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c Dipartimento di Fisica, Università degli Studi dell’Aquila, 67010 Coppito (AQ)
d INFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi (AQ), Italy
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Abstract

Assuming the existence of a primordial asymmetry in the dark sector, a scenario
usually dubbed Asymmetric Dark Matter (aDM), we study the effect of oscillations
between dark matter and its antiparticle on the re-equilibration of the initial asymme-
try before freeze-out, which enable efficient annihilations to recouple. We calculate the
evolution of the DM relic abundance and show how oscillations re-open the parameter
space of aDM models, in particular in the direction of allowing large (WIMP-scale)
DM masses. A typical wimp with a mass at the EW scale (∼ 100 GeV − 1 TeV)
presenting a primordial asymmetry of the same order as the baryon asymmetry nat-
urally gets the correct relic abundance if the DM-number-violating ∆(DM) = 2 mass
term is in the ∼ meV range. The re-establishment of annihilations implies that con-
straints from the accumulation of aDM in astrophysical bodies are evaded. On the
other hand, the ordinary bounds from BBN, CMB and indirect detection signals on
annihilating DM have to be considered.
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1 Introduction

Dark Matter (DM) constitutes a sizable fraction of the current energy density of the Uni-
verse, corresponding to ΩDMh

2 = 0.1126± 0.0036 [1]1. A leading explanation for DM in the
last three decades has been to postulate the existence of a cosmologically stable weakly-
interacting massive particle (WIMP), as well-motivated by Standard Model extensions at
the electroweak scale. Most of the proposed candidates arising in these frameworks are
either their own antiparticles (e.g. the Majorana neutralino in SUSY) or it is assumed
that DM particles and anti-particles are produced in equal numbers, in contrast to what
happens in the visible sector, i.e. for baryons. The origin of DM in both cases is explained
in terms of the standard freeze-out mechanism, by which the annihilations of DM and its
anti-particle naturally stop when the expansion of the universe overcomes the strength of
their cross section, thus leaving the current DM abundance as the left-over of an incomplete
annihilation process. The only crucial parameter setting ΩDM, in this standard framework,
is indeed the annihilation cross section.

With the experimental programme to search for WIMPs being close to reaching its cul-
mination point, theorists have increasingly considered deviations with respect to standard
paradigm presented above. One route is to assume a different cosmological history [2],
or to consider very feebly interacting particles which would have never reached thermal
equilibrium [3, 4].

Another possibility is to assume that DM particles were once in thermal equilibrium
with an initial asymmetry between particles and anti-particles, as originally considered in
Technicolor-like constructions [5, 6, 7, 8, 9] or mirror models [10, 11, 12, 13, 14, 15, 16], but
also in other contexts [17, 18, 19, 20, 21, 22]. In the latest two years, there has been a revival
of interest for this scenario, dubbed Asymmetric Dark Matter (aDM) [23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], with the aim in
particular of connecting the DM abundance to the abundance of baryons, i.e. to understand
the origin of the ratio ΩB/ΩDM ∼ 1/5. (ΩBh

2 = 0.0226±0.00053 [1]). A common production
history for the dark and visible matter, in fact, provides an elegant explanation of why the
two densities are so close to each other. This approach, in its simplest realizations, suggests
a rather light particle, O(5 GeV): this does not match the expected scale of new physics,
but part of the community has seen in it intriguing connections with some recent hints
of signals in various direct detection experiments [49].2 Like for the baryonic abundance,
if there is an asymmetry in the dark sector, as soon as annihilations have wiped out the
density of (say) antiparticles, the number density of particles remains frozen for lack of
targets, and is entirely controlled by the primordial asymmetry rather than by the value of
the annihilation cross section. This is why this scenario appears rather constraining on the
value of the DM mass.

This conclusion, however, changes in the presence of oscillations between DM and an-
tiDM particles, and it is the purpose of this paper to study this in detail. Such oscillations
can indeed replenish the depleted population of ‘targets’. Annihilations, if strong enough,

1Here ΩDM = ρDM/ρc is defined as usual as the energy density in dark matter with respect to the critical
energy density of the Universe ρc = 3H2

0/8πGN , where H0 is the present Hubble parameter. h is its reduced
value h = H0/100 km s−1Mpc−1.

2Some works have however shown how the connection between the baryon asymmetry and the DM
asymmetry can be preserved even for DM particles with masses in the WIMP (100 GeV − 1 TeV) range
e.g. [28].
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can then re-couple and deplete further the DM/antiDM abundance. The final DM relic
abundance is therefore attained through a more complex history than in the standard case
of aDM, and in closer similarity to the freeze-out one. Somehow, the phenomenology asso-
ciated to oscillations has not been yet studied in detail. The effect of oscillations between
DM and DM was mentioned only a few times in the literature [24, 25, 31, 37, 46]. In these
works, an oscillation mechanism between particles and antiparticles was considered only
at late times. In fact, oscillations were prevented by assumption from occurring too early,
when annihilations are still coupled, in order to maintain the simple relation between the
DM asymmetry and the baryon asymmetry. We are in contrast interested in the opposite
situation where oscillations do play a role and control the final relic abundance. This situa-
tion is possible and not unlikely: there is no specific physical reason why oscillations could
not start early on, and therefore this situation should not be disregarded. Moreover, it is
an instructive setup in the sense that it fills a gap between the standard thermal freeze
out prediction (where ΩDM does not depend explicitely on the DM mass but only on the
annihilation cross section 〈σv〉), and the aDM prediction where ΩDMh

2 does not depend on
〈σv〉 but only on the primordial DM asymmetry.

Another interesting consequence of adding oscillations on top of aDM concerns the
phenomenological bounds. Bounds on the traditional aDM framework have been studied in
several works [52]: most constraints follow from possible decays of aDM particles or from
the effect of accumulation in stars. If, however, aDM annihilates again at late times, as it
does in the scenarios that we are considering, most of such bounds are evaded in a natural
way. On the other hand, the revival of annihilations leads to indirect detection signals and
subjects our framework to the usual constraints on annihilating DM, as we will discuss
below.

The rest of the paper is organized as follows. In Section 2 we briefly review some theory
motivations for having DM/antiDM oscillations and we make contact between the phe-
nomenological parameter δm, which enters in the physics of oscillations, and the scales of
possible underlying particle physics models. In Sec. 3 we lay down the formalism that we
use for treating the system of annihilating and oscillating DM particles, and we illustrate
the outcome in a few illustrative cases. We also include in the treatment the elastic scat-
terings that DM particles have with the primordial plasma and see that these can have an
important effect in modifying the evolution. In [50] and [51] a detailed study of the evolu-
tion (Boltzmann) equations of the populations of aDM has been performed: our work is a
generalization of these results to the case in which DM and DM oscillations also happen. In
Sec. 4 we present more systematically the results as a function of the choices of parameters
in the system, and individuate the interesting regions of the parameter space. In Sec. 5 we
discuss the impact of the current constraints (from cosmology, astrophysics and colliders)
on our parameter space. Finally, Sec. 6 summarizes our conclusions.

2 Theory motivations

In this work we assume that the dark matter particle DM is not its antiparticle DM and
we assume that there is a primordial asymmetry between the two populations. We will
follow a phenomenological approach, in the sense that we are agnostic about the the origin
of such primordial asymmetry: we only assume its existence and we study the evolution of
the two populations in the presence of oscillations generated by a ∆(DM) = 2 mass term,
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δm. We assume that all operators responsible for the asymmetry are switched off when we
start following the evolution, which is reasonable when considering WIMP-scale particles.

The effect of ∆(DM) = 2 operators is to introduce a mass splitting and mixing between
DM and DM, which are no longer mass eigenstates. Oscillations will be cosmologically
relevant if δm & H ∼ T 2/mPl. Therefore, it is clear that for a too large δm, oscillations
will start too early, well before annihilations freeze-out and we recover a standard symmetric
DM freeze-out scenario. If on the other hand, δm is small, oscillations may start during or
after annihilations freeze-out, leading to an interesting new phenomenology modifying the
final DM relic abundance, a situation that has not yet been studied in detail.

Let us first consider the case where DM is a fermion and both Majorana and Dirac
masses are present. The general mass lagrangian using the Weyl spinors XL and XR is
given by

− Lmass = m (XRXL +XLXR) + ∆ (XL(XL)c + (XR)cXR) (1)

where we have assumed ∆L = ∆R = ∆ for simplicity. In matricial form it becomes

− Lmass =
1

2
((XL)c XR)

(
∆ m
m ∆

)(
XL

(XR)c

)
+ h.c. (2)

The matrix M =

(
∆ m
m ∆

)
is symmetric due to the anti commutation properties of

the fermion fields and the properties of the charge conjugation matrix C [53]. It has
mass eigenvalues m1/2 = m ∓∆, associated with mass eigen states X1/2,L = (XR)c ∓ XL,
X1/2,R = XR ∓ Xc

L. We can then deduce the effective hamiltonian in the non-relativistic
limit in the (X,Xc) basis:

H = U−1
(
m−∆ 0

0 m+ ∆

)
U =

(
m ∆
∆ m

)
(3)

A non-zero value for ∆ is responsible for the oscillations between X and Xc. We will
typically be considering the situation ∆� m 3.

A similar analysis applies to a complex scalar field which splits into two quasi-degenerate
real scalars. A well-known example is the sneutrino that carries the same lepton numbers
as the neutrino and is distinct from its antiparticle, the anti-sneutrino. In the presence of
a lepton number violation (for instance through the l̃l̃HH operator, where H is the Higgs
field) sneutrinos can mix with anti-sneutrinos since no other quantum numbers forbid the
mixing [54, 55, 56, 57]. The mass squared matrix can be written for a single generation as

Lmass =
1

2
(ϕ, ϕ∗)∗

(
m2 ∆2/2

∆2/2 m2

)(
ϕ
ϕ∗

)
(4)

The mass eigenvalues are now m2
1/2 = m2∓∆2/2 so that for ∆� m, m2−m1 ≈ ∆2/(2M).

Therefore, in the bosonic case, the mass splitting between the mass eigenstates is given by

3Note that one can easily generalize our results to the case where ∆L 6= ∆R. In terms of ∆+ = ∆L+∆R

and ∆− = ∆L − ∆R, the mass eigenstates become m1/2 = 1
2 (∆+ ∓

√
∆2

− + 4m2). Since we work in the

regime ∆L,∆R � 1, one just has to replace ∆ in (3) by ∆ = (∆L + ∆R)/2. As for the mass eigenstates,

X1/2,L = (
∆−∓
√

∆2
−+4m2

2m , 1), they remain almost-equal admixtures of X and Xc.
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the see-saw formula, ∆2/(2M), rather than the mass term breaking the DM number, 2∆,
and this factor is what enters in the off-diagonal component of the effective lagrangian. In
the (ϕ, ϕ∗) basis:

H =

(
m ∆2/(4M)

∆2/(4M) m

)
(5)

Therefore, for our phenomenological analysis, we will use the generic form

H =

(
m δm
δm m

)
where δm =

{
∆ if fermionic DM

∆2/(4M) if bosonic DM
(6)

Note that the lagrangians of the models we are concerned with are similar to the ones of
inelastic dark matter [58, 59], although we are considering a much smaller ∆ so that at the
end we are focussing on different phenomenological properties. Typical examples are either
a WIMP interacting with a hidden U(1)′ gauge boson or a WIMP charged under SU(2)L
[59, 46]. Both in the fermionic and bosonic cases, it is technically natural to have the
‘Majorana’ mass ∆ much smaller than the ‘Dirac’ mass m since ∆ violates a global U(1)DM

symmetry, due for instance to the vev of some scalar field and all quantum corrections to ∆
are proportional to itself. In our model-independent study, δm is a free parameter which,
even if very small, will be scanned over orders of magnitude in the sub-eV range. Still, let
us note that a natural value in the fermionic case is obtained from the dimension-5 operator

XXH†H

Λ
(7)

After electroweak symmetry breaking and taking Λ at the Planck scale we obtain the see-
saw value δm ∼ 10−6 eV. This value turns out to lead to interesting cosmological effects.
In fact, as we will see shortly, if m . 10 TeV, δm should not be larger than ∼ 1 eV if we
want oscillations to have an effect on the final relic abundance. In the bosonic case, this
translates into a bound ∆ . 10−2 GeV, which is less straightforward to explain from an
operator

λ ϕϕHH (8)

since that would require λ . 10−8. There are however ways to sequester the effects of
U(1)DM breaking, see e.g. [59].

Since the upper edge of cosmologically relevant values for δm may not be so far away
from the mass scale of neutrinos, it is tempting to try and link the two. Even when the two
scales vary by orders of magnitude, it is worth considering a possible common origin for
the Majorana masses of neutrino and dark matter. There is a significant literature which
relates neutrino mass and dark matter (e.g. [60] and references therein). There has also
been attempts to link DM and neutrinos together with leptogenesis. For instance, in the
recent Ref. [37], an extra hidden scalar φ couples DM with the right-handed neutrino N .
In this class of models, if φ acquires a vev, it generates a Majorana mass for DM but also
induces a mixing between DM and neutrinos that can lead to DM decay depending on the
choice of parameters, in particular on mN . Alternatively, an earlier interesting possibility
was brought up in [61] where a Z2 symmetry forbids a vev for the new scalar (an SU(2)L
doublet) and there is no Dirac mass linking ν with N , thus guaranteeing the stability of
DM. Nevertheless a Majorana mass can be generated at loop-level. Another explanation for
the stability of DM may be that a Z2 emerges as an unbroken remnant of a global U(1)B−L
[60].
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3 Oscillation + annihilation + scattering formalism

Our aim is to study the evolution in time t of the populations of DM particles and their
antiparticles DM, denoted respectively by n+ and n−, which possess an initial asymmetry
and are subject to the simultaneous processes of annihilations DM DM → SM SM (with
SM being any Standard Model particle), oscillations DM ↔ DM and elastic scatterings
DM SM→ DM SM. For definiteness, we assume that particles are initially more abundant
than antiparticles, i.e. n+ > n−.

The proper tool to treat this problem, in which a coherent process such as oscillations is
overlapping with incoherent processes such as annihilations and scatterings, is provided by
the density matrix formalism, originally developed for the case of neutrino oscillations in
the Early Universe [62], but which can be adapted to our present needs. One defines a 2×2
matrix, whose diagonal entries correspond to the individual number densities n+ and n− and
whose off-diagonal entries express the superposition of quantum states + and − originated
by the oscillations. As is customary, we introduce the comoving densities Y ± ≡ n±/s,
where s is the total entropy density of the Universe, and we follow the evolution in terms of
the dimensionless variable x = mDM/T , where mDM is the DM mass and T the temperature.
We will therefore work in terms of a comoving number density matrix

Y(x) =

(
Y +(x) Y +−(x)
Y −+(x) Y −(x)

)
(9)

(the curly font for Y will indicate in the following the matrix quantity). We will always
be interested in the epoch of radiation domination, during which the Hubble parameter
H(x) =

√
8π3g∗(x)/90m2

DMx
−2/MPl = Hm/x

2 and t−1 = 2H(x). In terms of x one also
has s(x) ' 2π2/45 g∗s(x)m3

DM · (1/x3). 4 Here g∗(x) and g∗s(x) are the effective relativistic
degrees of freedom. We define the ′ notation as

′ ≡
[
1− x

4

dg∗(x)/dx

g∗(x)

]−1
× d

dx
=

1

xH(x)
× d

dt
(10)

Neglecting the x-dependence of g∗ is often an acceptable approximation; for completeness,
however, we keep the factor in square brackets in eq. (10) in all our computations.

We will now write explicitly the full density matrix equation that we consider. For a
better illustration and understanding, we will discuss each piece of the equation (and the
parameters that they contain) one by one in the next subsections, considering in turn a
situation with only annihilations and no oscillations nor elastic scatterings, a situation with
oscillations only, then combining oscillations and annihilations and finally including the
elastic scattering as well. In the cases in which it is possible and convenient, we will deduce
from the matricial form of the equation the more familiar Boltzmann equations for Y + and
Y −. The evolution equation for the density matrix Y reads

Y ′(x) = − i

xH(x)

[
H,Y(x)

]
(11)

− s(x)

xH(x)

(
1

2

{
Y(x),Γa Ȳ(x) Γ†a

}
− Γa Γ†a Y2

eq

)
− 1

xH(x)

{
Γs(x),Y(x)

}
.

4The ' sign in the latter relation just reminds that the total entropy density is dominated by the entropy
density in relativistic degrees of freedom, in a very good approximation.
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On the right hand side, the first term accounts for oscillations, the second for annihilations
and the third for elastic scatterings. The initial conditions read Y ±0 ≡ Y ±(x0) = Yeq(x0) e

±ξ0

and Y +−(x0) = Y −+(x0) = 0, at an initial time x0 (in practice we usually choose x0 = 5,
early enough to be able to follow the whole subsequent evolution, but not too early, so that
we are always dealing with non-relativistic DM particles). Here Yeq denotes an equilibrium

comoving density Yeq = 45
2π4

(
π
8

)1/2 g
g∗s
x3/2e−x, where g is the number of internal degrees of

freedom (equal to 2 both for the fermionic and the scalar DM case). The actual equilibrium
comoving densities for the + and − species are respectively Y +

eq = Yeq e
+ξ, Y −eq = Yeq e

−ξ,
where ξ = µ/T with µ being the chemical potential. Since they enter only as the product
(see below), the chemical potential disappears from the equations. It is also useful to
introduce the parameter η0 = Y +

0 − Y −0 , which represents the initial DM – DM asymmetry
and is related to ξ0 as ξ0 = arcsinh(η0/(2Yeq(x0))).

3.1 Annihilations only

In the case with annihilations only, the density matrix equation in eq. (11) reduces to

Y ′(x) = − s(x)

xH(x)

(
1

2

{
Y(x),Γa Ȳ(x) Γ†a

}
− Γa Γ†a Y2

eq

)
. (12)

The right hand side, in particular with its anti-commutator structure, reproduces the more
detailed collision integrals and once the integral over the phase space of incoming and
outgoing particles has been performed, as discussed in [62]. We neglect the effects related
to the quantum-statistical distribution of particles (e.g. Fermi-blocking factors). Here Γa is
a diagonal matrix (actually proportional to the identity in the case at hand) defined in such
a way that Γa Γ†a = 〈σv〉 I, where 〈σv〉 is the thermally averaged annihilation cross section.
〈σv〉 admits the usual expansion in even powers of the velocity v of the DM particles

〈σv〉 = σ0 + σ1〈v〉2 +O(v4), (13)

For simplicity, we will always assume s-wave annihilations in the following, which amounts
to keep only the first term of the expansion. Ȳ is the charge-conjugated matrix of Y , i.e.
the same quantity as the latter but with the role of particles and antiparticles flipped: Ȳ =

CP−1 ·Y ·CP, where CP = iσ2 =
(

0 1
−1 0

)
. Finally, the matrix Y2

eq reads Y2
eq =

(
Y 2
eq 0

0 Y 2
eq

)
.

In solving eq. (12), the off-diagonal components remain identically zero and the whole
information on the evolution of the system is encoded in the equations for the diagonal com-
ponents Y ±. Such equations can then be recast in the more familiar Boltzmann form [63]:

Y ± ′(x) = −〈σv〉 s(x)

xH(x)

[
Y +(x)Y −(x)− Y 2

eq(x)
]
. (14)

It is now straightforward to solve the equations (12) (or, equivalently, eq. (14), as it has
been done in [50, 51]). We show in fig.1 (upper left panel) the result in the specific case
η0 = ηB = 1.02 10−10 (the latter being the value of the baryonic asymmetry, see e.g. [1]) 5

5Note that we have defined here the quantities η, for DM and for baryons, in terms of the ratio of the
difference of number densities with entropy s: η = (n− n̄)/s. This notation is not to be confused with the
one (sometimes also denoted η) involving the ratio with the photon number density. In this latter notation,
the baryon to photon ratio (nB − n̄B)/nγ ' nB/nγ equals the familiar value 6.18 10−10 [1].
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and where we have taken a large annihilation cross section. Let us comment on the main
qualitative features. At small x, the presence of a primordial asymmetry is irrelevant and
both comoving densities follow essentially the equilibrium curve. Freeze-out happens when
the system runs out of targets, and then the absolute value of Y + (assumed to be the most
abundant species) approaches η0: Y

+ sits on a plateau while the contribution of Y − can be
neglected. As anticipated, therefore, in this typical aDM configuration the most relevant
parameter is the initial asymmetry η0 = ηB: it sets the asymptotic number density 6 and
thus, in order to obtain the correct ΩDM, forces mDM to be O(5 GeV) (4.5 GeV in the plot).

For illustration one can also define the sum and the difference of the comoving number
densities

Σ(x) = Y +(x) + Y −(x), ∆(x) = Y +(x)− Y −(x), (15)

In terms of these quantities, the Boltzmann equations readΣ ′(x) = −2
〈σv〉 s(x)

xH(x)

[
1

4

(
Σ2(x)−∆2(x)

)
− Y 2

eq(x)

]
,

∆′(x) = 0,

(16)

which clearly shows that the difference ∆ between the populations remains constant (and
equal to the initial condition η0); on the other hand, the total population Σ of + and −

particles decreases, due to annihilations. At late times, Yeq is negligible and Σ is attracted
towards ∆ = η0.

3.2 Oscillations only

We consider next the restricted case in which there are only DM↔ DM oscillations in the
system, without annihilations nor scatterings with the plasma. Eq. (11) reduces in this case
to the simple form

Y ′(x) = − i

xH(x)

[
H,Y(x)

]
. (17)

where H is the Hamiltonian of the system, which, as discussed in Sec. 2, we parametrize as

H =

(
mDM δm
δm mDM

)
. (18)

The system of four coupled equations for the individual entries of the matrix Y can be
explicitly solved analytically. The off-diagonal components can be plugged in the equations
for the diagonal components Y ± and one finds that those correspond to the following
familiar Boltzmann equations:Y + ′(x) = −Γosc(x)

xH(x)

[
Y +(x)− Y −(x)

]
,

Y − ′(x) = −Y + ′(x),

(19)

6Note that we are assuming that any process changing the DM-number (such as e.g. weak sphalerons,
in models in which the DM-number is related to the ordinary baryon number) is already switched off by
the time of freeze-out, so that we can consider η0 as an actual constant in the subsequent evolution. This
could be invalid for very large DM masses (& 10 TeV), for which freeze-out happens early.
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Figure 1: Illustrative plots of the solutions of
the evolution equations in the case of annihila-
tions only (top left panel, discussed in Sec. 3.1),
annihilations with oscillations (top right panel,
Sec. 3.3) and in the case which includes elastic
scatterings (bottom left panel, Sec. 3.4). The
blue (magenta) line represents the comoving
population of n+ (n−), the black line their sum.
The arrow points to the value of the primordial
asymmetry, the green band is the correct relic
abundance (± 1σ).

with the same initial conditions as for eq. (11) and where the oscillation rate is defined as

Γosc(x) = δm tan

(
δm

H(x)

)
. (20)

These can also be written in terms of Σ and ∆ as
Σ ′(x) = 0,

∆ ′(x) = −2
Γosc(x)

xH(x)
∆(x).

(21)

It is now Σ which is constant in time, since oscillations exchange particle with antiparticle
but conserve the total number of bodies, while ∆(x) follows an oscillatory behaviour.

In the absence of interactions with the plasma, the probability that a DM particle
becomes a DM particle at time t is simply P+−

osc (t) = sin2 (δm t). Oscillations start when
H(x) . δm (i.e T .

√
δmMPl). Slightly more precisely, one can define xosc via the condition

δm x2osc/H(mDM) ' 2π, which gives

xosc '
(

8π3

90
g∗

)1/4
1√
MPl

mDM√
δm
≈ 2 · 10−4

( mDM

10 GeV

)( eV

δm

)1/2

. (22)

This equation is plotted in Fig. 2, showing that a large range of possibilities is open,
depending on the values of the DM mass and of the δm parameter. We will later see how
this relation is modified by the presence of annihilations and elastic scatterings.
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Figure 2: Left panel: illustration of the approximate relation in eq. (22) and eq. (25), i.e. the
value of x at which oscillations start as a function of δm for a few indicative values of the DM
mass. The dotted lines trace the modification to that relation in the case where annihilations are
active, see Sec. 3.3. Right panel: graphical illustration of the approximate relation in eq. (34),
i.e. the efficiency of oscillations in depleting the aDM excess (for definiteness, in the case of no
elastic scatterings, i.e. ξ = 0, except for the dashed line marked by the label ξ = 10−2). The
crossings of the diagonal dotted lines with the four solid lines individuate the values of δm for
which ΩDM reproduces the correct abundance, for the indicated values of mDM.

3.3 Combining annihilations and oscillations

When combining annihilations and oscillations, the features that we separately highlighted
above overlap: initially the total number of particles decreases due to annihilations; later,
when oscillations start, they repopulate Y − at the expense of Y + so that annihilations can
recouple, thus reducing the sum; as a consequence, in the next ‘cycle’, the total number
of Y + and Y − subject to oscillations is reduced, i.e. the amplitude of the oscillation also
decreases. The amount by which the amplitude of the oscillations decreases is determined
by the amount by which the sum of particles at disposal decreases.

All this is accounted for by eq. (11), that we reproduce here for convenience:

Y ′(x) = −i 1

xH(x)

[
H,Y(x)

]
− s(x)

xH(x)

(
1

2

{
Y(x),Γa Ȳ(x) Γ†a

}
− Γa Γ†a Y2

eq

)
. (23)

This equation can be recast into a set of coupled Boltzmann-like relations, namely:

Σ ′(x) = −2
〈σv〉 s(x)

xH(x)

[
1

4

(
Σ2(x)−∆2(x)− Ξ2(x)

)
− Y 2

eq(x)

]
,

∆′(x) =
2i δm

xH(x)
Ξ(x),

Ξ′(x) =
2i δm

xH(x)
∆(x) − 〈σv〉 s(x)

xH(x)
Ξ(x)Σ(x).

(24)

where Ξ corresponds to the difference between off-diagonal elements of the density matrix,
Ξ(x) = Y +−(x) − Y −+(x). From this, it is clear that the system cannot be reduced to
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simple equations for the two functions Σ and ∆ (already defined above). In other words, the
interplay of coherent and incoherent processes cannot be thoroughly followed by focussing
only on the populations of Y + and Y −, or their sum and difference: one more functional
‘degree of freedom’ is needed.

Some insight can anyhow be learnt by considering the (oversimplified) case featuring os-
cillations and a constant effective rate of annihilations, denoted γa, and neglecting variation
with x of the total population Σ. In this case, by combining the second and third equations
in (24), one arrives at an effective equation ∆′ ' −2 δm2/γa ∆, valid in the regime γa � δm.
Contrasted with the second of eq. (21), this shows that, in presence of annihilations, the
difference between the populations dims with a rate proportional to δm2/γa, a point to
which we will come back later. However, we stress that this simplification does not allow
to include all the features of the system. We will stick to the full equation (23) for the
numerical solutions in the following.

In figure 1 (top right panel) we show the numerical result of eq. (23) (or, equivalently,
eq. (24)) for a specific illustrative case. Like for the top left example in the same figure, we
have again taken η0 = ηB, but here the population Y + sits only temporarily on the plateau
determined by η0. With a value of δm = 10−12 eV, oscillations start at x ∼ 300 and we
see Y − being repopulated. Given the relatively large annihilation cross section σ0 = 14 pb,
annihilations can then promptly resume and the total population Σ decreases. In the later
stages, Σ goes through a rapid series of plateaux and drops, until it rests on its asymptotic
value, determined by the freeze-out of annihilations. One can therefore have a final Y∞ � η0
and obtain the same ΩDM = ρDM/ρcrit = mDMY∞s/ρcrit with a large DM mass with respect
to the standard aDM case. In other words, this example illustrates how, as anticipated in
the introduction, ΩDM is no longer determined by η0 but by the combination of different
parameters η0,mDM, δm, σ0. We will discuss several illustrative choices for these in Section 4.
Note that our formalism allows to follow in detail the oscillatory pattern (evident at large
x in fig. 1b). In other approaches in the literature only an effective average of oscillations
has been employed (see e.g. [37, 40]). While this may be enough for an estimate of the
effect or for the late x behaviour, it may miss the details at the starting-up of oscillations.

Another non trivial effect of the interplay between annihilations and oscillations has to
do with the moment of the start of oscillations. While in a purely coherent (albeit expand-
ing) system with only oscillations, as the one we considered in Sec. 3.2, the conversions
start at a xosc determined via eq. (22), the addition of annihilations breaks such coherence
and effectively delays the picking up of oscillations. In top right panel fig. 1 the effect is
barely visible (namely, xosc equals ∼ 300 or so, instead of xosc ∼ 200 as it would be dic-
tated by eq. (22)), but for larger values of the 〈σv〉 parameter the suppression and delay
of oscillations becomes more important. In terms of the effective simplification discussed
below eq. (24), where the relevant time scale is now δm2/γa, we obtain that oscillations
start when

xosc,ann '
(
Hm γa
2 δm2

)1/2

'
(
Hm σ0 sm η0/2

δm2

)1/5

≈ 12
( mDM

100 GeV

) (10−7 eV

δm

)2/5 (
g∗s
10

√
g∗
10

σ0
1 pb

η0
ηB

)1/5

, (25)

10



where sm = s(x = 1), in analogy with Hm. In fig. 2 (left panel) we also report, for the
specific case of mDM = 10 GeV, the effective value of xosc,ann for an annihilation cross
section of σ0 = 100 pb. We plot the value as predicted by eq. (25) (thin dotted line) and
as determined numerically (thick dotted line).

3.4 Including elastic scatterings

Dark Matter (and antiDM) particles travel through the dense primordial plasma and elas-
tically scatter on it via DM SM → DM SM processes, where ‘SM’ denotes any Standard
Model particle that is abundant enough in the plasma, i.e. essentially relativistic species.
This affects the evolution of the system in two main ways (we follow closely for this dis-
cussion the case of neutrino propagation in matter, see e.g. [64]): (i) an effective matter
potential V is generated by the coherent interactions and enters in the commutator part of
the density matrix equation; (ii) the incoherent scatterings give rise to a rate of interactions
γs entering in the anti-commutator part.

The whole system is therefore now described by eq. (11) with all pieces included and
where

H =

(
mDM + V (x) + ∆V (x) δm

δm mDM + V (x)

)
and Γs =

(
γs 0
0 γs

)
. (26)

The common terms on the diagonal of H of course do not have any effect on oscillations,
while the difference ∆V does. ∆V represents the effective energy shift of DM versus DM
induced by the baryon asymmetry of the medium. Effectively, it leads to a non-maximal
mixing angle, thus reducing the oscillation probability in the vacuum P+−

osc by a factor
4δm2/(4δm2 + ∆V 2). For simplicity we assume that δm is not affected by the medium.

The explicit form of ∆V and γs depends on the specific interactions of DM with the
plasma. Since we are mainly interested in the case of Weakly Interacting dark matter, we
mimic them from those of neutrinos. An important point to notice, however, is that the
same scatterings we are considering here are also those that would produce signals in DM
direct detection experiments, i.e. nuclear or electron recoils in low background set-ups. In
order to be consistent with direct detection experiments, therefore, we assume that the DM
coupling with matter is suppressed with respect to the weak coupling. On the basis of these
observations, we take

∆V = ξ
√

2GF ηB

(
g∗s(x)− 2

)
nbos and γs = ξ2

45

π3
ζ(5)G2

F

(
g∗s(x)− 2

)m5
DM

x5
, (27)

where GF is the Fermi constant, nbos = 1/π2 ζ(3)m3
DM/x

3 is the number density per degree
of freedom of relativistic bosons and ζ(n) is the Riemann zeta function of n. In the equations
above the presence of the factor (g∗s(x)−2) is due to the fact that we take into account that
WIMP DM scatters on all the relativistic degrees of freedom (counted by g∗s(x)) except for
photons. Also, by using ηB in the expression for ∆V , we are implicitly assuming that all
relativistic SM species share the same asymmetry, equal to the baryonic one.7

7Notice that no term proportional to the DM asymmetry itself is present, since the DM and DM
population is Boltzmann suppressed in the regimes of our interest. As a consequence, there is no feedback
of the evolution of the DM asymmetry into ∆V (such a feedback is instead present in the case of relativistic
neutrinos in the Early Universe).
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The parameter ξ expresses the suppression of the Fermi constant due to the fainter DM
coupling with matter, as discussed above. Direct detection experiments impose ξ . 10−2.
On the other hand, one can check that for ξ � 10−3 the presence of scatterings has
essentially no effect on the system. We will therefore consider in this work two main cases:

(a) ξ ≡ 0 (i.e. no scatterings), in which case the system reduces to the one discussed
in Sec. 3.3; this scenario makes more evident the effect of oscillations and maximizes
their importance.

(b) ξ = 10−2, the maximum allowed value, which makes elastic scatterings, besides anni-
hilations and oscillations, important for the evolution of the DM and DM populations.
For large scattering, oscillations are damped, as in the case of standard neutrino mix-
ing in the early universe.

We stress again that eq.s (27) are just choices made for definiteness, since we lack a detailed
model of the interactions of DM with SM matter. For instance, if the DM particle couples
only to other dark states which ultimately decay to SM ones, ∆V and γs are expected
to be small. For another instance, if DM is leptophilic and couples only to leptons, then
the relevant asymmetry η in ∆V would be the leptonic one, which is poorly constrained.
Our formalism allows us to explore most of the possible parameter space while remaining
model-independent.

Finally, note that in order to reproduce the correct physical system with the last anti-
commutator in eq. (11) (which is an approximation to more detailed expressions of the
collision integrals [62]), one needs to forbid the terms proportional to γs in the equations
for the diagonal components of Y , as commonly done in the literature. This guarantees
that elastic scatterings do not have the effect of depleting the populations of Y + and Y −.

As done in the previous Subsections, one can derive a set of Boltzmann-like equations
from the matrix equation in eq. (11) with eq. (26). They read

Σ ′(x) = −2
〈σv〉 s(x)

xH(x)

[
1

4

(
Σ2(x)−∆2(x)− Ξ2(x)− Π2(x)

)
− Y 2

eq(x)

]
,

∆′(x) =
2i δm

xH(x)
Ξ(x),

Ξ′(x) =
2i δm

xH(x)
∆(x) − i∆V

xH(x)
Π(x) − γs

xH(x)
Ξ(x)− 〈σv〉 s(x)

xH(x)
Ξ(x)Σ(x),

Π′(x) = − i∆V

xH(x)
Ξ(x)− γs

xH(x)
Π(x).

(28)

Yet one more functional degree of freedom coupled to the others, the function Π(x) =
Y +−(x) + Y −+(x), has to be introduced. The interplay of the coherent and incoherent
processes (annihilations and scatterings) can thus be thoroughly followed by using the full
density matrix formalism, either recast in the form of eq. (28) or, more conveniently, in the
form of eq. (11), to which we will adhere in the following.

In order to understand qualitatively the impact of adding incoherent scatterings on
the evolution of the populations of DM particles and antiparticles, we can consider the
(oversimplified) case of a system featuring oscillations and a constant γs. We neglect ∆V
and we switch off annihilations for simplicity. In this case the matrix equation in eq. (11)
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schematically reads Y ′ = −i/(xH)
(

[H,Y ] − {Γs,Y}
)

. Proceeding in the same way as

discussed in Sec. 3.2, this equation can be recast into the same pair of coupled Boltzmann
equations in eq. (19), but with a more complicated Γosc = 2 δm2/(γs + ω coth(ω/2H(x)),
where ω =

√
γ2s − 4 δm2. It is then straightforward to recognize two limits. If elastic scat-

terings are negligible (γs � δm) then Γosc → δm tan(δm/H(x)), reducing the system to the
case with pure oscillations discussed in Sec. 3.2. If instead elastic scatterings are dominant
(γs � δm), then at late times Γosc approaches a constant value Γosc → 2 δm2/γs. In this
situation, the eq.s (19) describe a system of Y + and Y − densities that are driven, with a
strength determined by Γosc = 2 δm2/γs, one towards the other. In other words, oscillations
are damped away and the comoving densities tend asymptotically to their average value.
Note that in this case, we recover an equation which is often used in the literature e.g. in
[37, 40, 65, 66]: Y + ′(x) = − 〈P 〉 γs

xH(x)
[Y +(x)− Y −(x)], namely the transfer rate is just the av-

eraged oscillation probability, 〈P 〉 = γs
∫∞
0
dt e−γs t sin2 δm t, multiplied by the interaction

rate. In the full case, which includes x-dependent scattering rates and also annihilations,
a comparably simple analytic understanding is not possible, but these general features are
preserved, as we move to illustrate next.

In figure 1 (bottom left panel) we show the outcome of the numerical resolution of
eq. (11) with eq. (26), for a specific illustrative case. As in the previous examples, we have
again taken η0 = ηB. In this case, despite the large δm, oscillations do not pick up until
late, as they are suppressed by the incoherent scatterings. Hence the total density of DM
sits for a long time on the familiar plateau. When oscillations do rise (and annihilations
restart), barely one oscillating cycle can be seen before they are damped and Y + and Y −

settle on their asymptotic common value. This illustrates how the inclusion of incoherent
scatterings opens a quite different regime: oscillations still have the role of re-symmetrizing
the populations allowing for a partial wash-out of the frozen asymmetry, but the ranges of
parameters involved are different.

We conclude this section by commenting on the quantitative delay of the start of os-
cillations due to the presence of elastic scatterings. Following the same arguments as in
Sec. 3.3, it is easy to see that now one has approximately

xosc,scatt '
(
Hm γs
2 δm2

)1/2

'
(
Hm γs(x = 1)

δm2

)1/7

≈ 130
( mDM

100 GeV

) (10−7 eV

δm

)2/7 (( g∗
10

)3/2 ξ

10−2

)1/7

. (29)

4 Results

We now illustrate with some more examples the physics involved in the solutions of the
density matrix equations discussed above by varying the parameters mDM, σ0, η0, δm and
also ξ. In fig. 3 we show the evolution of the comoving dark matter number density in the
following cases:

◦ Case A corresponds to choices similar to those discussed in Sec. 3.3 and already
adopted for fig. 1a and is reported here for the sake of comparing with the following
cases.
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Figure 3: Some illustrative cases of the time evolution of the populations of DM particles and
antiparticles. Notations are like in fig. 1, i.e. the blue (magenta) line represents the comoving
population of n+ (n−), the black line their sum. The arrow points to the value of the primordial
asymmetry, the green band is the correct relic abundance (± 1σ). Notice that some plots have
linear scale while other have logarithmic ones, depending on structure which is necessary to show.
See text for more details.

◦ In Case B we keep the same mDM as in A, but we adopt a much smaller δm. The
comoving population of DM therefore sits for a longer time on the plateau determined
by the initial asymmetry η0. However, when oscillations eventually start, annihilations
(which have a larger cross section of 60 pb) recouple and can lead to the correct relic
abundance. Case B displays therefore the same physics as in A, but delayed in time.
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Pursuing along this direction, long plateaux can be obtained: an even smaller δm
would push the start of oscillations further away and a larger σ0 would be needed to
keep annihilations active that late.

◦ In case C, we keep instead the same annihilation cross section as in A, but we move
to a higher, roughly weak-scale value of the DM mass, mDM = 300 GeV. The correct
relic abundance is achieved by starting oscillations earlier than in A, i.e. by choosing
a much larger δm.

◦ Case D corresponds to same situation as C (in terms of mDM and δm), except that
now we include elastic scatterings (ξ = 10−2). The effect of incoherent scatterings
that delay and damp the oscillations is very much apparent with respect to case C. A
larger cross section is needed to keep the annihilations active at late times and thus
reach the right abundance.

◦ Case E, on the other hand, illustrates a situation which is similar to the standard
thermal freeze-out case, despite the presence of an initial asymmetry and of oscilla-
tions. Y + and Y − oscillate around the standard solution (in dashed gray, computed
for one species only). We have assumed, for this case, a smaller initial asymmetry.

◦ Case F corresponds to a situation in which a very large initial asymmetry (equal to
102 ηB) is assumed. Having adopted a small δm, oscillations start late but nevertheless
they eventually bring the abundance to the right value. Like for case B, therefore,
the comoving density spends a long time on a value which is, in this case, much larger
than the final one.

We systematize and summarize our results by showing the contour lines corresponding to
the correct DM abundance in the (mDM, σ0) plane in Fig. 4. The orange solid line (labelled
ηB) corresponds to the standard aDM scenario. By changing the values of δm and η0 we
can open much more of the parameter space, towards larger mDM and larger σ0.

Before we move to discuss the constraints on this same parameter space, we want to
provide some approximate analytic expressions that help in identifying the general features
of the solutions.

First, we want to obtain an estimate of the asymptotical value of Σ = Y + + Y −, which
determines the DM abundance today via ΩDM(x→∞) = mDM Σ(x→∞) s/ρcrit, where s
here denotes the entropy density today. We focus first on the case with elastic scatterings,
ξ = 10−2, but neglecting ∆V . By solving in an approximate semi-analytic way the system
of equations, we are able to obtain an expression for ΩDM(x → ∞) as a function of all the
parameters of the system. It reads

ΩDM(x→∞) ' mDM s

ρcrit
η0

(
1 +

1

12.2

g∗s,∞

g
4/7
∗,∞

(
π2 δm

2 M8
Pl

ξ2 γs,0

)1/7

Gamma

[
6

7

]
σ0 η0

)−1
, (30)

where γs,0 = 45/π3 ζ(5)G2
F (g∗s− 2) corresponds to the normalization factors of the scatter-

ing rate γs in eq. (27) and g∗(s),∞ denotes quantities evaluated today. This approximation
holds when, before the onset of oscillations, all Y − annihilate and the energy density of
the Universe is dominated by Y + ∼ η0. It therefore becomes unreliable for large δm. In
addition, for large annihilation cross sections (indicatively σ0 > 100 pb) the manipulations
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Figure 4: Contour lines along which a correct ΩDMh
2 can be obtained, for various values of the

initial asymmetry η0 (various colors) and several values of the oscillation parameter δm (labelled
lines marked by different dashings). The solid thick black line at the bottom represents the standard
case (η = 0, δm = 0). The labelled points (A to F) refer to the cases shown in Fig. 3. Top panels:
Oscillations and annihilations only, i.e. with ξ = 0. Bottom panels: Adding elastic scatterings,
i.e. with ξ = 10−2. The left panels consider initial asymmetries equal or close to the baryonic
one. The right panels focus on large initial asymmetries. The faint gray lines correspond to the
semi-analytic approximations in eq. (30) and eq. (33).
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leading to eq. (30) do not hold and thus this approximation fails. Within this region of
validity, we can readily identify two limits. In the limit of no oscillations (δm→ 0), eq. (30)
reduces to the usual expression in Asymmetric Dark Matter scenarios:

ΩDM(x→∞) ' mDM s

ρcrit
η0. (31)

At the other extreme, when the second term in brackets in eq. (30) dominates, we have

ΩDM(x→∞) ' mDM s

ρcrit

1

1
12.2

g∗s,∞

g
4/7
∗,∞

(
π2 δm2 M8

Pl

ξ2 γs,0

)1/7
Gamma

[
6
7

]
σ0

. (32)

In this limit, the dependence on η0 cancels out. Indeed, in fig. 4, lower left panel, we observe
a degeneracy of the curves corresponding to different initial asymmetries, for the largest
δm values. For the case without elastic scatterings (ξ = 0), in a similar way we obtain the
equivalent of eq. (30):

ΩDM(x→∞) ' mDM s

ρcrit
η0

(
1 +

1

5.1

g
4/5
∗s,∞

g
3/5
∗,∞

(
δm2 M6

Pl

π

)1/5

Gamma

[
4

5

]
(σ0 η0)

4/5

)−1
. (33)

In this case, the asymptotic value of ΩDM does carry a more significant residual dependence
on η0, which indeed we see in figure 4 (upper left panel). We superimpose the contours
determined by eq. (30) and eq. (33) to the numerical contours in fig. 4, for one choice of
δm. We see that the agreement is good within the ranges of validity.

As a second point, we want to quantify the amount by which the parameter space of
Asymmetric Dark Matter opens up due to the introduction of oscillations. For this purpose
we can define the ratio

rδm(σ0, η0) ≡
ΩDMh

2|δm=0

ΩDMh2
(34)

where the numerator expresses the DM abundance that would occur in a standard aDM
scenario characterized by (mDM, σ0, η0) if oscillations were not present, while the denomi-
nator expresses the same quantity when oscillations (with parameter δm) are switched-on.
r therefore quantifies how much we can reduce the DM density by introducing oscillations.
When in the denominator we select the value of δm that gives the correct relic abundance
ΩDMh

2 ' 0.11, r characterizes therefore the amount of overclosure of the Universe which we
would have in the absence of oscillations. We plot r in fig. 2. We work for definiteness in the
case with no elastic scatterings (ξ = 0), but we do show a line in the case with scatterings
(marked ξ = 10−2). We also indicate some values in specific points on the iso-lines in fig. 6,
in this case both for ξ = 0 and ξ = 10−2. We see that r can reach very large values, i.e.
oscillations can be very efficient in depleting the DM excess.

One could also wonder whether δm can be indefinitely large in these set-ups. This is
of course not the case: for too large δm oscillations start too early and symmetrize the
dark sector such that decoupling proceeds as in the standard thermal freeze-out scenario.
For instance, case E in fig. 3 illustrates a critical case in which oscillations begin somewhat
precisely at the right moment to thwart the impact of the asymmetry and drive the evolution
along the usual freeze-out history. It can therefore also be useful to explicitly define δmmax

as the value of δm below which the new phenomena described here arise. The determination

17



of the value of δmmax which is relevant in the different scenarios is of course tightly related
to the identification of the effective start of oscillations xosc, which we have discussed in the
different cases of Sec. 3. For the case of oscillations only (neglecting elastic scatterings and
annihilations), one obtains

δmmax ' 2π H(m)/x2decoupl, asym.

∼ 10−11
√
g∗ (mDM/1 GeV)2 eV, (35)

where the numerical estimate in the last step is obtained by neglecting a small change in the
value of x = mDM/T at decoupling, in our scenario with respect to the standard case, i.e.
we assumed the standard value xdecoupl, asym. ≈ xdecoupl, std. ∼ 20. We see, that for heavy DM,
with mass ∼ 1 TeV, already for δm ≤ 10−5 eV oscillations affect the decoupling history.
For lighter DM, δm is accordingly smaller. In the case with annihilations or scatterings,
the relation above is modified as discussed in Sec. 3. One has

δmmax '
(
Hm γa,s
xdecoupl

)1/2

≈ 10−7 eV

√
g∗s
85

√
g∗

85

σ0
1 pb

η0
ηB

(
mDM

100 GeV

20

xdecoupl

)5

if γa � γs (36)

≈ 4 · 10−4 eV

√( g∗
85

)3/2 ξ

10−2

(
mDM

100 GeV

20

xdecoupl

)7

if γs � γa (37)

where γa,s is the larger of the effective rates introduced in Sec. 3. Figure 5 illustrates the
regions in the parameter plane δm/mDM which are individuated by these approximate
arguments.

Another feature of these models worth emphasizing is that the required annihilation
cross section always needs to be higher than the usual thermal freeze-out value σ0. This
occurs just because annihilations have to still be active later than in the usual scenario.
The parameter space is indeed effectively bound from below at cross sections of the order
of 2 pb 8. High cross sections in the standard case would under-produce ΩDM, while with
the asymmetry+oscillation mechanism, we can reach the correct value.

5 Constraints

In the setup we are considering, when oscillations start, annihilations promptly resume.
Therefore the parameter space presented above is subject to the usual constraints on anni-
hilating dark matter. Since, in some examples, we are dealing with large annihilation cross
sections, these constraints can be particularly significant. We will discuss the constraints
coming from the different epochs, and then identify the most stringent ones. We will always
work under the assumption that oscillations started much before the epoch considered for
the constraint, so that the populations Y + and Y − have already undergone a very large
number of oscillation cycles and therefore can be both approximated with their average

8Note that as we have two DM species, we have a twice lower number of targets than in the case
where DM is its own antiparticle, and therefore cross sections twice higher are needed to have the same
annihilation rate.
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Figure 5: Approximate illustration of the relevant parameter space in the scenarios we are con-
sidering, for the case without elastic scatterings (left panel) and for the case with scatterings
(right panel). The upper left area shaded in grey corresponds to the region in which the evo-
lution reduces to the standard freeze-out scenario. The white region refers to a regime in which
oscillations recouple annihilations on cosmological scales and we always assume that a suitable
value for the annihilation cross section is adopted for a given choice of mDM and δm such that we
reproduce the correct relic abundance. The lower area shaded in pink/orange is excluded by the
constraints discussed in Sec. 5 (red is for FERMI and orange for H.E.S.S., see Fig. 6) either
because it requires a too high cross section in ‘our’ regime, or because the value of δm is such
that oscillations do not recouple annihilations on the cosmological scales, and we are back to a
usual WIMP scenario. The fuzzy edge in the large mDM portion indicates that it is not possible to
individuate a single δm in the area where the H.E.S.S. constraints matter. We stress that these
figures only illustrate the approximate areas of interest on the basis of eq. (36), while the results
in all other plots in fig. 4 and 6 are determined by the full numerical solutions.

value. In this case the annihilation rate is determined only by σ0, as usual. In other words,
when this condition is satisfied we do not have to worry about the time dependence of the
populations of the two species (and therefore of the annihilation rate) or about possible
partial repopulations of one of the two species.

BBN. The period of the synthesis of nuclei in the primordial plasma (i.e. Big Bang Nu-
cleosynthesis (BBN)) is the earliest test of standard cosmology, constraining the properties
of the Universe starting from when it was a few seconds old, or equivalently at the MeV
temperature scale. The good agreement of predicted abundances of the light elements with
their measured values makes BBN a powerful cosmological probe: injections of particles and
energy due to DM annihilation or decay, either during BBN, or at later times when those
abundances are established, are constrained, as they would alter the observed abundances
of primordial elements with respect to prediction (for a review see [67]).

More precisely, BBN can offer in principle two types of probes for the scenarios in
which we are interested. If oscillations start well before BBN, DM annihilations could
be happening at a low level during the BBN (without significantly changing ΩDM) and
the usual constraints on σ0 during that era would apply (see e.g. [68]). However these
constraints are typically weaker than the ones we will discuss below. A second, more
attractive possibility arises if oscillations start after the end of BBN, i.e. if tosc > tBBN. In
that case, as annihilations recouple, a large amount of energy is injected into the plasma.
The set-up is similar to the one of late-decaying heavy DM progenitor states. Such decays
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Figure 6: Summary plots of the parameter space, showing also the constraints. The dotted
lines mark the contours along which a correct ΩDMh

2 can be obtained. Left: Oscillations and
annihilations only (ξ = 0). Right: Including elastic scatterings (ξ = 10−2). In both panels
we assume an initial asymmetry η0 = ηB and we show two indicative values of the oscillation
parameter δm. The solid black line at the bottom represents the standard case (η = 0, δm = 0).
At some points on the contours, we provide the value of the ratio r defined in eq. (34). The shaded
blue regions are excluded by CMB constraints, the shaded pink ones are disfavored by gamma ray
observations with FERMI and the orange ones by observations with H.E.S.S. (see text). The
white areas above the solid black line are allowed.

have been extensively studied and stringent constraints set, in the energy injection versus
injection time plane. If the characteristic time tosc is longer than 0.1 s, we would in fact be
in a position to constrain the amount of energy stored in the dark sector before oscillations
start, i.e. the initial value of DM asymmetry η0. However, once again, this possibility
appears to be ruled out in the set-up in which we are interested, since tosc . 0.1 sec on all
the regions of the parameter space which are not already ruled out by the other constraints
we discussed below.

Epoch of Reionization and CMB. Strong constraints are imposed on DM annihilations
from considering the effect on the generation of the CMB anisotropies at the epoch of
recombination (at redshift ∼ 1100) and their subsequent evolution down to the epoch of
reionization. The actual physical effect of energy injection around the recombination epoch
is that it results in an increased amount of free electrons, which survive to lower redshifts
and affect the CMB anisotropies [69]. Detailed constraints have been recently derived
in [70], based on the WMAP (7-year) and Atacama Cosmology Telescope 2008 data. The
constraints are somewhat sensitive to the dominant DM annihilation channel: annihilation
modes for which a portion of the energy is carried away by neutrinos or stored in protons
have a lesser impact on the CMB; on the contrary the annihilation mode which produces
directly e+e− is the most effective one.

We reproduce in fig. 6 the constraints on our parameter space as obtained in [70], for
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the two most stringent channels. It happens that the bounds run with the same slope
in the (mDM,σ0) plane as the lines of constant ΩDM. One sees that, roughly, only the
parameter space below δm ≥ 10−9 eV (10−7eV) is allowed for the case of ξ = 0 (ξ = 10−2),
independently on the DM mass.

Present epoch γ-rays. For most of the DM annihilation modes, another relevant con-
straint is in fact imposed by the indirect DM searches in the present epoch. The DM
constraints provided by the FERMI-LAT gamma ray data are particularly relevant as
they are now cutting into the σ0 ∼ 1 pb value for low DM mass (. 30 GeV) and a variety
of channels. In particular, dwarf satellite galaxies of the Milky Way are among the most
promising targets for dark matter searches in gamma-rays because of their large dynamical
mass to light ratio and small expected background from astrophysical sources. No dwarf
galaxy has been detected in gamma rays so far and stringent upper limits are placed on DM
annihilation by applying a joint likelihood analysis to 10 satellite galaxies with 2 years of
FERMI-LAT data, taking into account the uncertainty in the dark matter distribution in
the satellites [71]. The limits are particularly strong for hadronic annihilation channels, and
somewhat weaker for leptonic channels as diffusion of leptons out of these systems is poorly
constrained. On the other hand, strong limits on leptonic (µ+µ−) annihilation channels are
set by, for example, the gamma-ray diffuse emission measurement at intermediate latitudes,
which probes DM annihilation in our Milky Way halo. In particular, the most recent limits
come from 2 years of the FERMI-LAT data in the 5◦ ≤ b ≤ 15◦, − 80◦ ≤ ` ≤ 80◦

region [72], where b and ` are the galactic latitude and longitude.
Another relevant constraint in the large mass region is imposed by the observation of

the Galactic Center halo with the H.E.S.S. telescope [73]. This refers to a qq̄ annihilation
channel and assumes that the DM distribution in the Galaxy follows a Navarro-Frenk-White
or Einasto profile (notice that the constraint is lifted in case of a cored profile: the search
is made by contrasting the source region closer to the GC with a background region further
away, and, in case of a cored profile, both would yield the same DM flux).

We superimpose all these constraints on the plane in fig. 6. We see that they are
somewhat stronger than the CMB ones considered above. We keep however the latters
as they are less model dependent. More generally, we stress that all these constraints are
valid under different (somewhat mutually exclusive) assumptions, such as e.g. the DM
annihilation channel or the DM galactic profile. As a consequence, while we report all of
them on the same plane for completeness, the precise regions of the parameter space which
are actually excluded depend on the precise DM model.

Collider constraints. Finally, we also mention the constraints imposed by collider searches
for dark matter [74]: in the framework of an effective field theory, the annihilation cross sec-
tion of two DM particles into SM particles can be related to their production cross section
in proton-antiproton collisions (Tevatron), proton-proton collisions (LHC) or e+e− ones
(LEP), and therefore constrained by the searches at these respective machines. Current
constraints are particularly relevant at low masses, and in some cases compete in strength
with the bounds discussed above, while the LHC will soon extend the reach at larger masses.
Contrary to the constraints discussed above, however, the collider ones ultimately rely on
the assumption that DM couples via contact operators to the SM particles in the initial
states of the collision process. E.g. DM annihilating into metastable new light states that
then decay into SM particles cannot be constrained this way. We prefer therefore not to
show them on the parameter space.

In the light of these bounds, many of the illustrative points presented in Fig. 3 are
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excluded since they correspond to low masses, except for point C. As our final result, we
focus therefore on the allowed region and show in the panels of Fig. 6, which are our final
summary plots, the contour lines for ΩDMh

2 = 0.11. We also indicate, for some chosen
points, the value of the ratio r defined in eq. (34).

6 Conclusions

In this work we have studied the impact of adding oscillations between DM and DM particles
on the scenario of Asymmetric Dark Matter. Such oscillations arise naturally in aDM
models, as we argued in Sec. 2, and should therefore be included. We found in particular
that a typical WIMP with a mass at the EW scale (∼ 100 GeV − 1 TeV) presenting a
primordial asymmetry of the same order as the baryon asymmetry naturally gets the correct
relic abundance if the ∆(DM) = 2 mass term is in the ∼ meV range. This turns out to be
a natural value for fermonic DM arising from the higher dimensional operator H2 DM2/Λ
where H is the Higgs field and Λ ∼MGUT −MPl.

We have outlined the formalism (based on following the evolution of the density matrix
of DM and DM populations) needed to treat the system of particles that oscillate coherently
but at the same time suffer coherence-breaking elastic scatterings on the plasma and anni-
hilations among themselves. Our formalism starts from a standard simplified form of the
equation for the density matrix (eq. (11)) and makes use of a few simplifications (see Sec. 3
for a full discussion) but nevertheless is sufficient to illustrate the qualitative features that
enter into play and that we want to stress. It would certainly be interesting to write a more
rigorous set of equations derived from first principles. This is presently a very active field
of research and still under development, in particular in the baryogenesis and leptogenesis
community [76]. Those developements would be relevant for a more precise treatment of
the problems that we are interested in here or for further complications of the picture (such
as including CP violation in the game).

We have then applied such formalism to explore the phenomenologically available space,
by varying the parameters of the dark matter mass mDM, the annihilation cross section σ0,
the primordial asymmetry in the DM sector η0 and the mass difference δm which governs
oscillations, for two discrete choices of the parameter ξ that sets the strength of the elastic
scatterings between DM and the plasma. The quantitative results are displayed in fig. 4,
which illustrates the exploration of the parameter space, and in fig. 6, which takes into
account the constraints and focuses on the still allowed regions.

Our main result is readily summarized: we have shown that the parameter space at
disposal becomes much wider and richer and in particular it is possible to have models of
asymmetric DM with large mDM (and large annihilation cross section) while still reproducing
the right relic abundance ΩDMh

2 in the Universe. In other words, the mass and annihilation
cross section of asymmetric WIMP dark matter are almost unconstrained by the relic
density condition (for masses above ∼ 10 GeV and for annihilation cross sections larger
than the thermal one), as soon as we introduce oscillations. The main physical reason
and the underlying mechanism are simple to understand: while in aDM the population of
DM particles is frozen by the lack of targets, the oscillations re-symmetrize DM and DM
particles, therefore allowing annihilations (if strong enough) to deplete them further until
freeze-out; a smaller final number density accommodates a larger mDM.

In this setup, therefore, ΩDMh
2 is no longer solely controlled by the primordial asymmetry
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symmetric DM ΩDM ∝ σ−10

• if ξ = 0 (negligible scattering):

ΩDM ' mDM s
ρcrit η0

[
1 + 4806

(
g4∗s,∞
g3∗,∞

δm2

eV2

(
σ0
pb

)4(
η0
ηB

)4
)1/5 ]−1

ΩDM ≈ mDM s
ρcrit


η0 if δm� δm′

2 · 10−12 η
1/5
0

(
g3∗,∞
g4∗s,∞

eV2

δm2

pb4

σ4
0

)1/5

if δm� δm′

with δm′ ≈ 6.2 · 10−10
g
3/2
∗,∞
g2∗s,∞

(
pb
σ0

)2 (
ηB
η0

)2
eV

asymmetric DM

• if ξ 6= 0 (scattering with primordial plasma):

ΩDM ' mDM s
ρcrit η0

[
1 + 6.94

g∗s,∞

g
4/7
∗,∞

(
δm/eV

ξ

)2/7
σ0

1 pb

η0
ηB

]−1

ΩDM ≈ mDM s
ρcrit


η0 if δm� δm′′

1.4 · 10−11 ξ
g
4/7
∗,∞

g∗s,∞

pb

σ0

(
eV

δm

)2/7

if δm� δm′′

with δm′′ ≈ 10−3 ξ

(
g∗s,∞

g
4/7
∗,∞

σ0
1 pb

η0
ηB

)−7/2
eV

Table 1: Scaling of the WIMP relic abundance with the DM parameters mDM, δm, σ0 and the
primordial asymmetry η0. The scattering of DM with the plasma is parametrized by ξ = GDM/GF

where GDM is the analog of the Fermi constant for the coupling of DM to matter. The formulæ
follow eq. (30)−(33) and are valid for σ0 not too large (see text in Sec. 4 for details).

η0, like in the aDM case, and no longer solely controlled by the annihilation cross section
〈σv〉, like in the thermal freeze-out case, but instead a smooth bridge is provided between
the two. The scaling of ΩDM with parameters is given in eq. (30)−(33) and it is also
summarized explicitly in Table 1. These scenarios can thus preserve the attractive feature
of aDM, that relates the DM primordial asymmetry and the baryon asymmetry in the first
place, but at the same time preserve also the appeal of weak-scale DM mass (and possibly
cross-sections). Note that vanilla aDM models with mDM ∼ a few GeV are ruled out unless
δm is effectively zero.

As a last remark, we note that the dark sector may turn out to be more complicated
than studied here. For instance, the WIMP sector may contain different flavours that could
mix or there could be mixing between the WIMP and standard neutrinos. These effects
have been extensively discussed in the case of sterile neutrino dark matter but not so in the
case of WIMP dark matter, apart from the case of sneutrinos, e.g [78]. A recent interest for
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these possibilities has arisen [37, 40, 77], although the consequences for the relic abundance
of WIMPs have not yet been studied in detail (see however the recent Ref. [79]). A new
future interesting direction of investigation is therefore opening.

Note. While this work was being completed, Ref. [80], whose scope is similar to ours,
appeared. Contrasting our procedure with theirs, we note that they used a simplified
Boltzmann equation that treats the oscillations with a constant rate and in a way that
does not include decoherence effects due to annihilations. They also do not include elastic
scatterings. A comparison between the formalisms can be readily done using the Boltzmann-
like equations (24) derived from the matrix formalism: in our full form, the differential
equation for the sum Σ = Y ++Y − is affected by the evolution of the difference ∆ = Y +−Y −
as well as the evolution of the off-diagonal elements of the density matrix Ξ. In Ref. [80],
Ξ′(x) = 0 and the equation for ∆ does not depend on annihilations nor scatterings, namely
∆′(x)/∆ = −2 δm/(xH(x)), in contrast with what Eq. (24) indicates (see the discussion
at page 10). This leads to a different damping factor in the evolution of Σ(x). The
simplified approach of [80] can lead to a different or even very different time evolution
with respect to the full approach that we pursue. Quantitatively, the discrepancy between
the simplified and the full approaches varies depending on the choices of parameters. For
a significant range of parameter space, both approaches lead to the same relic abundance
(up to O(1) deviations), as we illustrate in an example in Fig. 7 on the left. For other
choices, however, the two approaches produce a final relic abundance that differs by more
than one order of magnitude (see e.g. the right panel in Fig. 7). To recap, our formalism
has the advantage of allowing to describe oscillations consistently as well as to take into
account elastic scatterings. Finally, we have provided a full exploration of the parameter
space and we are interested in identifying the choices of parameters for which the correct
ΩDM is obtained, while [80] focusses on two specific values of the DM mass and does not
require that the correct DM relic abundance is reproduced.
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Figure 7: Comparison with the results of [80], for two specific choices of parameters (indicated).
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