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1, - INTRODUCTION

In recent years supersymmetric (SUSY) gauge theories 1) have been advo-
cated as grand unification theories which may be free from the hierarchy cor fine
tuning problem 2}. To make contact with phenomenology supersymmetry must be broken,
presumably at & scale of around 1 TeV. Three different ways of breaking global

supersymmetry have been proposed so far.

&) - Soft breaking

In this most common approach one intrcduces soft mass terms intc the
supersymmetric Lagrangian., The role of supersymmetry is to keep these mass
parameters finite (no quadratic dgivergences).

This approach, as well as other approaches in which the symmetry is

3)

broken (even spontaneocusly) at the tree level , are unsatisfactory both
from the aesthetical as well as the more conceptual point of view. ALl the
pelevant mass scales are introduced by hand rather than explained and the

hierarchy problem is not realily solved.

B) - Spontanecus breaking

Since we are dealing with asymptotically free gauge theories whose
coupling grows towards the infra-red, various condensates may be formed. In
-particular, one may hope that a condensate which breaks supersymmetry is
formed q). Since in this case a global continuous symmetry (SUSY) is broken,
s Goldstone fermion will appear in the spectrum. It is this type of breaking

that we will consider in this lecture.

c) - Explicit dynamical breaking

For completeness let me mention this type of approach which was recently
discussed, although to my mind the existence of such a mechanism has not yet
been demonstrated in a convincing satisfactory way. The idea is that, due to
some non-perturbative effects (instantons ?1), an anomaly appears in the di-
vergence of the supersymmetric current 5). Much in the same way that the
anomaly in the chiral U(l) current in QCD is responsible for the axial
U(l) non-conservation, this anomaly should provide a mechanism for 3SUSY
breaking. In QCD, as a result, the would-be Goldstone boson n' acquires a
mass of the order of the scale of QCD, i.e., ~1 GeV, For the SUSY case, if
such a mechanism is indeed operative, we expect that the would-be Goldstone fermion
will acquire a mass of the order of the scale at which the appropriate gauge
coupling becomes strong. At very high energy where the coupling 1s small,
the whole effect would be negligible (e-l/gz) and the theory would be



-2 -

effectively supersymmetric, At lower energy, wWhen the coupling becomes

of order one, the breaking would be noticeable,.

As mentioned above, in this lecture I will discuss the pessibility of
spontanecus breaking of SUSY. During the last year we have learned that it is
rather difficult to break global supersymmetry spontaneously, This is due to the
fact that the Hamiltonian is part of the SUSY algebra

{Q¢,6§f= Z.(Gr)“éﬁ. (1.1)

where Q 1s the generator of supersymmetry and pu the space~time translation

operator. An a priori criterion to check whether SUSY is spontanecusly broken

was introduced by Witten 6). One should calculate the index defined as

[ @
A= Mg— M (1.2)

where ng (ng) is the number of bosonic {fermionic) states of zero energy. If
4 #£ 0, SUSY is not broken. Computation of the index for various theories and

6)

a mere formal discussion of its meaning was carried out by Witten

and Girardello 4). For zll the theories for which the index analysis could be

and by Cecotti

carried cut, the cutcome was that no spontaneous breskdown of supersymmetry cccurs.

The theories which I will consider in this lecture using the effective
Lagrangian approach could be analyzed by the index criterion. Our results are in
accordance with the index analysis, The advantages of the effective Lagrangian

approach are the following.

(1) The index analysis involves some formal steps, in particular with respect to
the question of whether the index is independent of the parameters of the
theory. At special points in the parameter space, the index may change
{phase transitions ?!). The effective Lagrangian approach is perhaps more
intuitive and gives some more insight into the piiysics of the underlying
theory,

{ii) In the theories under consideration, besides supersymmetry, there will be
other symmetries of interest (e.g., chiral symmetries). The effective
Lagrangian approach also investigates the realization of these symmetries,
Of particular interest is the inter-relationship between the realizations

of supersymmetry and chiral symmetries,
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(1ii) There is a class of important theories, i.e., chiral gauge theories which
cannot be analyzed by the index critericon. The effective Lagrangian approach

is, however, easily generalized to chiral theories.

The effective Lagrangian should describe the low-energy physics of the
underlying theory which, for the cases we are interested in, will be supersymmetric
gauge theories. The effective theory will be constructed and investigated much in
the same way as was done for QCD where it has been proved to be very succesaful ?).
For illustration, I shall discuss the most simple case, i.e., pure N = 1 super-
symnetric Yang-Mills gauge theory; The investigation is based on work done in

8

collaboration with G, Veneziano . Then I will briefly discuss further work on

supersymmetric QCD-like theories,

2, = PURE N = 1 SUPERSYMMETRIC YANG=MILLS GAUGE THEGRY

General properties

The pure N = 1 supersymmetric Yang-Mills gauge theory is an SU(NC)
gauge theory with one Majorana (Weyl) fermion in the adjoint representation. The

Lagrangian is L
L LEYEY L LN
L—‘E’;veﬂv*.&)‘ﬁ”'\

+ auxiliary fields + gauge fixing + ghost term (2.1)

with repeated indices summed over (a,b:l,...,Ni—l). The metric used is

N, = diagll,-1,-1,-1). I Eq. (2.) 3® is the spinor field and Fiv, D,
are the usual Yang-Mills field strength and covariant derivative, respectively.

A few comments on this theory

1) The theory is supersymmetric for any Nc' After elimination of the auxiliary

field the supersymmetric transformation takes the form

SA‘: -t (G'-F)?a
SAr= (5% | (2.2

2} The theory is asymptotically free

P‘_,”ra( - (HN-2M)=-IN, <O | (2.3)
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and is expected to exhibit "colour confinement". The reason for putting the
word confinement in parentheses is that in the present theory the fermions are

in the adjoint representation and one cannot talk abcut confinement of triality,
In other words, the screening phenomencn always occurs in this kind of theories.
Yet, if we introduce into the system an external colour triplet-antitriplet pair
of charges, we expect a linear force between them. Moreover, we expect all phy-
sical states of the theory to be colourless bound states made up of an indefinite

number of constitutent "quarks" and "gluons".

3) To familiarize ourselves with the theory we can carry the large NC analysis.
The topological classification of the diagrams contributing to order (l/Nc)n
is the same as that of QCD diagrams in the limit Nc + o© with Nf./Nc fixed 9)
(Nf is the number of flavours), i.e,, boson and fermion loops count alike, 1In
particular, all planar graphs are leading while a graph of genus h (h "handlas™)
is of order (l/NC)2h relative to the leading (h = Q) diagrams., In spite of
this, assuming colour confinement, the leading term of the expansion is closer
to that of QCD in the 1limit Nc + o, Nf/Nc - 0 10) in the sense that it describes
colourless narrow bound states whose residual n bedy interactions go to zero
as (Nc)eﬂn. Both "mesons" and "baryons" coexist as N, > =, unlike QCD where

cnly the mesons survive in the limit.

Symmetries, anomalies and crder parameters

Inte the effective Lagrangian we should build all the correct and rele-
vant Ward identities, In particular, we shall be interested in those associated
with exact and ancmalous global symmetries, At the classical level this theory has

the following symmetries

supersymmetry D/w Sf‘ =0

superconformal op (XX S,,) = Y. Sp=0
scale invariance Ipe df‘ =V (Xy Ouv) =0
chiral invariance e (l;'“ =0

where Su is the supersymmetry current, du the scale current, euv the energy
(A

momentum tensor and ju the X fermion number current,

I shall assume, following the accepted lore, that supersymmetry is not
broken explicitly at the quantum level, This is certainly true in each order of

11}

perturbation theory « In this respect the interesting question which we will



-5 =

investigate, is whether SUSY is spontaenously broken. or not. As for the other sym-
metries, we know that they are broken at the quantum level as it is expressed by

the appearance of anomalies on the right-hand side of Egs. {2.3)

dp (X¥5,)= Y-S = gp_gag Fl Gt
Dr(xye,w): erf‘ = ﬁ,a ,ul anl

D,« (][;) - P F (2.4)

*d
(A}

In writing down Egs. (2.4), I have used the fact 12) that the current ju y S,

H
OLOL ( V@Oﬂ

euv belong to a supermultiplet structure V is a general multiplet whose
(XD
J

j(l)). The anomalies

lowest component is y y ¥ 3, Ouu beleong to another
supermultiplet structure (chiral) which I shall denote by S. The chiral multi-
plet S 1is known as the ancmaly (or Lagrangien) multiplet, All the anomaly

equations (2.4) can be summarized in a supersymmetric way 12)

BQV“: D‘S {2.5)

Note that the axial current which sits in the multiplet with the supersymmetry
current does not satisfy the Adler-Bardeen theorem 13), i.e., the full B function
appears as the coefficient of FF. This seems to be an unavoidable conclusicn if
supersymmetry is unbroken explicitly aﬁd Eq., (2.5) holds, Because of gauge invari-
'ance we have not been able tc find any acceptable modificaticn to Eq. (2.5) for

N = 1 SUSY gauge theories 4). It is therefore extremely important to check
directly in two-locp order, using a supersymmetric regularization, the status of
the Adler-Bardeen thecrem with respect to the axial current which resides in the

supermultiplet yoo 15).

There are two important lowest dimension gauge invariant order parameters
in this theory, FivFiv and X*%. These order parameters are associated with
supersymmetry and chiral symmetry respectively, If F? gets a vacuim expectation

value SUSY is broken. This comes about from the fact that 16)

T {8755, @ =6 =l ROFS 2.6)

An expectation value for the right-hand side of Eq. (2,6} would imply that Qa

does not annihilate the vacuum. Alternatively, using Lorentz invariance

<eff>a - Lf<eoa>="f6 {(2.7)
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where € 1is the vacuum energy. Having non-zero vacuum energy implies breaking of

supersymmetry. An explicit calculation of the anticommutator in Eq. (2.6) gives

a_a e .\
Opp oy (47N (4 b Fuv* 32 BX) (2.8)

The first term is the conventional one while the second, &lso present in non-SUSY

thecries e

with different numerical coefficient, is a rather trivial operator
because of the equation of mction., The coefficient of § appearing in Eq. {2,.8)

is just what is needed in order to achieve the exact cancellation of gluonic and
fermionic loops. This is consistent with the fact that in deriving Eq. (2.8) we
have eliminated the auxiliary field through its equation of motion. In any case

the above arguments show that the operator appearing on the right-hand side of

Eq. {(2.6) is not just F?, a fermionic free term having been subtracted. This
spoils the positivity argument which was advocated 18) to prove that on kinema-
tical grounds <F2>O = 0 (and therefore SUSY is not broken}, and leaves the question

of SUSY breaking a dynamical cne.

Next I would like to discuss the expectation value of <Xi> with
respect to SUSY breaking and chiral symmetry breaking, In the literature there is
some confusion with regard to the question of whether <iA> £ O breaks SUSY. The
arguments have to do with the following anticommutation relation

(32 = 5 @, (X)}) 2.

from which it looks as if <XA> # O implies SUSY breaking. [In Eg. (2.9) we have
used the fact that Lorentz symmetry is not broken, hence only scalar operators can
have a non-zero vacuum expectation value;} The problem with Eq. {2.9) is that it
involves gauge-dependent gquantities, Moreover, the operator Qa which appears is
actually not the supersymmetry generator but a combination of the generator and the
generator of gauge transformation, Alternatively, we can show that this relation
helds only in the Wess-Zumino gauge. We conclude that one should not use Eq. (2.§)

8)

naively. In fact we shall see explicitly that in this theory SUSY is preserved

even through <XA> # O,

The question of whether <W\> £ 0 represents in scme sense spontansous
chiral symmetry breaking deserves more discussion, due to the explicit breaking by
the anomely. What we can do is give some plausible arguments in favour of a CoOmpo-
nent in the vacuum expectation value of XA which is due to spontaneous chiral

breaking.
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Analogy with QCD

Tn OCD the ancmaly can be switched off by taking the limit Nf/Nc + O
and in this case the possibility of a spontanecus breaking of the U(l) sym-
metry is a meaningful one. Unfortunately, in the present 3U3Y case, no para-
meter can be adjusted to switch off the anomaly while preserving SUSY [?n the
present 3USY theory the anomaly is larger than in QCD by a factor O{NCE].
Yet the diagrams contributing to the large Nc limit of the three axial current
amplitude can be classified according to whether the three currents are attached
to the same fermion loop or not, It is the first type of diagram which, in the
QCD case, survives in the large NC limit and which is responsible for sponta-
neous chiral symmetry breaking while the other ones, being related to the ancmaly,
provide a2 mass for the would-be Goldstone boson {the n'). In the SUSY case both
sets of diagrams should be considered simultanecusly. However, by analogy, we
still expect the first type to induce & spontaneous breaking with a Goldstone

poson while the others provide the mass shift through explicit breaking.

More flavours

Consider the SUSY thecry under consideration as the Nf + 1 limit of a
more general theory with Nf flavours of Majorana fermions in the adjoint re-
presentation. This theory is not supersymmetric (if Nf £ 1) but has instead
a U(Nf) chiral symmetry broken to SU(Nf) by the strong anomaly. In this

case, taking alsc NC + o, we can easily show that a Coleman-Witten 19) type

of result follows, using 't Hooft anomaly equations 20). One expects SU(Nf)

to be broken to O(Nf) with
-8 &
(}\‘-)\‘\-)’VS"J‘ (1,3 = Lyaua,Ng) (2.10)

Notice that only the diagrams .of the first type discussed above conﬁribute to
the SU(Nf) anomalies and are responsible for the vacuum expectation value
of Eq. (2.10). Unless something discontinuous happens as we come down to

Nf = 1, we expect the same diagrams to give <XaAa> in the 3USY case as well,

Loop expansion

Consider the loop expansion (a non-supersymmetric expansion in powers
of Nf}. Assuming, as in QCD, that the quarkless theory has non-trivial §
dependence, one finds 21) that this can be cancelled in the full theory with
massless fermicns only if a Goldstone pole appears at the one-fermion loop

level [@hich get=s a mass O{/ﬁ;) after resumming all fermion loop%].
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All the abcve arguments indicate that one of our low-lying degrees &f
freedom is the would-be Goldstone boson of chiral symmetry. If SUSY is sponta-
neously broken, a Goldstone fermion should appear in our low-lying spectrum as
well,

Constructing an effective Lagrangian

The effective Lagrangian should describe the low-lying physics of the
underlying theory. From the previous discussion it is c¢lear that the effective
Lagrangian should be general encugh £o incorporate the (would-be) Goldstone boson
of chiral symmetry and the (would-be)} Goldstone fermion of supersymmetry. More-
over, the composite fields which appear in the effective theory should correspond
to the relevant order parameters of the underlying theory much in the same way
that the Landau theory is the theory of the order parameter of the underlying sta-
tistical system. In constructing the effective Lagrangian the following constraints

must be kept :

1) only gauge invariant operators appear in the effective theory ;

2) the operators should correspond to the low-lying propagating states ;

3) all the relevant order parameters of the underlying theory should appear ;

4) operators of lowest possible dimension {lowenergy approximation) should appear ;
5} all Ward identities (corresponding to exact and anomalous symmetries) should

be satisfied.

Using these constraints, an effective Lagrangian for the QCD theory was built and
proved to be useful 7). The composite fields which were used were ﬁw {actually

miwj for the case of N_ flavours 1i,j=1,...,N.) and FF, In view of the pre-

vious discussion, it is gbvious that the composiie operators should appear in
supermultiplet structure. (Supersymmetry is not broken explicitly, hence we impose
supersymmetry on the eff'ective theory,) Since we have already established the fact
that XA and F? are important order parameters, it would be reasonable to add to
them the other members of the anomaly supermultiplet 22)[Fqs. (2.4) and (2.5[].

The minimal effective theory will therefore be built from the composite anomaly

(or Lagrangian) supermultiplet. It will be of the Wess-Zumino type with the com-

ponents of the supermultiplet given by the composite fields (chiral notation)

P=¢ Ik ¢ =c A
y q
X=$CFu Go
M= = £ (FY%FF) M?= - £ (F*(FF)

where terms that vanish upon use of the equation of motion have been omitted,

(2.11)

and



>‘L_ L("‘.‘TS)A )Ng=é("“.(s)A (2.12)

The composite fields appearing in Eq. (2.11) can be combined tc form the chiral

anomaly multiplet
S (X,0) = ¢+zex__—e‘m-i(ev,:5)3,,4>
-(9*(6JXx)-40'¢'a¢P
= W*W,

where WY is just the supermultiplet of the underlying gauge theory {the

(2.13)

multiplet which starts with 12 and contains the Ai).

Given a set of chiral fields {Si}’ the most general Wess-Zumino type

model built on these fields is
[ = J({So‘!,{s;:“‘)D +{'({S;,{)F tc.C (2.14)

where f and d are arbitrary functions. The subscripts D and F refer to
taking the D compenent (the cecefficient of g28%2) and F component (the coef-
ficient of 62) of the corresponding expressions. The first term (the d func-
tion) will be referred to as the kinetic part, while the second term is the
potential part. In our case we shall use just one chiral field, 1.e., the anomaly
multiplet S }h. (2.13[]. The function f will be completely determined by

imposing the anomalous Ward identities which are expressed by Eq. (2.4). The
right-hand side of Eq. (2.4) gives the variation of the action under superconformal,
dilatation and chiral transformation. To illustrate the procedure, we shall impose

the correct chiral transformation on the effective theory. Under the chiral

transformation ”
] -3
S(x,e)-—-aea'“S(x,c ‘)
(2.15)
Hence 3_.9
30K -3¢%
(o fisxen— SJ‘G’{(C Swe™ 76)

=3iq/2
e

Changing the wvariable tc o' = 8 and demanding that the variation be given

by the F compeonent of S, we obtain

R s N L IR R T L T T T L R T RN e R D LI TR T SUR UL L T




- 10 -

3"‘{-( 3&\(5) -F -

(2.17)

Specializing to infinitesimal transformation we derive the following differential

equation

,Df; (2,18)

whose solution is
(= -_:;—(S ﬂaa S/ﬂs ~5) (2.19)

The same equation is obtained by considering either the scale transformation or

the superconformal transformaticn (since both are in the same supermultiplet

12}

structure with chiral transformation Alternatively, it is straightforward

to check that £ of Eq. (2.19) satisfies the correct anomalous Ward identities.
Under the chiral transformation [Eq. (2.157]

(S)p = (% d'e S(xe)— (dxd'e’S(x6")
o'=e %o
3 (sl ) 4h.c = 3 Sd"xl‘o’sfx,a’) +he
=20k (d% (-MrMt) = -3uc [dXFF 1250
Similarly, under scale transformation

4 1,
S(xe)— esrs(xeiee ) (2.21)

and therefore

(S)e = SJ"xdeS(xe)-—»SJ"al 'S (x,6")

-Xex 6 ce ;/1.
§(slogSpr) the = -3¢ {d%'de'(5(x]604hc)
:-3rgJ"x(M+M*):3rcSJ"xF‘ (2.22)

Note that we have used here the naive dimensions. The effective Lagrangian is
built out of renormalization group invariant composite operators since alresdy

on the tree level it describes physical processes,
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The kinetic part cf the effective Lagranglan should be invariant under
all the classical symmetries. In particular, it should be scale invariant, This

fixes unicuely the kinetic part in cur case and we obtain

9 s Sy 3 -
L=3(595 +3[sk%s +he]

Note that p is a renormalization group invariant scale whose physical meaning
will become clear upen investigation of the effective theory, All quantities which
appear in the effective theory are renormalization group invariant and no explicit

g dependence cccurs (dimensional transmutation),

Next we turn tc the analysis of the effective theory of Eg. (2.23).
This is done most easily by writing down Leff in components. The auxiliary

fields turn out to be given by

2 , ] A v w2 73 ¢b’ﬁb
M+MT=-cF =-3[z(’%3’ +7%%’R)-o<(¢ ¢) /ﬂg(?)l

{2.24)

(M-NMH=cFFe3 2 (xm {XJR) “[‘M)%d(%)j

In terms of ¢ and ¥ alone the effective Lagrangian, Eq. (2.23), takes the form

Lo =3 (4°4) B0 P+ XFX)

_1 ( XX 3';7:.)
¢ ¢
»* Z/ y,
- g% (9b ¢L)-3£Q?39%?r1421§ ¢2;‘}
‘g ¢’ 3 ﬂf % ¢’ 3
+5( ¢Rﬂ3/+RL%34“) |
%(ffr r;)’)(‘f"') ¢) W"P) (2.25)

Equation (2.25) is quadratic in the fermionic fields. This arises from our choice

of a factorized D term, Eq. (2.14), while a four-fermi interaction Xﬁxﬁ will
22)

be at most present in the general case . Notice that the non-polynomial form
of Eq. (2.23) reflects itself in Eq. (2.25) as non-polynomial terms in ¢, ¢¥ but
not in ¥, X. This is a general result 23 independent of the particular cheice

of the functions f and d, Eq. (2,14). In particular, the scalar potential

takes the form
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V= -g(- (¢*¢’)1/3 jﬂa ¢//,.3 [96 (P}/L") (2.26)

with minima at <¢> = <¢*> = 0 or <¢> = <$*> = p®, It is clear that the solution
<¢> = 0 1s not an acceptable one since the potential (as well as other terms in

Leff‘ “ .
rescaling the ¢ and y fields (¢ = 3/ ¢2/%, § = vV2u 6=2/% y) so that the

kinetic terms take the conventional form, one can see that only the <> = ul

] 1s not analytic at this point and we cannct expand arcund it. Indeed, by

soclution makes sense in agreement with cur expectation. In particular, the scale

of the "nonerenormalizable! terms is given by .

Expanding the effective Lagrangian around its minimum we find that $
describes scalar and pseudoscalar magssive bosons and ¥ a massive {(Majorana)
fermion. As expected from the fact that V = 0 at the minimum, these particles

have the same mass
—_ - d
Mg =mg = 3 0(/4- (2.27)

and form a Wess-Zumino scalar multiplet. Hence, in spite of <X)> # 0, SUSY is
not broken {(in particular <F%> = 0). The would-be pseudoscalar Goldstone has
received a mass from the anomaly (as the n' in QCD) but because of SUSY has

dragged along a scalar and a fermion.

At this point several remarks are in order,

(i} The fact that <¢> # 0 does not imply SUSY breaking is intimately related
to the fact that XX is the lowest component of a chiral multiplet 8
Eq. (2.13) whose components are gauge invariant composite operators. The
lowest component can never be cobtained as a commutator of the supersymmetry
charge with some other components., Thus the usual Goldstone type argument
cannot be applied here, OCnly when the F component of the supermultiplet
(the auxiliary field) gets a non-zero vacuum expectation value can one

conclude that supersymmetry is broken.

(i1) At first sight it seems that by adding linear F terms we can achieve a
situation where the auxiliary field gets non-zero vacuum expectation value
and supersymmetry is broken, This, however, is not the case, since in our
effective Lagrangian, Eq. (2.23}, such an F term can be swallowed by a

redefinition of .

(11i) One can check that our result is consistent with the large NC behaviour of

masses and couplings 8).
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Summary

We have analyzed the pure N = 1 supersymmetric Yang-Mills theory. The
expected spectrum is that of a massive supermultiplet of composite hadrons {of which
ours is expected to be the lowest one for small values of o) which become weakly
interacting in the large NC limit., Supersymmetry is not broken since only the
lowest member of the scalar multiplet (¢ = %) has developed a vacuum expectation

value,

3. = FURTHER WORK

Az discussed in the Introduction it would be interesting to apply the
effective Lagrangian approach to other more realistic SUSY theories, in particular
those for which the index criterion cannot give any information., Right now, toge-
ther with Bars, Nilles and Veneziano, we are studying such theories. Although this
work is not yet finished, let me give some details which might be of interest, and

share with you our present understanding {and confusion).

The first interesting theory is a supersymmetric QCD-like thecry. This
is an SU(N) gauge theory with M matter multiplets residing in the f+T repre-
sentation (f denotes here the fundamental representation and all fermions are
taken to be left-handed).. Let me denote the different (chiral) multiplets in the

following way

W = ()«': H; ) gauge multiplet
' i K

péia (44 V%) a
; H ‘ matter multiplets

We consider the gauge supersymmetric theory where all non-gauge couplings are put

1,u00,N

[N
|

= 1yees,M (3.1)

to zero. This is in sccordance with the fact that the theory is asymptotically free

(as long as M is not too large) and the gauge coupling grows towards the infra-red,
3 5
F%c* _(3N—M)a +OCa) (3.2)

In discussing the dynamics of the theory at low energies we can therefore forget
all couplings besides the gauge coupling. The classical internal symmetry group

{flavour) is

U (M) x SUM)xU,, (1% Up(D) x Uy ()

like in QCD
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The reason for the appearance of the extra UR(l) symmetry is related to the fact
that the SUSY theory includes a gauge fermion X\ on top of the fermions which are

present in QCD.

do= PRV X + ¢ D, W P+ YD g
ITERY R RS "D ¥ +4°D, D -

(3.3)

where we have used a Majorana four-component notation for the Weyl fermions. Note
the appearance of the scalar terms in the currents which are needed to ensure the
invariance of the Yukawa gauge terms in the underlying theory. Moreover, the jR
corresponds to a so-called R symmetry, i.e., a symmetry which does not commute
with supersymmetry (A carriesacharge under jR while AU does not), The current

which sits in the multiplet together with the supersyrmetry current is

- 3 -4
Cf" = Y2dr" /2 (s (3.4)
It is well known that quantum effects lead to a bresking of some axial U(1)
currents., Since the "space" of the axial U(1) currents in this theory is two-
dimensional, and since there isonly one gauge group (and therefore only one F?},
we can always find one conserved axial U(1l) current., At the one-loop level it

is straightforward to identify this current
d = MJA_N(JA (3.5)

where here jk 2 XYHYSA.+¢*§:¢ + n*ﬁzn._ Note that this is an R current (does
not commute with 3SUSY). We expect this symmetry to be spontaneously broken since

20)

we were not able to satisfy the 't Hooft anomaly equation with respect to

this current.

We have followed the steps described in the previous section to construct
an effective Lagrangian for this theory, The compcsite supermultiplets that we

coensider are

E; = Lagrangian multiplet
| Kpd

T‘J:‘ ﬁ F

U= DT

(3.6)
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which include all the relevant order parameters which may control the low-lying
physics., At this point we have excluded the possibility that the chiral symmetry
(apart from the R symmetry) is realized by massless "haryons" made out of three
spin % preons, since we were not able to find a set of "baryons" which satisfy the
appropriate 't Hocft equations.(actually we could not find any acceptable sclution
even allowing for baryons made out of one spin % preon and spin O preons).
Imposing both the R invariance, the SU(M)xSU(M) invariance and the anomalous

Ward identities, we end with the following form of the effective potential term

'C‘odf. = S[(*H!PN) -pads//u; +faaa(ef T//JIJF (3.7)

This expression is clearly correct to the one-loop order. There are, however, some
delicate points concerning the question of whether this is indeed the full answer,
Note that the composite multiplet Uij, Egq. (3.6), whose lowest component includes
wiaxg, does not appear in Lpoﬁ' This already indicates that the physics of the
present theory probably does nct allow for the iy type of condensate (which would
break both chiral symmetry and supersymmetry). The form of Lpot given in Eq. (3.4)
is in accordance with the renormalization group equation (at least up to the one-
loop order). As discussed in the previous section, yp is a renormalization group
invariant scale, If we take the § fus;tign which is included in S to the one
-1/8,8

and substitute it into L we
pot

recover the usual solution {op to the cne-loop) of the renormalization group equa-

loop, use {agsin to cne loop) 1 = Ae

tion. In particular, Lpot starts as SoiF {the subscript © indicates that the
8 functicn inside S 1is taken to zeroth order) which is the Lagrangian multiplet,

and then logarithmic corrections appear,

Ain important constraint on Lpot is the so=-called decoupling limit, If
we give a {supersymmetric) mass to a whole matter multiplet, Lpot should reduce
in the limit m =+ « to the same form as Eq. (3.7) with M-+ M-1. A mass term

appears in the effective theory as an additional ferm

’dﬁ‘“ﬂ‘s = Mf (3.8)

where t is that particular multiplet among the Tij's which corresponds to

the masaive matter multiplet of the underlying theory. As long as we keep Lmass
(for all matter multiplets) in our effective theory, we can analyze the theory

with the conclusion that the chiral symmetry is broken by ¢n {lowest component

of T) =acquiring non-zero vacuum expectation values while supersymmetry remains
unbroken., Alsc the decoupling limit works correctly. Note again that whenever

it is the lowest component of the multiplet which acquires non-zerco vacuun expecta-~

tion values, SUSY remains unbroken.

I R T
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However, the limit of the zerc mass theory looks singular, In particular,
the minimum of the potential corresponds to zero vacuum expectation value for
{lowest component of) 8. This is actually a general result independent of the
particular choice of the functions f and d, Eq. (2.14), and is a consequence
of imposing the R symmetry and the anomalous Ward identities on the effective
Lagrangian. Such a solution (zero vacuum expectation value for 8) is non-analytic
since the potential term, Eq. (3.9), cannot be expanded around this poeint. The fact
that m = 0 might be a singular point gets some support from the fact that for
m = 0 in the underiying theory there are always some directions in which the po-
tential is flat 6). In particular, one may expect that the index, which was computed

to be non-zero for the m # ¢ theory, can actually change its value.

At this point we have nct finished our analysis of the theory in the
m=0 limit, In particular, the option that supersymmetry is after all broken
spontaneously is open, although it is perhaps somewhat hard to believe such a
drastic change in the behaviour of the thecry as m + 0. It is also possible that
one encounters some kind of "phase transition" as one changes m toward zero,

In particular, the naturé of the order parameter which gets non-zero vacuum expec=~
tation values may change, For example, we can write down an effective thecry which
does seem to have 2 smooth m -+ 0 limit, by taking X = SN'"M det T to be our order
parameter (i,e., the effective Lagrangian will be-a function of the superfields 8
and X)), Note that in this case a non-zero vacuum expectation value for X does

not break the conserved U(l] R symmetry of the theory, It is important to re-
member that if some global symmetries remain unbroken, then the appropriate 't Hooft
anocmaly equations 20) should be saturated by the massless "baryons" one finds in the
theory, (If the symmetry is spontaneously broken, the Goldstone boson would saturate

the appropriate equations.) This puts an extra constraint on the effective theory.

It would be extremely interesting to finish the analysis of this theory
as well as of non-chiral theories and to find whether supersymmetry can be broken
spontaneously and discover the relathioship between the realization of chiral Synm-

netry and supersymmetry,.
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