Search for a Heavy SM Higgs Boson in the $H \rightarrow ZZ \rightarrow IIqq$ Channel at ATLAS

Carl Gwilliam

(on behalf of the ATLAS Collaboration)

29th July 2011 Higgs Hunting 2011, Orsay

Introduction

- For a high mass Higgs ($m_H > 200 \text{ GeV}$) ZZ and WW decay modes dominate
- "Golden" $H \rightarrow ZZ \rightarrow 4I$ is very clean but suffers from low branching fraction
- *H* → *ZZ* → *llqq* has larger background but benefits from significantly higher BF

• Present the sensitivity of the ATLAS detector in this channel for 1.04 fb⁻¹ at $\sqrt{s} = 7$ TeV in the range $200 \le m_H \le 600$ GeV

gluon fusion (dominant)

vector boson fusion (10-20%)

Signal modelled by NLO POWHEG MC generator interfaced to PYTHIA

Carl Gwilliam

Selection

• Leptonic Z candidate

- 2 good isolated leptons (e/μ) with $p_T > 20$ GeV and $|\eta| < 2.5$
- $76 < m_{II} < 106 \text{ GeV}$
- $E_T^{\rm miss} < 50 {
 m GeV}$

Hadronic Z candidate

•
$$\geq$$
 2 jets with p_T $>$ 25 GeV & $|\eta|$ $<$ 2.5

- $70 < m_{jj} < 105 \text{ GeV}$
- At high m_H the Z bosons from the H decay are boosted → Additional cuts:
 P^{jet}_T > 45 GeV
 - $\Delta \phi_{II} < 90^\circ$ and $\Delta \phi_{II} < 90^\circ$

Carl Gwilliam

Selection (2)

• Split into two samples based on identification of jets from b decays

- Based on a combination of secondary vertex reconstruction and impact parameter significance of tracks within jet to primary vertex $\rightarrow \epsilon_b \approx 70\%$
- "Tagged"
 - Events with exactly 2 *b*-jets
 - Form invariant mass from the 2 tagged jets

"Untagged"

- Events with $< 2 \ b$ -jets
- Form invariant mass from all combinations of 3 leading jets

Z+jets Background

- Z+jets is the dominant background and is constrained using the m_{qq} sidebands
 - $40 < m_{qq} < 70$ GeV and $105 < m_{qq} < 150$ GeV
- \bullet Shape well described by $\rm ALPGEN$ but normalisation $\approx 10\%$ high
 - Consistent between tagged and untagged samples
- Use control region to determine scale factors to normalise MC

Top Background

Top is an important background, particularly in the tagged sample
Cross-checked using the sidebands of the m_{ll} distribution

- $60 < m_{II} < 76$ GeV and $106 < m_{II} < 150$ GeV
- For untagged sample also reverse E_T^{miss} cut
- \bullet Good description by $\mathrm{MC@NLO}$ Monte Carlo within errors

 Other backgrounds: QCD multijet production, also determined from data, and ZZ/WZ production, which are taken from MC@NLO

Carl Gwilliam

Results

• No significant excess over SM background observed

Carl Gwilliam

Higgs Hunting 2011, Orsay

Systematic Uncertainties

Signal

- Cross section uncertainty: 15-20% for $gg \rightarrow H$ & 3-9% for $qq \rightarrow qqH$
- Acceptance uncertainty by comparing POWHEG and PYTHIA

Background normalisation

- Z+jets uncertainty from comparing low and high m_{qq} sidebands \rightarrow 1.4%/8.1% for low/high m_H untagged sample and 18% for tagged sample
- 100% uncertainty for QCD multijet and 50% for W+jets
- $\bullet\,$ Theoretical uncertainty for top (9%) and ZZ/WZ (11%)

Background shape

- Z+jets: comparison between ALPGEN and PYTHIA
- ZZ: comparison between MC@NLO and PYTHIA

• Luminosity: 3.7% (where normalisation not determined from data)

- Detector-related uncertainties on efficiency, E or p scale & resolution
 - Tagged: dominated by uncertainty on *b*-tagging efficiency (15-25%)
 - Untagged: Largest contribution is jet *E* scale (up to \approx 5%) but jet *E* resolution, $E_T^{\rm miss}$ and *b*-tagging uncertainties also important

Carl Gwilliam

Exclusion Limits

• Combined exclusion limit on σ/σ_{SM} from tagged and untagged samples at 95% CL using CLs method

- Use modified frequentist formalism with profile likelihood test statistic
- The likelihood compares the full *m*_{lljj} distribution bin-by-bin to expected background or sum of expected signal and background
- Limit approaching σ_{SM} with $\int Ldt = 1.04 \text{ fb}^{-1}$
- Exclude $1.7 \times \sigma_{SM}$ at $m_H = 360 \text{ GeV}$
 - Correspnding expected limit is 2.7 $\times \, \sigma_{SM}$
- Combined high mass $H \rightarrow ZZ/WW$ channels sensitive to σ_{SM}

Higgs Hunting 2011, Orsay

Conclusion

- Have presented the sensitivity of the ATLAS detector in the $H \rightarrow ZZ \rightarrow 2l2q$ channel with 1.04 fb⁻¹ at $\sqrt{s} = 7$ TeV
- No evidence for an excess above SM expectation observed
- Sensitivity ranges between 1.7 and 13 times SM cross section in the range $200 \le M_H \le 600$ GeV, with maximal sensitivity at 360 GeV
- Channel contributes significantly to the combined exclusion limit in the high mass range
- LHC and ATLAS are performing well so expect improved sensitivity very soon

$E_T^{ m miss}$ and *b*-tagging

m_{ll}

 $\Delta \phi_{II}$ and $\Delta \phi_{II}$

Results Table

ATLAS Preliminary

The expected number of signal and background candidates for the Higgs boson search for 1.04 fb⁻¹ in the $H \rightarrow ZZ \rightarrow \ell \ell q q$ channel, along with the observed numbers of candidates in data. Numbers with uncertainties are \pm (stat.) \pm (syst.), respectively, and the statistical component assumes Gaussian uncertainties.

	Untagged		Tagged	
	$Low-m_H$	$High-m_H$	Low- m_H	$High-m_H$
Z+jets	$10352. \pm 61. \pm 155.$	423. $\pm 12. \pm 30.$	72. ± 1 . ± 15 .	$4.9 \pm 0.2 \pm 1.0$
W+jets	$10. \pm 2. \pm 5.$	$0.2 \pm 0.2 \pm 0.1$	$0.0 \pm 0.0 \pm 0.0$	$0.0\ \pm 0.0\ \pm 0.0$
Top	$40. \pm 1. \pm 6.$	$3.0 \pm 0.3 \pm 0.6$	13. $\pm 1. \pm 3.$	$1.1 \pm 0.2 \pm 0.3$
Multijet	$64. \pm 3. \pm 64.$	$2.0 \pm 0.5 \pm 2.0$	$0.3 \pm 0.2 \pm 0.3$	$0.0\ \pm 0.0\ \pm 0.0$
ZZ	$107. \pm 4. \pm 15.$	$8.5 \pm 1.1 \pm 1.8$	$6.9 \pm 1.0 \pm 2.0$	$0.79 \pm 0.23 \pm 0.30$
WZ	$143. \pm 3. \pm 29.$	17. \pm 1. \pm 3.	$0.5 \pm 0.2 \pm 0.3$	$0.03 \pm 0.02 \pm 0.01$
Total background	$10718. \pm 62. \pm 173.$	453. $\pm 13. \pm 31.$	92. $\pm 1. \pm 15.$	$6.9 \pm 0.4 \pm 1.2$
Data	10495	419	91	6
Signal				
$m_H = 200 \text{ GeV}$	$33. \pm 1. \pm 6.$		$2.2 \pm 0.2 \pm 0.6$	
$m_H = 300 \text{ GeV}$		$7.0 \pm 0.3 \pm 1.5$		$0.58 \pm 0.08 \pm 0.19$
$m_H = 400 \text{ GeV}$		$9.8 \pm 0.3 \pm 1.8$		$1.1 \pm 0.1 \pm 0.3$
$m_H = 500 \text{ GeV}$		$5.5 \pm 0.1 \pm 1.0$		$0.63 \pm 0.04 \pm 0.19$
$m_H = 600 \text{ GeV}$		$2.5 \pm 0.1 \pm 0.5$		$0.28 \pm 0.02 \pm 0.08$