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Abstract

The ATLAS experiment at the LHC has measured the centrality dependence
of charged particle pseudorapidity distributions over |η| < 2 in lead-lead colli-
sions at a nucleon-nucleon centre-of-mass energy of

√
sNN = 2.76 TeV. In order

to include particles with transverse momentum as low as 30 MeV, the data
were recorded with the central solenoid magnet off. Charged particles were
reconstructed with two algorithms (2-point “tracklets” and full tracks) using
information from the pixel detector only. The lead-lead collision centrality was
characterized by the total transverse energy in the forward calorimeter in the
range 3.2 < |η| < 4.9. Measurements are presented of the per-event charged
particle pseudorapidity distribution, dNch/dη, and the average charged parti-
cle multiplicity in the pseudorapidity interval |η| < 0.5 in several intervals of
collision centrality. The results are compared to previous mid-rapidity mea-
surements at the LHC and RHIC. The variation of the mid-rapidity charged
particle yield per colliding nucleon pair with the number of participants is con-
sistent with lower

√
sNN results. The shape of the dNch/dη distribution is found

to be independent of centrality within the systematic uncertainties of the mea-
surement.

1. Introduction

Collisions of lead (Pb) ions at the Large Hadron Collider provide an oppor-
tunity to study strongly interacting matter at the highest temperatures ever
created in the laboratory [1]. Measurements of the centrality dependence of
charged particle multiplicities and of charged particle pseudorapidity densities
in such ultra-relativistic nucleus-nucleus (A+A) collisions provide essential in-
formation on the initial particle or entropy production and subsequent evolution
in the created hot, dense matter. Results from the Relativistic Heavy Ion Col-
lider (RHIC) over the centre-of-mass energy range from 19.6 to 200 GeV indicate
that the multiplicity of charged particles per colliding nucleon pair has a mild
dependence on the collision centrality and that the pseudorapidity dependence
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of the charged particle yield near mid-rapidity is essentially centrality indepen-
dent [2]. The weak variation of the multiplicity per colliding nucleon pair with
centrality at RHIC was initially found to be inconsistent with models such as
HIJING [3] which includes a mixture of soft and hard scattering processes with a
pT cutoff on the hard scattering contribution at 2 GeV, or with a beam-energy-
dependent cutoff in a more recent version [4]. In contrast, calculations based
on parton saturation invoking kT factorization were able to reproduce both the
shape and centrality dependence of the RHIC charged particle pseudorapidity
distributions [5, 6]. However, more recent theoretical studies indicate that kT

factorization may not be applicable to nucleus-nucleus collisions, and improved
soft+hard models may be able to describe RHIC multiplicity measurements.
At the same time, older hydrodynamical models (e.g. Ref [7]) have had some
success describing the energy dependence of the total multiplicity as well as ra-
pidity distributions of identified hadrons, although their domain of applicability
is still not fully established.

Detailed measurements of the centrality dependence of charged particle mul-
tiplicities and pseudorapidity distributions at the LHC together with the earlier
RHIC measurements could provide essential insight on the physics responsi-
ble for bulk particle production in ultra-relativistic nuclear collisions. Because
hard scattering rates increase rapidly with centrality and

√
sNN , the combined

RHIC and LHC measurements should provide a strong constraint on the con-
tribution of hard scattering processes to inclusive hadron production subject
to uncertainties regarding the shadowing of nuclear parton distributions at low
x. Measurements at the LHC can also provide a valuable test of recent parton
saturation calculations that still claim to be able to describe inclusive parti-
cle production in ultra-relativistic nuclear collisions [5, 6]. Previous measure-
ments at the LHC [8, 9] have already started addressing some of the physics
raised above. In particular, those earlier measurements found a rapid rise in
the particle multiplicity at the LHC compared to naive extrapolations of RHIC
measurements and a variation of mid-rapidity charged particle multiplicity with
centrality similar to that observed at RHIC.

This paper presents the results of ATLAS [10] measurements of the per-event
charged particle pseudorapidity distribution, dNch/dη, in

√
s
NN

= 2.76 TeV
Pb+Pb collisions over |η| < 2 and as a function of collision centrality with the
goal of testing and extending the results of the previous LHC measurements.
In this paper, Nch denotes the per-event number of charged primary particles
measured in an interval of η, which is the particle pseudorapidity 1. The mea-
surement was performed with the solenoid off, thereby allowing detection of
charged particles down to very low transverse momenta (pT ∼ 30 MeV).

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction
point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis
points from the IP to the centre of the LHC ring, and the y axis points upward. Cylindrical
coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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2. Experimental setup and event selection

The measurements presented here were obtained using the ATLAS inner
detector [11] which contains both silicon pixel and silicon strip detectors and
the ATLAS forward calorimeters. The charged particle multiplicity is measured
using the pixel detector [12] which consists of three layers of pixel staves in the
barrel region, inclined at an angle of 20◦, at radii of 50.5, 88.5, and 122.5 mm
from the nominal beam axis. The typical pixel size is 50 µm × 400 µm in
φ − z, and an average occupancy of about 0.5% is observed for the innermost
pixel layer in central Pb+Pb collisions. To limit low-pT multiple scattering
losses in detector material, the measurement has been restricted to the barrel
portion of the pixel detector, corresponding to pseudorapidity values in the
range |η| < 2. Collision vertex positions were obtained by full reconstruction
of nominally straight charged particle trajectories in the pixel and silicon strip
detectors followed by reconstruction of a single collision vertex from the full set
of particle trajectories. To maintain uniform acceptance of the pixel detector
for the multiplicity measurement the vertex was required to lie within 50 mm
of the nominal centre of the ATLAS detector in the longitudinal direction.

The data for the measurements presented here were collected with a
minimum-bias trigger. This required a coincidence in either the two minimum-
bias trigger scintillator (MBTS) detectors, located at ±3.56 m from the inter-
action centre and covering 2.1 < |η| < 3.9, or two zero-degree calorimeters
(ZDCs), located at ±140 m from the interaction centre and covering |η| > 8.3.
The threshold on the analog energy sum in each ZDC was set below the sin-
gle neutron peak. The offline analysis required the time difference between the
two MBTS detectors to be |∆t| < 3 ns to eliminate upstream beam-gas inter-
actions, a ZDC coincidence to efficiently reject photo-nuclear events [13], and
a reconstructed vertex satisfying the selection described above. The measure-
ments presented in this paper were obtained from a 10 hour data-taking run
corresponding to an integrated luminosity of approximately 480 mb−1. A total
of 1631525 events passed the trigger, vertex, and offline selections.

3. Centrality

In heavy ion collisions, “centrality” reflects the overlap volume of the two
colliding nuclei, controlled by the classical impact parameter. That overlap
volume is closely related to the number of “participants”, the nucleons which
scatter inelastically in each nuclear collision. While the number of participants,
Npart, cannot be measured for a single collision, previous studies at RHIC and
the SPS have demonstrated that the multiplicity and transverse energy of the
produced particles are strongly correlated with Npart. Because of this, the aver-
age number of participants can be accurately estimated from a selected fraction
of the multiplicity or transverse energy distribution [14]. In ATLAS, the Pb+Pb
collision centrality is measured using the summed transverse energy (ΣET) in
the forward calorimeter (FCal) over the pseudorapidity range 3.2 < |η| < 4.9,
calibrated at the electromagnetic energy scale. An analysis of the FCal ΣET
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distribution after application of all trigger and selection requirements gives an
estimate of the fraction of the sampled non-Coulomb inelastic cross section of
f = 98 ± 2%. This estimate was derived from comparisons of the measured
FCal ΣET distribution with a simulated ΣET distribution. The simulated dis-
tribution was obtained from a convolution of

√
s = 2.76 TeV proton-proton data

with a Monte Carlo (MC) Glauber calculation [14, 15] of the number of effective
nucleon-nucleon collisions. This quantity was calculated as a linear combina-
tion of the number of participants and the number of binary collisions, similar
to what was done in a previous analysis [16]. The value of f and its uncertainty
was estimated by systematically varying the effect of trigger and event selection
inefficiencies as well as backgrounds in the most peripheral ΣET interval. This
was done by artificially injecting and removing counts in that interval in order to
achieve the best agreement between the measured and simulated distributions.
The estimate of f was made after removal of a 1% background contamination
in the most peripheral events that was evaluated using comparisons of solenoid
magnet-on and solenoid magnet-off data and which was attributed to photo-
nuclear events.

For the results presented in this paper, the minimum-bias FCal ΣET dis-
tribution was divided into centrality intervals according to the following per-
centiles: 10% intervals over 0-80%, 5% intervals over 20− 80% and 2% intervals
over 0 − 20%. By convention, the 0-10% centrality interval refers to the 10%
most central events – the events with the highest ΣET values – and increasing
percentiles refer to events with successively lower ΣET. The average number
of participants, 〈Npart〉, was evaluated for each of the experimental centrality
intervals by dividing the Glauber model ΣET distribution into the same per-
centile centrality intervals used for the data and evaluating the average number
of participants of the Glauber MC events contributing to a given interval. This
procedure incorporates more realistic fluctuations into the estimation of 〈Npart〉
than would be achieved by binning in either Npart itself or in the classical
impact parameter. The systematic errors on 〈Npart〉 were evaluated from the
quoted uncertainty on f and the known uncertainties in the nuclear density
parameters as well as the assumed total inelastic nucleon-nucleon cross section
of σNN = 64± 5 mb [17].

4. Reconstruction of charged particle multiplicity

In the offline analysis, adjacent hits in the pixel modules were grouped into
clusters using standard techniques. Two methods were, then, used to recon-
struct charged particles from the pixel clusters. In one method, a Kalman
Filter-based tracking algorithm, similar to that deployed in proton-proton col-
lisions [18], was applied only to the pixel layers (“pixel tracks”). The other
method, the “two-point tracklet” algorithm, used the reconstructed primary
vertex and clusters on the first pixel layer to define a search region for clusters
in the second layer consistent with a nominally straight track. Candidate track-
lets were required to have deviations between projected and measured cluster
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positions in the second pixel layer in pseudorapidity and azimuth, ∆η and ∆φ,
respectively, satisfying

∆R ≡ 1√
2

√(
∆η

ση(η)

)2

+

(
∆φ

σφ(η)

)2

< 3. (1)

The widths of the ∆η and ∆φ distributions characterized by the pseudorapidity-
dependent resolutions ση(η) and σφ(η) were obtained from the MC simulations
described below. The η and φ values of the reconstructed tracklets were de-
termined using the cluster position on the first layer and the primary vertex
position. The two-point tracklet analysis excluded clusters with low energy de-
posits inconsistent with minimum-ionizing particles originating at the primary
vertex. It also excluded duplicate clusters resulting from the overlap of the pixel
modules in φ and from a small set of pixels at the centres of the pixel modules
that share readout channels [12].

The high charged particle multiplicity in Pb+Pb collisions can generate
misidentified tracks and/or two-point tracklets when only two or three mea-
surements are made on each trajectory. The misidentified contributions have
been evaluated using the MC studies described below, but to check the MC re-
sults, an independent, data-driven estimate of misidentified two-point tracklets
was obtained using a variant of the two-point tracklet algorithm. In the default
two-point tracklet analysis, referred to as “Method 1”, at most one tracklet was
reconstructed for a given cluster on the first pixel layer. If multiple clusters
on the second pixel layer fell within the search region defined in Equation 1,
the closest cluster to the projected position was chosen. This method limits,
but does not eliminate, the generation of misidentified tracklets. A second im-
plementation of the two-point tracklet algorithm, referred to as “Method 2”,
produced tracklets for all combinations of clusters on the two layers consistent
with the search region. Using Method 2, the rate of false tracklets resulting from
random combinations of clusters was estimated by performing the same analy-
sis but with the clusters on the second layer having their z positions inverted
around the primary vertex and their azimuthal angles inverted, φ→ π−φ. The
tracklet yield from this “flipped” analysis was then subtracted from the proper
tracklet yield event-by-event to obtain the estimated yield of true tracklets,

N2p(η) = N ev
2p(η)−Nfl

2p(η), (2)

where N ev
2p represents the yield of two-point tracklets using Method 2 and Nfl

2p

represents the yield obtained by flipping the clusters in the second pixel layer.
For the 0-10% centrality interval, the flipped yield is about 50% of the unflipped
yield in the |η| < 0.5 region.

The response of the detector to the charged particles produced in Pb+Pb
collisions and the performance of the track and tracklet methods was evaluated
by MC simulations of Pb+Pb collisions using the HIJING [3] event generator
followed by GEANT4 [19] simulations of the detector response [20]. The result-
ing events were then reconstructed and analyzed using the full offline analysis
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chain that was applied to the experimental data. HIJING events were gener-
ated without jet quenching and with an unbiased impact parameter distribution.
Impact parameter and pT-dependent elliptic flow was imposed on the HIJING
events after generation and prior to simulation. The GEANT4 detector ge-
ometry included a distribution of disabled pixel modules matching that in the
experiment. The MC events were used to derive correction factors from recon-
structed pixel tracks and two-point tracklets to the primary HIJING particles.
Primary particles were defined to be either particles originating directly from
the Pb+Pb collision or particles resulting from secondary decays of HIJING
produced particles with lifetimes cτ < 1 cm.

From the MC simulated events, correction factors accounting for particle
detection efficiency, misidentified tracks or tracklets from unrelated clusters,
and extra tracks or tracklets from secondary decays or from interactions in the
detector were calculated. The correction factors were evaluated in 20 intervals
of detector occupancy (O) parameterized using the number of reconstructed
clusters in the first pixel layer in the region |η| < 1. Different corrections were
applied to the pixel track and both two-point tracklet measurements. For the
pixel tracks, the efficiency, εpt, for reconstructing tracks associated with charged
primary particles was obtained from

εpt(O, η) ≡
Nmatch

pr (O, η)

Npr(O, η)
, (3)

where Npr represents the number of charged primary particles produced by
HIJING within a given η interval, and Nmatch

pr represents the portion of those
primary particles matched to reconstructed pixel tracks. The contributions to
the number of reconstructed pixel tracks (Npt) from “background” sources were
separately evaluated to produce a “background” fraction

bpt(O, η) ≡
Nbackg

pt (O, η)

Npt(O, η)
, (4)

where Nbackg
pt represents the number of tracklets from secondary interactions

and decays, from particles initially produced outside the kinematic acceptance
of the measurement but scattering into it, and from combinations of clusters not
associated with any primary or secondary particle in the GEANT4 simulation.
This factor was combined with εpt(O, η) to produce a correction factor

Cpt(O, η) ≡ 1

εpt(O, η)
(1− bpt(O, η)) . (5)

For the 0-10% centrality interval, εpt is about 0.55 and bpt is about 0.02 in the
mid-rapidity region, giving a Cpt of about 1.8.

For the two-point tracklet methods, a single multiplicative correction factor
was obtained from the MC simulations,

C2p(O, η) ≡ Npr(O, η)

N2p(O, η)
, (6)
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Figure 1: Tracklet candidate ∆η (left) and ∆φ (right) distributions from data (histogram)
and reweighted MC (shaded region) for Pb+Pb collisions at

√
sNN = 2.76 TeV. The top

panels correspond to |η| < 1 and the bottom panels correspond to 1 < |η| < 2. Data and MC
distributions are normalized to the same area.
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where N2p(O, η) represents reconstructed tracklets. For the two-point tracklet
Method 2, N2p(O, η) was obtained from the MC events via Eq. 2 using the same
flipping procedure as that applied in the data. For the 0-10% centrality interval,
the correction factor is about 1.05 for Method 1 and 1.25 for Method 2 in the
mid-rapidity region.

The Pb+Pb charged particle pT spectrum measured at
√
s
NN

= 2.76 TeV
[21] differs from the spectrum generated by HIJING at low and high pT, with
the generator exceeding the data by 20% at pT = 500 MeV, and underpre-
dicting the charged particle yield by a factor of about two at pT = 1.5 GeV.
Because the MC corrections are applied to the data in matching O intervals, the
mismatch in the spectrum does not influence the corrections for misidentified
tracks or occupancy-induced inefficiencies. However, if left uncorrected the mis-
match could distort the pT-weighted single track or tracklet efficiencies in the
calculated correction factors. To avoid this distortion a pT-dependent weight
was applied to the generated particles and to tracklets or tracks that match
generated particles in Eqs. 3-6. The pT-dependent weights were obtained us-
ing an iterative procedure that, in each analyzed centrality interval, optimally
matched the pT spectrum of pixel tracks in Pb+Pb data with the solenoid mag-
net turned-on to the reweighted spectrum produced from a separate sample
of HIJING+GEANT4 simulations also performed with the solenoid turned-on.
Distributions of ∆η and ∆φ for candidate tracklets are shown in Fig. 1 for two
different pseudorapidity intervals, |η| < 1 and 1 < |η| < 2. The corresponding
distributions for the reweighted HIJING+GEANT4 events are also shown in
the figure and compare well with the data. The maximum difference between
data and MC is less than 5%. It should be noted that the ση(η) and σφ(η)
mentioned above are evaluated using the unreweighted MC, but they are ap-
plied consistently to data and reweighted MC when calculating all η-dependent
corrections.

Uncorrected pixel track and two-point tracklet pseudorapidity distributions
for 0-10% centrality collisions are shown in the top left panel of Fig. 2. The
corrections described above are applied to obtain corrected, per-event primary
charged particle pseudorapidity distributions, averaged over the events in each
centrality bin (c), according to

dNch

dη

∣∣∣∣
c

=
1

Nevt

∑
events,c

∆N raw

∆η
C(O, η), (7)

where ∆N raw indicates either the number of reconstructed pixel tracklets or
two-point tracklets and C(O, η) indicates the η-dependent correction factors
corresponding to the occupancy bin for each event. The corrected dNch/dη dis-
tributions for the 0-10% centrality interval are shown in the middle left panel of
Fig. 2. The bottom left panel of Fig. 2 shows the ratio of the pixel tracking and
two-point tracklet Method 2 results to the two-point tracklet Method 1 results.
In spite of the factor of ∼2 differences between the raw yields for the three
reconstruction methods, the corrected pseudorapidity distributions for central
collisions agree within 5%. The measurements presented in the remainder of
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Figure 2: Left: Top: uncorrected track/tracklet dNraw/dη distribution from tracklet
Method 1 (points), tracklet Method 2 (squares) and pixel tracking (blue triangles) for 0-
10% centrality events. Middle: corrected tracklet and track dNch/dη distributions. Bottom:
ratio of dNch/dη from the tracklet Method 2 (squares) and pixel tracking (triangles) to track-
let Method 1. Right: dNch/dη distributions from tracklet Method 1 for eight 10% centrality
intervals. The statistical errors are shown as bars and the systematic errors are shown as
shaded bands.
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this paper were obtained from tracklet Method 1, which has the highest recon-
struction efficiency, only a moderate contribution of misidentified tracklets, and
the smallest correction factors. The resulting corrected dNch/dη distributions
are shown for 8 centrality intervals in the right-hand panel of Fig. 2.

5. Systematic uncertainties

Various studies were performed to quantify the experimental uncertainties
on the dNch/dη measurement. To address inaccuracies in the MC description of
bad channels, disabled sensors, or other small instrumental problems, a compar-
ison was made of unit-normalized η and φ distributions of clusters in each of the
first two pixel layers between data and MC. The agreement between the η and
φ distributions was found to be better than 0.05% and 0.4% in the first and sec-
ond layers, respectively. Therefore, a combined systematic uncertainty of 0.4%
is assigned to account for potential MC inaccuracies. To evaluate the impact of
inaccuracies in the description of the detector material in the GEANT4 simu-
lation, a separate set of HIJING+GEANT4 simulations was performed with an
artificial 10% increase in detector material and a 15-20% increase in material in
various non-instrumented regions. The results obtained using correction factors
from this “extra material” sample agree with those obtained using the default
corrections to better than 2%. Furthermore, the analysis was repeated using
a different ∆R selection (see Eq. 1), ∆R < 1.5, which should have a different
sensitivity to multiple scattering, secondaries, and occupancy effects. The cor-
rections for the ∆R < 1.5 selection differ from those of the default analysis in
central (0-10%) collisions by 10% at η = 0 and 20% at η = 2. However, the cor-
rected pseudorapidity distributions agree to 1% in all centrality intervals. To
address differences between the HIJING description of particle production in
Pb+Pb collisions and reality, the analysis was performed without the pT spec-
trum re-weighting; the results agree with those obtained using the re-weighting
within 0.5%. To address potential errors resulting from discrepancies in parti-
cle composition between data and MC, the changes in correction factors that
would result from enhanced charged kaon and proton production as observed
at RHIC [22] have been evaluated. From the impact of the modified corrections
on the final result, a 1% systematic uncertainty due to incomplete knowledge
of the hadron composition is assigned. To further test the sensitivity of the
results to the use of the HIJING generator, a set of MC simulations using the
HYDJET event generator [23] was produced, and a separate set of correction
factors was obtained from this MC sample. HYDJET has a more complete
description of soft particle production than HIJING, including a description of
elliptic flow, and the version used here was tuned to have much lower multi-
plicities than found in HIJING. In central collisions, the results obtained using
the HYDJET-based corrections agree with the HIJING-based results to bet-
ter than 0.5% at mid-rapidity, but differ by as much as 7.5% at η = ±2. A
centrality-dependent and η-dependent systematic error is assigned to account
for this difference. To address the inaccuracies from the analysis procedure,
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Source Uncertainty (0-10%) (70-80%)

MC detector description 0.4% 0.4%
Extra material 2% 2%
∆R cut 1% 1%
pT re-weighting 0.5% 0.5%
Hadron composition 1% 1%
Enhanced Ks, Λ 1% 1%
HYDJET 0.5-7.5% vs. η 0%
Analysis Method 3.5% 1%

Combined (η = 0) 4% 3%
Combined (η = 2) 8.5% 3%

Table 1: Summary of the various sources of systematic uncertainties and their estimated
impact on the dNch/dη measurement in central (0-10%) and peripheral (70-80%) Pb+Pb
collisions. Only the uncertainty due to the choice of the event generator is η-dependent.

a systematic uncertainty is assigned based on the differences between the re-
sults obtained from the three reconstruction methods described in this paper.
That uncertainty is centrality-dependent and maximal for the 0-10% centrality
interval for which a 3.5% uncertainty on the overall scale of the pseudorapid-
ity distribution is assigned based on the comparison of the three results in the
left, bottom panel of Fig. 2. The systematic uncertainties described above are
summarized in Table 1 for the most central (0-10%) and the most peripheral
(70-80%) intervals. The total systematic uncertainties are shown as shaded
bands in the right panel of Fig. 2.

6. Results

The measured charged particle dNch/dη shown in Fig. 2, increases rapidly
with collision centrality for all η. It is conventional to characterize par-
ticle production in nucleus-nucleus collisions by the mid-rapidity dNch/dη,
dNch/dη|η=0, which here is defined to be dNch/dη averaged over |η| < 0.5.
The analysis presented in this paper yields dNch/dη|η=0 values in central
collisions of 1479 ± 10(stat.) ± 63(syst.), 1598 ± 11(stat.) ± 68(syst.), and
1738 ± 12(stat.) ± 75(syst.) for the 0-10%, 0-6%, and 0-2% centrality inter-
vals, respectively. Table 2 provides results of the dNch/dη|η=0 measurements
for all centrality bins.

The top panel of Fig. 3 compares the ATLAS measurement to the pre-
viously reported ALICE [8] and CMS [9] results for |η| < 0.5 for the 0-
5% centrality interval in terms of dNch/dη|η=0 per colliding nucleon pair,
dNch/dη|η=0/(〈Npart〉/2), and to other A+A measurements at different

√
s
NN

(see [2], which includes data from Refs.[24]-[29]). The ALICE and CMS 0-5%
centrality measurements agree with the result reported here for the 0-6% cen-
trality interval, 8.5± 0.1(stat.)± 0.4(syst.), within the quoted errors. The LHC
results show that the multiplicity in central A+A collisions rises rapidly with√
s
NN

above the RHIC top energy of
√
s
NN

=200 GeV. The three curves shown in
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Centrality < Npart > dNch/dη|η=0 dNch/dη|η=0/〈Npart〉/2
0-2% 396 ± 2 1738 ± 76 8.8 ± 0.4
2-4% 378 ± 2 1591 ± 67 8.4 ± 0.4
4-6% 356 ± 3 1467 ± 63 8.2 ± 0.4
6-8% 335 ± 3 1350 ± 57 8.1 ± 0.4
8-10% 315 ± 3 1250 ± 53 8.0 ± 0.3
10-12% 296 ± 3 1159 ± 48 7.8 ± 0.3
12-14% 277 ± 4 1074 ± 44 7.8 ± 0.3
14-16% 260 ± 4 996 ± 41 7.7 ± 0.3
16-18% 243 ± 4 918 ± 37 7.6 ± 0.3
18-20% 228 ± 4 849 ± 34 7.5 ± 0.3
20-25% 203 ± 4 739 ± 29 7.3 ± 0.3
25-30% 170 ± 4 603 ± 24 7.1 ± 0.3
30-35% 142 ± 4 486 ± 19 6.9 ± 0.3
35-40% 117 ± 4 387 ± 15 6.6 ± 0.3
40-45% 95.0 ± 3.7 303 ± 11 6.4 ± 0.3
45-50% 76.1 ± 3.5 233 ± 9 6.1 ± 0.4
50-55% 59.9 ± 3.3 176 ± 6 5.9 ± 0.4
55-60% 46.1 ± 3.0 129 ± 5 5.7 ± 0.4
60-65% 34.7 ± 2.7 93 ± 3 5.3 ± 0.5
65-70% 25.4 ± 2.3 65 ± 2 5.1 ± 0.5
70-75% 18.0 ± 2.0 43 ± 2 4.8 ± 0.6
75-80% 12.3 ± 1.6 28 ± 1 4.6 ± 0.6

Table 2: Tabulation of measurements of dNch/dη|η=0 evaluated over |η| < 0.5 and
dNch/dη|η=0/(〈Npart〉/2) for the full set of centrality bins considered in the analysis and
shown in Fig. 3. The uncertainties on dNch/dη|η=0 include statistical and systematic er-
rors on the multiplicity measurement. The errors reported for dNch/dη|η=0/(〈Npart〉/2) also
include systematic uncertainties on the centrality selection and 〈Npart〉 determination.

Fig. 3 indicate possible variations of dNch/dη|η=0/(〈Npart〉/2) with
√
s
NN

. The
dotted curve describes a

√
sNN dependence expected from Landau hydrodynam-

ics [7]. It is clearly inconsistent with the data. The dot-dashed curve represents
a logarithmic extrapolation of RHIC and SPS data [30] that is also excluded by
the measurement presented in this paper and by the ALICE and CMS measure-
ments. The dashed curve shows an s0.15 dependence suggested by ALICE [8]
that is consistent with the ATLAS measurement. Also shown in the top panel
in Fig. 3 are results from p+p and p̄+p measurements at different

√
s ([2] and

references therein, as well as [31]-[35]). The excess of dNch/dη|η=0/(〈Npart〉/2)
in A+A collisions over p+p collisions observed at RHIC persists and is propor-
tionately larger at the higher

√
s
NN

values of the LHC.
The bottom panel of Fig. 3 shows dNch/dη|η=0/(〈Npart〉/2) as a func-

tion of 〈Npart〉 for 2% centrality intervals over 0-20%, and 5% centrality in-
tervals over 20-80%. The values are also reported in Table 2. A mod-
erate variation of dNch/dη|η=0/(〈Npart〉/2) with 〈Npart〉 is observed, from a
value of 4.6 ± 0.1(stat.) ± 0.6(syst.) at 〈Npart〉 = 12.3 (centrality 75-80%) to
8.8 ± 0.1(stat.) ± 0.4(syst.) at 〈Npart〉 = 396 (centrality 0-2%). The increase
of dNch/dη|η=0/(〈Npart〉/2) with 〈Npart〉 is monotonic up to the most central
interval (0-2%). This demonstrates that, even for the most central collisions,
variations in centrality – as characterized by transverse energy depositions well
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Figure 3: Top:
√
sNN dependence of the charged particle dNch/dη per colliding nucleon

pair dNch/dη|η=0/(〈Npart〉/2) from a variety of measurements in p+p and p̄+p (inelastic and
non-single diffractive results from [2] and references therein, as well as [31]-[35]) and central
A+A collisions, including the ATLAS 0-6% centrality measurement reported here for |η| < 0.5
and the previous 0-5% centrality ALICE [8] and CMS [9] measurements (points shifted hor-
izontally for clarity). The curves show different expectations for the

√
sNN dependence in

A+A collisions: results of a Landau hydrodynamics calculation [7] (dotted line) , an s0.15

extrapolation of RHIC and SPS data proposed by ALICE [8] (dashed line), a logarithmic ex-
trapolation of RHIC and SPS data from [30] (solid line). Bottom: dNch/dη|η=0/(〈Npart〉/2)
vs 〈Npart〉 for 2% centrality intervals over 0-20% and 5% centrality intervals over 20-80%.
Error bars represent combined statistical and systematic uncertainties on the dNch/dη|η=0

measurements, whereas the shaded band indicates the total systematic uncertainty including
〈Npart〉 uncertainties. The RHIC measurements (see text) have been multiplied by 2.15 to
allow comparison with the

√
sNN = 2.76 TeV results. The inset shows the 〈Npart〉 < 60 region

in more detail.
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outside the acceptance used for the multiplicity measurement – yield significant
changes in the measured final state multiplicity.

The bottom panel of Fig. 3 also shows ALICE and CMS measurements
of dNch/dη|η=0 as a function of 〈Npart〉 that agree with the results presented
here for all centrality intervals. Also shown are results from Au+Au collisions at√
s
NN

= 200 GeV obtained from an average of measurements from the four RHIC
collaborations [36]-[40]. Similar to the approach used in Ref. [8], the 200 GeV
Au+Au results have been scaled by a factor of 2.15 to allow comparison with the√
s
NN

= 2.76 TeV data. This factor was obtained by matching the most central
200 GeV Au+Au dNch/dη measurement at η = 0 to the dNch/dη measurement
from this paper at η = 0 in the 2-4% centrality interval, the interval that has
the closest value of 〈Npart〉 to the most central 200 GeV measurement. After re-
scaling, the trend of the 200 GeV data is in good agreement with the 2.76 TeV
measurements for all reported centrality intervals. Similar observations have
been made previously in comparisons of top energy RHIC data to much lower
energies [2]. Therefore, this scaling behavior appears to be a robust feature of
particle production in heavy ion collisions.

To evaluate the shapes of the measured charged particle dNch/dη distribu-
tions Fig. 4 (top) shows the dNch/dη distribution divided by dNch/dη|η=0 for
the 70-80% centrality interval. For this centrality interval, the dNch/dη in-
creases by 7% ± 1% from η = 0 to |η| > 1. The bottom panel shows ratios
of dNch/dη/(〈Npart〉/2) for several other 10% centrality intervals to the same
quantity in the 70-80% interval. No significant variation of the shape of dNch/dη
with centrality is observed within the systematic uncertainties.

7. Conclusions

This paper presents results on the measurement of charged particle pseudo-
rapidity distributions over |η| < 2 as a function of collision centrality in a sample
of
√
s
NN

= 2.76 TeV lead-lead collisions recorded with the ATLAS detector at
the LHC. Three different analysis methods are used, based on the pixel detec-
tor and using events with the solenoid magnet turned off in order to measure
particles with transverse momenta as low as 30 MeV. The charged particle mid-
rapidity dNch/dη, normalized by 〈Npart〉/2, is found to increase significantly
with beam energy by about a factor of two relative to earlier RHIC data, and
is substantially larger than p+p data at the same energy. The relative central-
ity dependence of dNch/dη|η=0/(〈Npart〉/2) agrees well with that observed at
RHIC. These results agree well with previous mid-rapidity measurements from
ALICE and CMS. Furthermore, the peripheral (70-80%) dNch/dη distribution
shows a significant rise with increasing |η| away from η = 0. No variation
of the shape of the dNch/dη distribution with centrality outside the reported
systematic uncertainties is observed.
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L. Mijović41, G. Mikenberg171, M. Mikestikova125, M. Mikuž74,
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83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst MA, United
States of America
85 Department of Physics, McGill University, Montreal QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor MI, United
States of America
88 Department of Physics and Astronomy, Michigan State University, East
Lansing MI, United States of America
89 (a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano,
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j Also at Università di Napoli Parthenope, Napoli, Italy
k Also at Institute of Particle Physics (IPP), Canada
l Also at Department of Physics, Middle East Technical University, Ankara,
Turkey
m Also at Louisiana Tech University, Ruston LA, United States of America
n Also at Group of Particle Physics, University of Montreal, Montreal QC,
Canada
o Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku,
Azerbaijan
p Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg,
Germany
q Also at Manhattan College, New York NY, United States of America
r Also at School of Physics and Engineering, Sun Yat-sen University,
Guanzhou, China
s Also at Academia Sinica Grid Computing, Institute of Physics, Academia

40



Sinica, Taipei, Taiwan
t Also at High Energy Physics Group, Shandong University, Shandong, China
u Also at California Institute of Technology, Pasadena CA, United States of
America
v Also at Section de Physique, Université de Genève, Geneva, Switzerland
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