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Abstract

An analysis of data on p̄p → ηηπ0π0 is presented at p̄ beam momenta 600 to 1940
MeV/c. There is evidence for an I = 1, JPC = 2−+ resonance in ηηπ0 with mass M =
1880 ± 20 MeV and width 255 ± 45 MeV, decaying strongly to a2(1320)η; it is too strong
to be explained as the high mass tail of π2(1670) → a2(1320)η. There is tentative evidence
also for weak decays to f0(1500)π. It makes a natural partner to the η2(1860).

In earlier studies of p̄p → ηπ0π0π0 data in flight, we have presented evidence for I = 0
JPC = 2−+ states with masses 1645, 1860 and 2030 MeV [1,2]. Here, we study the final state
ηηπ0π0, with the objective of searching for corresponding I = 1 resonances decaying to ηηπ0.

The data were taken with the Crystal Barrel detector at LEAR [3]. The analysis techniques
run closely parallel to those used in studying ηπ0π0π0, so we shall refer to the earlier papers
for a description of the experimental set-up and details concerning amplitude analysis. Here we
begin by outlining the detector briefly.

The p̄ beam interacted in a liquid hydrogen target 4.4 cm long at the centre of the detector.
The beam was counted by a coincidence between a small proportional chamber P and a silicon
counter SiC of 5 mm diameter placed ∼ 5 cm upstream of the target. Two veto counters 20
cm downstream of the target were used to select interactions. The beam intensity was typically
2× 105 p̄/s. A multiwire chamber and a silicon vertex detector close to the target and covering
98% of the solid angle were used for a trigger on neutral final states. The data-taking rate
saturated at ∼ 60 events/s.

The essential element of the detector for present purposes was a barrel of 1380 CsI crystals,
each of 16 radiation lengths, detecting photons with high efficiency down to < 20 MeV and with
an angular resolution of ±20 mrad in both polar and azimuthal angles. The energy resolution
is given by ∆E/E = 0.025/E1/4, where E is in GeV. The angular coverage is 98% of 4π solid
angle. In order to filter out events which obviously fail to conserve energy, the total energy in
the CsI crystals was summed on-line [4]; a fast trigger rejected those events with total energy
falling ∼ 200 MeV or more below that for p̄p annihilation.

The off-line analysis follows the procedures of Ref. [1], with minor refinements in data selec-
tion based on a Monte Carlo simulation of cross-talk with background channels. Events con-
taining exactly 8 photons are selected; the energy of each photon shower is summed over a block
of 3× 3 neighbouring CsI crystals. Kinematic 7C fits are first made to π0π0ηγγ and π0π0π0γγ,
then 8C fits to 4π0, ηπ0π0π0 and ηηπ0π0. Events fitting ηηπ0π0 with confidence level CL > 10%
are used. To eliminate backgrounds from 4π0 and ηπ0π0π0, events with CL(3π0γγ) > 10−3 are
rejected. Any surviving events from these channels or from other rare channels are rejected if
they have CL > CL(ηηπ0π0). The Monte Carlo simulation reproduces the observed confidence
level distribution down to 10%.
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Source Background (%)
4π0 0.1
η3π0 1.8
ω3π0 0.7
ωη2π0 6.0
5π0 0.7
η4π0 4.0

Wrong combinations 1.7

Table 1: Background levels at 1800 MeV/c estimated by the Monte Carlo simulation using
GEANT.

The normalisation of cross sections is derived from beam counts P.SiC , the length and density
of the target, the observed number of events, and the Monte Carlo simulation of detection
efficiency. A significant rate-dependence of the number of reconstructed events is observed,
and is consistent with expected pile-up in the CsI crystals, where scintillations have a long time
constant, 100 µs. The correction of cross sections for this rate-dependence is described at length
in Ref. [5].

Backgrounds are estimated as follows. The Monte Carlo simulation is used to generate at
least 30,000 events in each of 43 exclusive channels containing 4–10γ. The generated events are
fitted both to the original channel (to estimate detection efficiency) and to all other channels (to
estimate cross-talk). Data are fitted kinematically to all channels having the observed number
of photons. Numbers of fitted events are then used in a set of 43 × 43 linear equations, which fit
cross sections for each channel, with allowance for backgrounds from other channels; a constraint
is applied that all cross sections are positive or zero. In practice, the background contributions
to these equations are generally small.

Resulting background levels are illustrated in Table 1 at 1800 MeV/c. The background comes
largely from η4π0 after the loss of two photons (4.0%), from ηωπ0π0 after loss of one photon
(6%) and from η3π0 (1.8%). Combinatorics are high in these channels and lead to a background
which follows ηηπ0π0 phase space closely. The background is 14% within errors at all beam
momenta; it is included in the amplitude analysis, but results described here are not sensitive to
the precise background level. Numbers of accepted events are shown in Table 2, together with
reconstruction efficiency ǫ and cross sections.

Mass distributions are shown in Fig. 1 for one beam momentum, 1800 MeV/c. Full histograms
show the final fit and dotted histograms show phase space distributions. There is a strong peak
at ∼ 1285 MeV in ηππ, Fig. 1(a), due to either or both of f1(1285) and η(1295). In πη, there are
peaks due to a0(980) and a2(1320). In ηη, there is a small enhancement from f0(1500). The ππ
phase space is limited and this mass distribution shows little structure; deviations from phase
space arise mostly via reflections from other channels. The πηη mass distribution shows little
structure, but peaks slightly above phase space at high masses.

The amplitude analysis fits the following channels to the data:

p̄p → a0(980)a0(980) (1)

→ a0(980)a2(1320) (2)
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Figure 1: Mass distributions at a beam momentum of 1800 MeV/c for (a) ππη, (b) πηη, (c)
πη, (d) ηη and (e) ππ. Full histograms show the fit and dotted histograms show phase space
distributions. Masses are in MeV.
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Momentum CM Energy Events ǫ σ(ηηπ0π0)
(MeV/c) (MeV) % (µb)

600 1962 257 10.2 17.3± 2.1
900 2049 1996 10.1 27.5± 2.4
1050 2098 1234 10.1 24.8± 1.8
1200 2149 2387 9.8 23.3± 2.0
1350 2201 1617 10.0 19.4± 1.7
1525 2263 1393 9.4 24.1± 1.5
1642 2304 1669 9.5 22.9± 1.4
1800 2360 1944 9.3 19.5± 1.5
1940 2409 2340 8.9 18.6± 1.6

Table 2: Numbers of selected events after background subtraction; ǫ is the reconstruction effi-
ciency; cross sections in the last column have been corrected for backgrounds and for the 39.3%
branching ratio of η → γγ and for the branching ratio of π0

→ γγ. Column 2 shows the total
energy available in the centre of mass system.

→ f0(1500)σ, f0(1500) → ηη (3)

→ f1(1285)η, f1(1285) → a0(980)π (4)

→ π(1800)π, π(1800) → f0(1500)η (5)

→ π(1800)π, π(1800) → a0(980)η (6)

→ π2(1880)π, π2(1880) → a2(1320)η (7)

→ π2(1880)π, π2(1880) → [f0(1500)π]L=2 (8)

→ X(2200)π, X → a2(1320)η. (9)

Masses and widths of established states are taken from the Particle Data Group (PDG) [6]. The
peaks fitted to f1(1285), a0(980) and a2(1320) in Figs. 1(a) and (c) slightly over-estimate the
data. Inclusion of mass resolution improves the fit to f1(1285) marginally but has negligible
effect for a0(980) and a2(1320). Altering the widths of the latter two states also has negligible
effect; although the fits to peaks in Fig. 1(a) and (c) may be improved, the fit to other features
gets correspondinly worse. Likewise, altering decay branching ratios in equations (6) and (7)
can improve the fit at one momentum, but the overall fit is made to all momenta simultaneously.

In reaction (3), σ is a shorthand for the broad f0(400− 1200) of the PDG; it has been fitted
with the parametrisation of Zou and Bugg [7]. Further final states have been tried, but are
not required. As an example, η(1295)η has been tried, replacing or supplementing f1(1285)η;
also decays of both η(1295) and f1(1285) to ση have been tried. There is no significant change
to the fit, but we cannot exclude some small component due to η(1295)η. The background
underneath the f1(1285)/η(1295) is too large to allow the possibility of fitting this channel in
terms of partial waves in the production process. Contributions have been tried from π2(1670)
decaying to a0(980)η, f2(1270)π, f0(1370)π and f2(1565)π, but are not needed. In the last
three cases, this is hardly surprising; f2(1270) has a very small decay branching ratio to ηη,
and decays of f0(1370) and f2(1565) to two-body channels are believed to be weak. The known
decay π(1800) → f0(1370)π, f0(1370) → ηη was also tried, but found to be negligible.
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There are not sufficient events for a full partial wave decomposition of both production and
decay. As an approximation, the production process has been ignored and only the decays of
resonances have been fitted. The objective is to try to identify characteristic decay signatures
from observed angular distributions. Taking reaction (7) as an example, it is assumed that the
π2(1880) is produced through three helicity amplitudes, with components of spin along the beam
direction 0, ±1 and ±2. The decay angular distribution of each component is fitted in full, using
the method of Wick rotations described in Ref. [1]. In essence, this involves (i) a rotation of
axes from the beam direction to that of the resonance in the overall centre of mass frame, (ii) a
Lorentz boost to the rest frame of the resonance, (iii) a rotation back through precisely the same
angles as are used in step (i). In the Lorentz boost, helicity amplitudes are unchanged; in steps
(i) and (iii), there is a cancellation of rotation matrices. As a result, decay amplitudes may be
expressed simply in terms of Clebsch-Gordan coefficients. The Wick rotation essentially takes
care of the Lorentz transformation from the centre of mass to the rest frame of the resonance.
A second Wick rotation is used for the subsequent decay of a2(1320) to ηπ.

Because beam and target are unpolarised, there is no dependence of cross sections on the
azimuthal angle around the beam. Consequently, it may be shown that there are no interferences
between different helicities along the beam direction in the final state. Interferences between
channels for a given helicity are allowed. However, these occur only over those limited parts of
phase space where both amplitudes are large; in practice, most of the interferences have negligible
effect and are dropped. There is, however a large interference between the a0(980)a2(1320)
channel and π2(1880) → a2(1320)η. This interference is phase sensitive and helps determine the
mass and width of π2(1880) precisely. For a pair of channels such as (5) and (6), where a single
resonance decays through two different modes, they must be fully coherent and this coherence
is retained in the fit. Every channel is fitted with a coupling constant at each beam momentum,
and a phase for those cases where interferences survive.

Channel 900 1050 1200 1350 1525 1642 1800 1940
a0(980)a0(980) 10 8 12 40 23 40 44 38
a0(980)a2(1320) - - - 7 17 33 89 158

f0(1500)σ 8 4 6 15 17 24 11 14
f1(1285)η 153 113 173 177 149 264 305 300

π(1800) → f0(1500)η 0 4 8 2 3 1 2 6
π(1800) → a0(980)η 25 11 21 2 7 9 1 9
π2(1880) → a2(1320)η 169 152 246 51 28 38 56 0
π2(1880) → f0(1500)π 3 9 16 4 2 10 3 8

X(2200) - - - - 12 25 31 40

Table 3: Changes in log likelihood when each channel is dropped from the fit and remaining
contributions are re-optimised; the top line of the table indicates beam momenta in MeV/c.

We now turn to the detailed features of the data. Initial fits were made with channels (1)–
(6). An additional contribution from σσ final states was tried, with one σ → π0π0 and the
second σ → ηη; this had no significant effect. The contribution from π(1800) is small, but just
significant. For example, it improves log likelihood by 29 at 1200 MeV/c in the final fit reported
below (a 6.5σ effect statistically for 3 fitted parameters). Table 3 illustrates significance levels
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Figure 2: Full histograms show fits at 1200 MeV/c compared with data; dotted histograms show
fits without π2(1880); (a) the πηη mass distribution, (b) the πη mass distribution, (c) the πηη
mass distribution for events with a πη combination within ±65 MeV of a2(1320), (d) and (e)
πη and ηη mass distributions for events with M(πηη) 1850-2050 MeV. Units of mass are MeV.

by giving changes in log likelihood when each channel is dropped in turn from the final fit and
all other components are re-optimised. Our definition of log likelihood is such that it changes
by 0.5 for a one standard deviation change in one fitted parameter.

At this stage, it became obvious at beam momenta 900–1200 MeV/c that several features of
the data are fitted poorly, particularly the πηη mass distribution. This is illustrated in Fig. 2
with several distributions at 1200 MeV/c. In each case, the absolute normalisation of histograms
is taken from the fit. There is a clear requirement for something with πηη mass around 1880
MeV with decays to a2(1320)η. It improves log likelihood by 246 at 1200 MeV/c and by similar
large amounts at 900 and 1050 MeV/c. Its mass and width are best determined by the data
at 1050 and 1200 MeV/c; at 900 MeV/c, the upper side of the resonance is cut off. A further
marginal improvement is obtained by adding channel (8), π2(1880) → [f0(1500)π]L=2. The
possible decay π2(1880) → f0(1370)π, f0(1370) → ηη was tried, but found negligible; in view of
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Figure 3: (a) Variations of log likelihood with mass, summed over data at 1050 and 1200 MeV/c,
for quantum numbers JPC = 2−+, 1++, 2++ or 3++; (b) variation of log likelihood with width
for JPC = 2−+.

the known weak decay of f0(1370) to ηη, this is not surprising.
The mass of the fitted a2(1320)η signal is so close to threshold that only decays with orbital

angular momentum L = 0 are likely, i.e. quantum numbers JPC = 2−+. For L = 1 decays,
alternative quantum numbers are 1++, 2++ and 3++. Fig. 3(a) shows the variation of log
likelihood with mass, summed over data at 1050 and 1200 MeV/c, for these quantum numbers;
the vertical scale is adjusted to zero at the optimum for 2−+. There is a well defined optimum
for these quantum numbers, giving M = 1880± 16 MeV, Γ = 255± 45 MeV. The errors cover
the variations over the four beam momenta 900-1350 MeV/c. For other quantum numbers,
curves of Fig. 3 use the optimum widths, including appropriate centrifugal barrier factors. Log
likelihood is worse by at least 109 for 1++, 125 for 2++ and 112 for 3++; each of these differences
from 2−+ corresponds to at least a 14 standard deviation effect. For L = 1 decays, it is the
centrifugal barrier which prevents an adequate fit to the a2(1320)η threshold region. A second
point is that 1++ and 3++ states cannot be produced with orbital angular momentum ℓ = 0 in
the production process, since this would require exotic quantum numbers 1−+ and 3−+ for the
initial state and these are forbidden for p̄p; a centrifugal barrier of at least ℓ = 1 is required in
the production process and plays a significant role in ruling out these quantum numbers.

Fig. 3(b) shows the variation of log likelihood with the width fitted to π2(1880). Our
experience elsewhere is that 1/Γ follows an approximately normal distribution; we use this
result in determining an estimate of the optimum width, Γ = 255±45 MeV. The error is mostly
statistical, but includes a small systematic component.

The VES collaboration has also reported a threshold enhancement in a2(1320)η with JP = 2−

in their ηηπ− data [8]. An even clearer threshold peak is observed in their ηπ+π−π0 data, where
a2(1320) → π−π−π0; there is also a strong peak at the same mass in the f2(1270)π D-wave in
their 4π data [9]. Daum et al. [10] also observed a peak at 1850 MeV in the f2(1270)π D-wave
with a width of ∼ 240 MeV. They interpreted it as arising from interference between π2(1670)
and a higher π2(2100). That interpretation fails to fit the present data, since the peak at 1880
MeV in a2(1320)η cannot be explained as the high mass tail of π2(1670), as we show below.
Furthermore, the peak in the f2(1270)π D-wave cannot plausibly be explained as due only to
the high mass tail of π2(1670), since our calculations show that the L = 2 centrifugal barrier is
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Figure 4: Cross sections fitted to individual channels; points with errors show the overall cross
section for ηηπ0π0.

not strong enough to shift the peak position by ∼ 180 MeV.
Fitted cross sections are illustrated in Fig. 4. There is a strong contribution from π2(1880)

at low beam momenta, falling at high momenta. The earlier analysis of ηπ0π0π0 found an
analogous peak due to η2(1860) at beam momenta 900–1200 MeV/c [2].

In initial fits to data, the decay branching ratio of π2(1880) between a2(1320)η and f0(1500)π
was fitted freely for beam momenta 900–1350 MeV/c. The weighted average was then formed
and the final fit is made with this weighted mean. The result, corrected for all charge states
and the branching ratio of a2(1320) → ηπ, is

BR[π2(1880) → f0(1500)π]/BR[π2(1880) → a2(1320)η] = 0.28+0.20
−0.15. (10)

The significance level of the decay to f0(1500)π is ∼ 3σ because the errors are not symmetric
about the mean. If this decay is omitted, other components of the fit change very little.

The branching ratio of π(1800) between f0(1500)π and a0(980)η has been treated likewise,
with the result

BR[π(1800) → a0(980)η]/BR[π(1800) → f0(1500)π] = 0.030+0.014
−0.011. (11)

The numerical value of this ratio is small because the f0(1500) couples only weakly to ηη. Our
value is somewhat smaller than the value quoted by VES [8], namely 0.08± 0.03, but the errors
of both determinations are sizeable. The mass and width of the π(1800) are not determined
accurately from the present data, and are therefore set to PDG values, namely M = 1801 MeV,
Γ = 210 MeV.

We turn now to the higher beam momenta, 1525–1940 MeV/c. There, the a0(980)a2(1320)
channel makes a highly significant contribution. However, the fit to the a2(1320) peak is not quite
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Figure 5: Histograms show fits at 1800 MeV/c compared with data, (a) and (b) including
channel (9), (c) and (d) without it; (a) and (c) show the πηη mass distribution, (b) and (d)
show this mass distribution for events with a πη combination within ±65 MeV of a2(1320).
Masses are in MeV.

9



Figure 6: Variations of log likelihood with mass, summed over data from 1525 to 1940 MeV/c,
for quantum numbers JPC = 2−+, 1++, 2++ or 3++.

perfect without some further small contribution from channel (9), i.e. something of mass 2050-
2200 MeV decaying to a2(1320)η. This is a mass region where many resonances are expected with
JP up to 4+. At all beam momenta 1525-1940 MeV, the fitted mass for this extra component
optimises close to the top of the available mass range. Taking these four momenta together, the
optimum is at a mass M = 2200 ± 40 MeV with width Γ = 225 ± 50 MeV. Fig. 5 illustrates
the small improvement in the fit at a beam momentum of 1800 MeV/c from adding channel (9).
As one sees from Figs. 5(a) and (b), the fit including channel (9) makes some improvement,
but does not succeed in removing the discrepancy completely, possibly indicating the need for
more than one contribution, presently unresolved; a better fit may be improved by increasing
the mass of channel (9) above 2200 MeV, but appears unphysical.

Fig. 6 show the variation of log likelihood with the mass fitted to channel (9) for quantum
numbers 2−+, 1++, 2++ and 3++. For all JPC , the improvement in the fit is small, but significant.
We find that the quantum numbers giving the best fit are JP = 1+ or 2+ decaying to a2(1320)η
with L = 1. Unfortunately, the distinction between these two possibilities is poor. Summing
over data at the four momenta 1525-1940 MeV/c, log likelihood is better by 7 for JP = 1+,
but this is a barely significant difference; at two momenta 1++ gives slightly the better fit and
at the other two momenta 2++ is preferred. Data for I = 0 channels [11,12] have located an
f2 resonance at 2240 MeV and a 2−+ resonance at 2267 MeV. Channel (9) could be due to the
I = 1 analogues of either of these states.

Data on p̄p → η3π0 [2] at 1525-1940 MeV/c show features similar to the present data. There
is an analogous high mass contribution in ηππ which peaks at the highest available mass at all
momenta. The statistics of those data are higher by a factor 10, and it is possible to identify the
preferred quantum numbers of the high mass contribution as 2++

→ f2(1270)η and a2(1320)π
0.

This is a hint that 2++ may contribute to present data. Final fits to present data are therefore
made with this JPC , but are almost indistinguishable from 1++. We see the possibility that the
contribution from the 2050–2200 mass range could come from more than one state.

An obvious question is whether a wider π2 alone could fit data at all momenta. This is not
the case. Data at 1642–1940 MeV/c can be fitted with a single broad resonance with mass
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∼ 2150 MeV and width 500 MeV. However, the data at 900–1200 MeV/c cannot be fitted with
the same broad resonance. If this attempted, log likelihood gets worse by typically 25 at each
momentum. The fit to the πηη mass distribution then lies very close to phase space and the
peaks of Fig. 2(a) and (c) are not reproduced. Another point is that data at 1525-1940 MeV/c
prefer a contribution in the πηη mass range 2050–2300 MeV with JPC = 2++ or 1++ rather
than 2−+.

A second question is whether the signal fitted as π2(1880) could be due to the high mass
tail of π2(1670) and the opening of the a2(1320)η channel. This possibility has been tried but
fails. The effect of the extra channel is to add to the Breit-Wigner denominator of the π2(1670)
a width Γ(a2η); assuming ideal mixing between f2(1270) and a2(1320), this width is related to
the decay width to f2π by their relative phase space:

Γ(a2η) = (0.8)2(kη/kπ)Γ(f2π); (12)

here values of k are average momenta for the two decay channels in the resonance rest frame,
folding in the line-shapes of f2(1270) and a2(1320). The factor (0.8)

2 allows for the non-strange
content of the η. The value of kη/kπ rises rapidly from threshold and is 0.35 at 1880 MeV.
However, the line-shape of π2(1670) suppresses high momenta. The mean value of kη/kπ, av-
eraged over the line-shape of π2(1670), is 0.22. So Γ(a2η) is small and can be neglected to a
good approximation in the Breit-Wigner amplitude for π2(1670). If the data are fitted with the
π2(1670) (using the PDG mass and width) instead of π2(1880), there is an unacceptable increase
in log likelihood: 108 at 1050 MeV/c and 97 at 1200 MeV/c. The π2(1670) is too narrow to
reproduce the high mass side of the π2(1880). When Γ(a2η) is included in the denominator of
the Breit-Wigner amplitude for the π2(1670), it suppresses the amplitude above the a2η thresh-
old, making the resonance appear narrower and making the discrepancy with present data even
worse.

The explanation of π2(1880) as the high mass tail of π2(1670) is also ruled out by the large
observed cross section for production of π2(1880). We have earlier studied p̄p → 4π0; results at
one beam momentum were presented in Ref. [13]. In those data, there is a well defined signal
due to p̄p → π2(1670)π

0, π2(1670) → f2(1270)π
0. It contributes a fraction 15–20% of the 4π0

data at all beam momenta and a cross section ∼ 20µb. The cross section for p̄p → π2(1670)π
0,

π2(1670) → a2(1320)η may then be estimated using equn. (12). It is necessary to allow for the
14.5% branching ratio of a2(1320) → ηπ and the 28.2% branching ratio of f2(1270) → π0π0.
Folding in the line-shape of π2(1670), the predicted cross section in present data is ∼ 0.7µb.
This is a factor 5–10 lower than the observed cross section shown in Fig. 4(a). In our earlier
work on p̄p → η3π0 , the same argument ruled out the explanation of η2(1860) as the high mass
tail of η2(1645) [1]; there, the η2(1860) → f2(1270)η signal is likewise a factor ∼ 11 − 22 larger
than that predicted for η2(1645) → f2(1270)η.

We have tried fitting present data with a Flatté formula for π2(1880) where Γ(a2η) is related
to Γ(f2π) by equn. (12). This increases the fitted mass by 5 MeV, because of the suppression
of the upper side of the resonance by the rising phase space for a2η. However, the magnitude
of possible contributions of the f2(1270)π D-wave and other channels are not known and could
have larger effects in the Flatté formula than a2η. Hence we simply include the possible 5 MeV
shift into an overall error of ±20 MeV for the mass.

The observed strong decay of π2(1880) to a2(1320)η makes it a natural partner for η2(1860),
which decays strongly to f2(1270)η and a2(1320)π [2]. This makes it unlikely that the η2(1860)
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is the nonet (dominantly ss̄) partner of η2(1645). Our earlier publication, Ref. [2], finds three η2
resonances at 1645, 1860 and 2030 MeV. There are too many 2−+ states in a narrow mass range
for all to be accomodated as qq̄ states. We conjectured in Ref. [2] that η2(1860) is a candidate
for a hybrid expected at roughly this mass. Decays η2(1860) → f2(1270)η and a2(1320)π and
decays π2(1880) → a2(1320)η are favoured for a hybrid in the flux-tube model [14].

In summary, we find evidence for a new state having I = 1, JPC = 2−+, with M = 1880± 20
MeV, Γ = 255 ± 45 MeV, decaying strongly to a2(1320)η; there is also a possible weak decay
mode to f0(1500)π, but this is only a 3σ effect. There is some evidence for a further contribution
with mass ∼ 2200 decaying to a2(1320)η, but it is weak and we are unable to distinguish clearly
between quantum numbers 1++ and 2++.
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