance, at the beam pipe ∼ 96% of the two-track vertices are within ∆R < 1 mm, whereas for
vertices with more than two tracks ∼ 95% have ∆R < 0.6 mm, where ∆R is the difference between
the radii of the true nuclear interaction and reconstructed vertex positions.

5 Reconstructed vertices in 7 TeV data

When removing fake two-track vertices, as described previously, no attempt is made to remove γ ,
K0

S , Λ candidates; these are vetoed at a later stage. The distribution of the reconstructed invariant
mass of charged particles associated to each secondary vertex is shown in figure 4, assuming the
pion mass for each track. A clear K0

S peak can be seen, as well as the smaller peak at threshold
due to γ conversions. Their mass is not zero because pion masses are incorrectly attributed to
the electrons. The 5 mm minimum requirement on the transverse impact parameter of tracks has
already strongly suppressed conversions. The ‘shoulder’ at ∼ 1200 MeV is a kinematic effect and
reflects the minimum requirement on track pT (its position changes with this threshold value). The
remaining γ conversion candidates are vetoed by removing vertices with an invariant mass less
than 310 MeV. Similarly, K0

S candidates are removed if the invariant mass lies within ±35 MeV
of the nominal K0

S mass, and Λ candidates2 are vetoed if the mass lies within ±15 MeV of the
nominal Λ mass. These mass vetoes have been applied to all the following figures and results.

2For the Λ veto, the track with the larger momentum is assumed to be the proton. According to MC, for ∼ 3% of
Λ’s the proton has the lower momentum. Since the number of reconstructed interaction vertices is about 15 times the
number of reconstructed Λ’s, many of which decay in the gaps between material layers, any resulting contamination is
small and is neglected.

– 7 –



2
0
1
2
 
J
I
N
S
T
 
7
 
P
0
1
0
1
3

Mass [GeV]

0 1 2 3 4 5 6 7 8

N
um

be
r 

of
 V

er
tic

es
 / 

0.
04

 G
eV

210

310

410

510

610 ATLAS

 = 7 TeVs -1Ldt ~ 19 nb∫

Data 2010

Figure 4. Mass of reconstructed vertices in data. All secondary vertices with |z|< 700 mm have been used.

Figure 5 shows the R vs. z distribution of the secondary vertices. MC studies indicate that
vertices inside the beam pipe and almost all of the vertices in the gaps between material surfaces
are due to combinatorial background, with a very small fraction of the latter due to interactions
with the gases in these gaps (the density of silicon is about 1000 (1500) times the density of CO2

(N2)). The beam pipe envelope, consisting of a Beryllium cylinder, followed by layers of aerogel,
kapton tape and coatings, extends from a radius of 28 mm to 36 mm; studies of this region are
described later in the paper. The horizontal bands at R∼ 47, 85, 120 mm include the pixel detector
modules and the bands at R∼ 65, 70, 105, 110 mm represent cables, services and supports. The
pixel modules and their support staves are tilted by 20◦ in the xy plane and by 1.1◦ with respect to
the beam axis. Furthermore, the pixel stave includes a ∼ 2 mm (radius) cooling pipe and carbon
supports of varying thickness (≤ 2mm). All these factors contribute to the visual thickness of the
pixel layers. Details of the pixel module structure are discussed later. The vertical bands at various
z values are supports. Figure 6 presents the y vs. x position of vertices. The beam pipe and the three
layers of the pixel detector are clearly visible. The φ structure of the pixel detector can also be seen.

5.1 Qualitative comparison of data and MC

Figures 7 and 8 compare the data and MC distributions of the R and z positions of the reconstructed
vertices. For the z projection, the reconstructed vertex radius is required to be at least that of
the beam pipe, and for the radial projection, the vertex must have |z| < 300 mm. In general,
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Figure 5. The R vs. z distribution of secondary vertices reconstructed in data. The bin width is 7 mm in z
and 1 mm in R. To aid the eye, only bins with 5 or more entries have been displayed.

agreement in both shape and absolute rate is very good. The fraction of vertices inside the beam
pipe, comprised of decays of b- and c-hadrons, K0

S , strange baryons, and random combinatorial
background due to primary tracks that fulfill the track selection criteria, is slightly larger in data
than in MC (21% vs. 19%, respectively). The data also have slightly more entries in the air gaps
between material layers. This is not unexpected as most of the vertices reconstructed in these
regions are combinatorial background due to various track categories, and the simulation, although
very good, does not make perfect predictions. Differences in the radial distribution at material
layers are discussed in the next section. The z positions of the reconstructed vertices in data agree
well with MC, but there are some differences, e.g., in the region 200 < |z| < 300 mm. Also, the
‘spikes’ are sharper in the latter.

To study the z position distributions in more detail, various material layers are considered in-
dividually. The z projections at the beam pipe and the pixel detector are shown in figure 9. The
radial values used to make the z projections were chosen after correcting for the position offsets of
the beam pipe and the pixel detector, i.e., the radius of the vertex is calculated relative to the actual
center rather than (0,0). This procedure is discussed in the next section. It is clear from figure 9 (a),
that MC underestimates the data at 200 < z < 300 mm and overestimates at−300 < z <−200 mm.
Note that the mean z position of the primary vertex in this MC sample is at –5 mm, whereas in data it
is much closer to 0. During track reconstruction a symmetric cut is placed on the maximum allowed
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Figure 6. The y vs. x distribution of secondary vertices reconstructed in data. The bin width is 1.5 mm
along both axes. All secondary vertices with |z|< 700 mm have been used. To aid the eye, only bins with 5
or more entries have been displayed.

value of the z position of a track’s point of closest approach to the beam axis, which is required to be
within±250 mm. This causes a small z asymmetry in the number of tracks, which propagates to the
z positions of secondary vertices. This effect is diluted as the secondary vertex radius increases, but
can still be seen in the corresponding distributions for the first two layers of the pixel detector. In
the third layer, there appears to be a mismatch at −470 < z <−400 mm. Additionally, most of the
‘spikes’ are much sharper in the MC than in data. This is partly because the MC has a simplified ge-
ometry for some detector elements, and partly because misalignments in data can cause broadening.
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Figure 7. Radial positions of reconstructed vertices for data (points) and MC (filled histogram), with |z| <
300 mm.

5.2 Position of beam pipe and pixel detector

In figure 7, the beam pipe appears to be broader in data than in MC. In reality it is not centered
around (0,0). This is clearer in figure 10 (a), which shows the φ vs. R coordinates of the found
vertices in data at the beam pipe and the first layer of the pixel detector. The sinusoidal behavior
is a signature of an object not being centered around the nominal origin. The actual origin can be
determined by fitting the profile along the φ axis, obtained from figure 10 (a), to p0 + p1× sin(φ +
p2), where pN , N=0-2 are the fit parameters. The φ profile and the fit are shown in figure 10 (b).

The fit gives the center of the beam pipe to be (−0.22± 0.04,−2.01± 0.04) mm (the uncer-
tainties quoted here are from the fit, and do not include any systematic effects). A shift of this
magnitude is not unexpected, given the mechanical tolerances involved in placing the beam pipe
along the center-line of the detector. Using the same procedure, the first and second layers of the
pixel detector are found to be centered around (−0.36± 0.03,−0.51± 0.03) mm, and the third
layer is centered around (−0.19±0.02,−0.29±0.02) mm.

5.3 Details of modules in the pixel detector

A module in the pixel detector has a complex structure [2], and to explore finer details vertex
positions are transformed from the global to the local pixel module coordinate system and all
modules within one layer are overlaid. The excellent resolution of this technique makes such
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Figure 8. z positions of reconstructed vertices for data (points) and MC (filled histogram) for radius at or
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a detailed study of the inner detector elements possible. Transforming to the local frame also
accounts for misalignments at the module level. In this coordinate system, the x(y) axis is along
the shorter (longer) edge of a module, and the z axis points out of the plane of the module.

A ‘zoomed-in’ view of z vs. x coordinates for the first layer of the pixel detector in data and
MC can be seen in figures 11 (a) and (b), respectively. The circular feature in both distributions
at 0 < x < 5 mm is the cooling pipe, the rectangular features in the MC at −1 < x < 9 mm and
6 < z < 11 mm and 2 < x < 5 mm and z∼ 12 mm are cables and connectors, which in reality are
spread over a wider region, and also are in a slightly different location. The region with the most
vertices, −10 < x < 8 mm and z∼ 0 mm, is the silicon sensor itself. The rectangular feature at x∼
–5 mm and z∼ –1 mm in the data plot shows the location of a capacitor. Also, there appears to be
a difference in the density of vertices inside the cooling pipe; this is related to the fact that in the
MC the cooling medium is in liquid phase, whereas in reality it is mainly in gaseous phase.

6 Systematic uncertainties

6.1 Tracking efficiency

Previous studies have shown that the overall scale of the track reconstruction efficiency of charged
particles in data is well simulated in the MC, and the main source of systematic uncertainties in
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(a) z at the beam pipe
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(b) z at the first pixel detector layer
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(c) z at the second pixel detector layer
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(d) z at the third pixel detector layer

Figure 9. z positions of reconstructed vertices for data (points) and MC (filled histogram). The radial ranges
used for these projections are, (a) 29-35 mm, (b) 46.5-73.5 mm, (c) 85-111 mm, and (d) 118-143 mm.

the reconstruction efficiency of charged hadrons is the uncertain knowledge of the material in the
inner detector [3]. An increase (decrease) in material leads to an increase (decrease) in the number
of hadronic interactions, hence to a decrease (increase) in the reconstruction efficiency. The effect
on the number of reconstructed interaction vertices is a non-trivial interplay between these two
effects. Since the overall scale of the reconstruction efficiency is well understood, an incorrect
description of the inner detector material in the MC will lead to differences in the reconstruction
efficiency as a function of the location of the vertex where the secondary tracks originate.

In order to make a comparison of the efficiency in data and MC as a function of vertex posi-
tions, independent of the estimated hadronic interaction rate, K0

S decays are used. The momentum
spectrum of K0

S candidates in data agrees with MC, thereby making this technique feasible. They
provide an ideal source of charged pions to study this issue. Pions produced in these decays have
large values of transverse impact parameter (which, on average, increase with K0

S decay distance),
and probe the material in a similar manner as the tracks emerging from a secondary interaction
vertex. The K0

S candidate mass distributions at various decay lengths,3 viz., 39-45 mm, 46-60 mm,

3The choice of these regions is mainly driven by the need to maximize the sample size at large decay distances.

– 13 –



2
0
1
2
 
J
I
N
S
T
 
7
 
P
0
1
0
1
3

(a) φ vs. R
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(b) φ profile at beam pipe

Figure 10. (a) φ vs. R of reconstructed vertices in the beam pipe and the first layer of the pixel detector,
with |z|< 300 mm. The bin width is 1 mm in radius, and 0.1 in φ . To aid the eye, only bins with 20 or more
entries are displayed. (b) A fit to the φ profile of reconstructed vertices. The y-axis is the mean radius in a
small range around the beam pipe (26≤ R < 39 mm) for each φ bin. The bin width is 0.1 in φ .

(a) Data (b) MC

Figure 11. (a) Data, (b) Non-diffractive MC. z vs. x in the local coordinate system for the first pixel detector
layer, where |z| in the global coordinate system is required to be less than 300 mm. The bin width is 0.1 mm
in z and x. The limits on the minimum and maximum number of entries per bin have been adjusted for
presentational purposes, and to highlight various features.

60-85 mm, and above 85 mm, are fitted by a sum of two Gaussian functions (with common mean)
for the signal and a first-order polynomial for the background. The K0

S yield in each of these radial
regions is normalized to the K0

S yield inside the beam pipe (decay length within 10-25 mm), thus
giving a radially-dependent ratio of yields. These ratios are determined separately in data and MC.
For each radial region a double ratio using the ratio of yields in data and MC is determined.

If the dependence of the reconstruction efficiency for secondary tracks on vertex position
was perfectly simulated in the MC, this double ratio would be unity. Although close to unity in
most of the regions, this double ratio has the largest deviation in the 60-85 mm region, where
it has a value of 0.93± 0.02. Consequently, this (largest) deviation from unity is taken as the
systematic uncertainty on the efficiency of reconstructing secondary tracks, which corresponds

– 14 –



2
0
1
2
 
J
I
N
S
T
 
7
 
P
0
1
0
1
3

to an uncertainty of 3.5% per track. This is taken to be fixed over all allowed values of pT, η , φ ,
impact parameters of the track, and R and z of the originating vertex.

6.2 Selection criteria during vertex finding

Systematic effects in the vertex finding and fitting algorithms due to mismodelling of track
parameters are determined by varying criteria to (a) merge nearby vertices, (b) uniquely assign
tracks to a single vertex, and, (c) change the allowed range of χ2 for two-track vertices. In each
case, values for selection criteria are (individually) varied in MC and data, and the difference
between MC predictions and what was actually observed in data is found to be less than 1 %. A
total systematic uncertainty of 1% is assigned due to these sources.

6.3 Other sources

To allow data to be compared to only non-diffractive MC, the contamination from single- and
double-diffractive events in data is reduced by requiring at least 11 tracks at the primary vertex.
MC studies suggest that this criterion still leaves a small amount of contamination of diffractive
events (∼ 1%). To investigate this, a stricter requirement is made on the track multiplicity at
the primary vertex, expected to reduce the contamination from ∼ 1% to ∼ 0.1%. This tighter
requirement should have no effect on the non-diffractive MC other than to reduce the overall
statistics. In data, the change in yield is∼ 0.6% more than the expectation from the non-diffractive
MC sample, and this difference is taken to be the systematic uncertainty due to this source.

When comparing yields in data and MC, the latter is corrected because it has fewer primary
tracks. This was discussed in section 3.3. Different criteria are used to decide what constitutes a
primary track, e.g., varying selections on transverse and longitudinal impact parameters, number
of hits in the pixel detector. Correction factors for primary and secondary tracks are investigated
separately (the latter selected by requiring the transverse impact parameter relative to the primary
vertex to be larger than 5 mm), and an average is determined based on estimates (from MC) for
the fraction of interactions that are due to secondary tracks. A systematic uncertainty of 1% is
assigned from this source. This procedure does not explicitly account for neutral hadrons, viz.,
neutrons and neutral kaons. However, the number of neutrons produced during fragmentation is
related to the proton yield due to isospin invariance in strong interactions; similarly, the yield of
neutral kaons is related to the yield of charged kaons. In addition, many of the K0

S’s will decay
before they can interact. Finally, the yield of primary neutrons and kaons is about one-quarter
of the yield of primary protons and charged pions [4]. Since the procedure corrects for charged
hadrons, i.e., protons and kaons, the systematic uncertainty from not explicitly accounting for
neutral hadrons is expected to be small and is neglected.

To account for the shift in the location of the beam pipe, yields are determined after correcting
for its position offset. Varying the x,y offsets within ±1σ of the central values leads to changes
in yields of less than 0.1%. In the case of the pixel detector, the effect of correcting the position
offset on the yields is equally small. Hence, no systematic uncertainty is assigned.

6.4 Total systematic uncertainty

The systematic uncertainty on track reconstruction is propagated into the total uncertainty by using
MC and randomly removing 3.5% of the tracks from true nuclear interaction vertices that match
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reconstructed tracks passing all other selection criteria, and observing that 6.3% of the true vertices
are lost. This decrease is taken to be the systematic uncertainty on the ratio of vertex yields in
data and MC from this source. Combining this with all other sources leads to a total systematic
uncertainty of 6.6% on the ratios.

An additional uncertainty arises from the modeling of hadronic interactions in GEANT4, but
this is hard to quantify. This motivates the study presented in section 7.2, which investigates
vertex yields in the beryllium part of the beam pipe. The good agreement between the vertex yield
measured in data and simulation when focusing on the well-known areas of the detector gives
confidence in the modeling. The uncertainty from the modeling of the composition of primary
particles in PYTHIA6 is expected to be much smaller.

7 Numerical comparison of data and MC

7.1 Vertex yields

Table 1 displays yields in selected material layers. The chosen regions include the silicon sensors,
as well as supports, cables and services. The beam pipe envelope includes an 800 µm thick
beryllium cylinder, 4 mm of aerogel and thin layers of materials such as kapton tape and coatings.
The yields in data presented here and later are given after the position offset correction procedure
described in section 5.2. Given that most of the vertices lie in |z| < 300 mm, all the following
figures and results will be restricted to this region. Also, MC studies indicate that the purity of
reconstructed vertices (i.e. the fraction of all reconstructed vertices which match a true MC vertex)
degrades at larger values of |z|. In this restricted z region, and for radii at or greater than the
beam pipe, the data sample consists of more than 106 vertices, with about 42% of them containing
two oppositely charged tracks, 51% having two tracks of the same charge, and the remaining
7% having three or more tracks, which is in good agreement with MC, where the corresponding
fractions are 45%, 49% and 6%, respectively.

The yield of reconstructed vertices is a function of radius. Some of the reasons for this de-
pendence are (a) a decrease in the reconstruction efficiency of secondary tracks emerging from
hadronic interactions as a function of radius, (b) a decrease in the number of primary particles
that intersect successive layers within |z|< 300 mm, thereby leading to fewer interactions, and, (c)
the difference in the amount of material in various layers. In addition, the momentum spectrum of
tracks intersecting the outer layers is slightly softer on average than those intersecting the inner lay-
ers, and this may also contribute to a difference in the number of interactions. The efficiency to find
reconstructible vertices, i.e. vertices that have at least two tracks with pT and η satisfying the selec-
tion criteria, ranges from about 5% at the beam pipe to 1% at the third layer of the pixel detector, and
0.5% at the first SCT layer; these include efficiencies for both track and vertex reconstruction steps.

7.2 Details of interactions in beryllium part of beam pipe

To address the additional uncertainty arising from the modeling of hadronic processes in
GEANT4 [6, 9], vertices are reconstructed in the beryllium part of the beam pipe. The yields of
such vertices and the kinematic variables describing them are compared between data and MC.
This region is chosen because the material is a single element and its dimensions (radial thickness
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Table 1. Yield of reconstructed vertices (data).

Vertex Radius range Yield |z|< 300 mm Yield |z|> 300 mm

Beam Pipe (28-36 mm) 542643 1040

1st pixel layer (47-72 mm) 517835 3541

2nd pixel layer (85-110 mm) 133395 6611

3rd pixel layer (119-145 mm) 83443 24960

1st SCT layer (275-320 mm) 9746 11373

Table 2. Comparison of track multiplicity, in MC and data, at secondary vertices in the beryllium part of the
beam pipe (statistical uncertainties only).

Track Multiplicity MC (stat.) Data (stat.)

Fraction of 2-track vertices 0.916±0.001 0.906±0.001

Fraction of 3-track vertices 0.079±0.001 0.087±0.001

Fraction of ≥ 4-track vertices 0.0058±0.0003 0.0076± 0.0002

of 800 µm) and location are precisely known. Since the beam pipe is close to the collision point,
the secondary track reconstruction efficiency and the purity of the reconstructed vertices are
high. As discussed in section 6.1, secondary track reconstruction is well simulated in MC. Under
the assumption that the composition of primary particle types in data is correctly predicted in
PYTHIA6 [4], such comparisons allow to check the quality of the modeling in GEANT4. According
to the MC, particles interacting in the beam pipe are expected to be charged pions (62%), protons
(17%), neutrons (14%) and kaons (7%). The momenta of charged particles that impinge on the
beam pipe agree between data and MC, as shown in figure 2. The observed vertex yields in
MC and data are 70297 and 227921, respectively, and the rate of secondary vertices per event is
(5.57± 0.02)× 10−3 in the MC, and (5.58± 0.01)× 10−3 in data, resulting in a ratio of yields
in data to MC of 1.002± 0.004± 0.066, where the first uncertainty is statistical and the second
is systematic. For determining the yield in data, the radial position of the vertices are taken
relative to (–0.22,–2.0) mm. These rates include fake vertices. From MC studies, the purity of the
reconstructed vertices is estimated to be ∼ 82%.

The breakdown of track multiplicity for the reconstructed vertices in MC and data are shown
in table 2. Although the hierarchy of track multiplicity is well reproduced, there appears to be
some numerical discrepancies, which cannot be explained only by the systematic uncertainty on
the reconstruction efficiency of secondary tracks, and may point to insufficient accuracy in the
modeling of hadronic interactions in GEANT4. Figure 12 presents distributions of the invariant
mass of the vertex (left), and |∑~p | (right), i.e., the magnitude of the vector sum of the momenta of
the outgoing tracks. These variables are useful in understanding the kinematics of the interaction.
Although the overall shapes of the mass and |∑~p | distributions are in reasonable agreement
between data and MC, there are some differences, e.g., in the high mass tail, which could be used
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Figure 12. Kinematic variables for reconstructed vertices in the beryllium part of the beam pipe for data
(points) and MC (filled histogram).

Table 3. Comparison of rates of reconstructed vertices per event in MC and data. The pixel and SCT layers
include detector modules, services and support structures. Statistical and systematic uncertainties are listed.

Vertex Radius range MC(×10−3) Data(×10−3) Data/MC

(stat.) (stat.) (stat., syst.)

Beam Pipe (28-36 mm) 12.76±0.03 13.27±0.02 1.040±0.003±0.069

1st pixel layer (47-72 mm) 13.40±0.03 12.66±0.02 0.945±0.003±0.063

2nd pixel layer (85-110 mm) 3.47±0.02 3.26±0.01 0.94±0.01±0.06

3rd pixel layer (119-145 mm) 1.97±0.01 2.04±0.01 1.04±0.01±0.07

1st SCT layer (275-320 mm) 0.22±0.004 0.24±0.002 1.09±0.03±0.07

to further refine models of hadronic interactions.

7.3 Comparison of vertex yields in data and MC

Table 3 presents a comparison of the rate of interaction vertices/event between data and MC. Only
statistical uncertainties are quoted for the yields for both data and MC, while the ratio of yields also
includes the systematic uncertainty. These rates include fake vertices. From MC studies, the purity
of reconstructed vertices in this restricted z region is estimated to be ∼ 82%, 73%, 78%, 46%,
and 49%, respectively, at the five material layers listed in the table.4 In general, the agreement is
very good, i.e., at the 7% level of the systematic uncertainty. The beam pipe envelope contains
beryllium, layers of aerogel, kapton tape and coatings, and the pixel detector and SCT regions
include supports, cables, and services.

4To determine if the reconstructed vertex position matches that of the a true interaction vertex, the R and z position
of the two are required to be within ranges that depend on the vertex resolutions discussed in section 4.2.
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Table 4. Comparison of rates of reconstructed vertices per event in MC and data in the pixel detector
modules.

Vertex Location MC(×10−3) Data(×10−3) Data/MC

(stat.) (stat.) (stat., syst.)

1st pixel layer 6.08±0.02 6.16±0.01 1.01±0.01±0.07

2nd pixel layer 1.65±0.01 1.71±0.01 1.04±0.01±0.07

3rd pixel layer 1.40±0.01 1.43±0.01 1.02±0.01±0.07

7.4 Vertex yields within the modules of the pixel detector

To make quantitative comparisons of the material in the pixel detector modules, yields of found
vertices are compared in regions that lie within the bulk of the module and supporting structure.
These results are presented in table 4. Vertices within a box whose corners in (x,z), as measured in
the local module coordinate system, are at (–11.5,–2.1) mm and (11.1,1.1) mm, are counted. Only
statistical uncertainties are quoted for the yields in both data and MC, while the ratio of yields
includes the systematic uncertainty. The agreement is again very good. Although all the modules
are the same, the systematic uncertainty is not completely correlated between the three layers. For
instance, vertex resolutions worsen with increasing radius, leading to a larger migration of vertices
in and out of the chosen boxes.

In addition, the number of vertices inside the cooling pipe is different in data and MC,
and results for the first layer, where the effect is most clearly visible, indicate that the fraction
of vertices inside the cooling pipe relative to all vertices in that layer is 4.6± 0.1% in MC
and 1.7± 0.1% in data, where the uncertainties are statistical. Since this is a ratio, systematic
uncertainties largely cancel.

8 Conclusions

Secondary vertices due to hadronic interactions of primary particles have been reconstructed and
used to study the distribution of material within the ATLAS inner detector volume. Reconstruction
of secondary vertices far from the primary vertex uses a subset of tracks that are not normally
used in most analyses, thus, this analysis provides an interesting challenge for tracking algorithms
optimized for tracks coming from the primary vertex.

The reconstructed secondary vertices have excellent spatial resolution, approximately 0.2-
1 mm, in both longitudinal and transverse directions. This resolution is significantly better than
the spatial resolution of vertices produced by photon conversions, which are routinely used for
material estimation. This leads to a precise radiography of the as-built tracking sub-systems and
facilitates comparison with the implementation of the detector geometry in MC. For instance, the
detailed structure of modules in the pixel detector has been investigated, and the distribution of
material in data and MC are found to be in very good agreement. However, some discrepancies in
the MC model have been discovered, the most important being that, in reality, the beam pipe is not
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centered around the (0,0) position. Another discrepancy is in the density of the fluid used to cool
the pixel modules. In reality, the fluid is a mix of liquid and gaseous phases, whereas in MC, it is
assumed to be a liquid. These features have been included in newer versions of the MC.

The estimation of the exact amount of material based on the number of reconstructed vertices is
affected by many sources of systematic uncertainty, viz., the secondary track and vertex reconstruc-
tion efficiencies, the composition of primary particles that interact in the inner detector, their pT,η

distributions, and the accuracy of hadronic interaction modeling in GEANT4. In the current analysis
the experimental systematic uncertainties, i.e., those arising from track and vertex reconstruction,
have been estimated from data. Differences between data and MC in the pT and η distributions of
the primary tracks are accounted for via a reweighting procedure. This leads to an estimate of the
total experimental systematic uncertainty of about 7%. Results obtained for the well-known parts
of the inner detector, the beam pipe and pixel modules, provide confirmation for this estimate.

There are additional sources of systematic uncertainty, and the numerical estimate of those
uncertainties is outside the scope of the current analysis. They are due to an incomplete knowledge
of the composition of primary particles in non-diffractive events, in particular, the flux of neutral
particles, and the modeling of hadronic interactions in GEANT4. The primary particle composition
in PYTHIA6 is based on data from previous experiments, e.g., those at the Large Electron-Positron
Collider at CERN. Due to the nature of the fragmentation process, it is expected that the total
number of primary particles in pp collisions is more than at e+e− collisions, but the fractions of
the pions, kaons, baryons, etc., are similar. However, this needs to be verified. In addition, the
current study demonstrates that, in general, the quality of GEANT4 predictions is quite good, but
some differences in the distributions of kinematic variables do exist between data and MC, and
these should be taken into account in future refinements.
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D.W. Miller30, R.J. Miller88, W.J. Mills168, C. Mills57, A. Milov171, D.A. Milstead146a,146b,
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de Fı́sica, Universidad Técnica Federico Santa Marı́a, Valparaı́so, Chile
32(a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department

of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of
Physics, Nanjing University, Jiangsu; (d)High Energy Physics Group, Shandong University,
Shandong, China

– 34 –



2
0
1
2
 
J
I
N
S
T
 
7
 
P
0
1
0
1
3

33Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and
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113Palacký University, RCPTM, Olomouc, Czech Republic
114Center for High Energy Physics, University of Oregon, Eugene OR, U.S.A.
115LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116Graduate School of Science, Osaka University, Osaka, Japan
117Department of Physics, University of Oslo, Oslo, Norway
118Department of Physics, Oxford University, Oxford, U.K.
119(a)INFN Sezione di Pavia; (b)Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia,
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LPTPM, Oujda; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
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