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Abstract: We consider the hexagonal Wilson loop dual to the six-point MHV amplitude

in planar N = 4 super Yang-Mills theory. We apply constraints from the operator prod-

uct expansion in the near-collinear limit to the symbol of the remainder function at three

loops. Using these constraints, and assuming a natural ansatz for the symbol’s entries, we

determine the symbol up to just two undetermined constants. In the multi-Regge limit,

both constants drop out from the symbol, enabling us to make a non-trivial confirmation of

the BFKL prediction for the leading-log approximation. This result provides a strong con-

sistency check of both our ansatz for the symbol and the duality between Wilson loops and

MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder func-

tion in the multi-Regge limit, beyond the leading-log approximation, up to a few constants

representing terms not detected by the symbol. Our results confirm an all-loop prediction

for the real part of the remainder function in multi-Regge 3→ 3 scattering. In the multi-

Regge limit, our result for the remainder function can be expressed entirely in terms of

classical polylogarithms. For generic six-point kinematics other functions are required.
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1 Introduction and outline

Scattering amplitudes inN = 4 super Yang-Mills theory (SYM) have fascinating properties,

especially in the planar limit. One of their most surprising properties is an equivalence with

certain light-like Wilson loop configurations, for which there is strong empirical evidence

at weak coupling, as well as general arguments originating from strong coupling [1–8]. The

equivalence relates the suitably-defined finite parts of maximally-helicity-violating (MHV)

scattering amplitudes to the finite parts of Wilson loops evaluated on a null polygonal

contour in dual (or region) space. The edges of the polygon are defined by the gluon

momenta pµ
i via

pµ
i = xµ

i − x
µ
i+1 . (1.1)

The contour has corners (or cusps) at the points xi. The equivalence between amplitudes

and Wilson loops implies that the analytic properties of Wilson loops in the dual space

can be identified with those of scattering amplitudes in momentum space.

Wilson loops in a conformal field theory exhibit conformal symmetry. The null polyg-

onal Wilson loops related to scattering amplitudes are ultraviolet divergent due to the

presence of cusps on the contour. Nonetheless they still obey a conformal Ward iden-

tity [4, 9]. This identity can be simply stated as follows. We write the logarithm of the

Wilson loop with n cusps as a sum of divergent and finite terms,

logWn = [UV divergent]n + FWL
n . (1.2)
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The Ward identity for the finite part is then

KµFWL
n = −γK

2

n
∑

i=1

(2xµ
i − x

µ
i−1 − x

µ
i+1) log x2

i−1,i+1 , (1.3)

where xi,j = xi − xj and xi+n ≡ xi, and Kµ are the generators of (dual) special conformal

transformations,

Kµ =

n
∑

i=1

[

2xµ
i x

ν
i

∂

∂xν
i

− x2
i

∂

∂xi µ

]

. (1.4)

The cusp anomalous dimension [10] γK is predicted to all orders in the coupling con-

stant [11].

The Ward identity (1.3) fixes FWL
n , up to functions of conformally invariant cross

ratios. Below six points there are no such cross-ratios and the solution is unique up to an

additive constant. In fact this solution coincides precisely with the BDS ansatz [12] for the

finite part of MHV scattering amplitudes. At six points and beyond there are cross ratios,

so the solution is not unique. The BDS ansatz still provides a particular solution to the

Ward identity for all n, but it does not give the complete answer. A convenient way of

writing the solution to the Ward identity is then

FWL
n = γK FWL

n ,1−loop +Rn . (1.5)

Here FWL
n ,1−loop is the one-loop result for FWL

n , while Rn is the ‘remainder function’, which

is a function only of conformal cross ratios and becomes non-vanishing at two loops [5]. In

terms of the loop expansion parameter a ≡ g2Nc/(8π
2), the remainder function is expanded

as

Rn =

∞
∑

l=2

alR(l)
n . (1.6)

At six points, the remainder function depends on three dual conformal cross ratios,

u =
x2

13x
2
46

x2
14x

2
36

=
s12s45
s123s345

, v =
x2

24x
2
15

x2
25x

2
14

=
s23s56
s234s456

, w =
x2

35x
2
26

x2
36x

2
25

=
s34s61
s345s561

, (1.7)

which are in turn built from the Lorentz invariants si,j = (pi+pj)
2 and si,j,k = (pi+pj+pk)

2.

The gluon momenta for the scattering process, pµ
i with i = 1, 2, . . . , 6, satisfy the on-shell

conditions p2
i = 0.

The conformal symmetry of the Wilson loop implies that the dual planar MHV am-

plitudes exhibit ‘dual conformal symmetry’. This symmetry has been observed in the

form of the scattering amplitudes in many guises: the form of the integrals in the per-

turbative expansion [13–15]; the background isometry of the AdS sigma model after T-

duality [1, 8, 16]; the structure of tree-level amplitudes, where it extends to dual su-

perconformal symmetry [17], and combines with the original Lagrangian superconformal

symmetry to form a Yangian symmetry [18]; the structure of the scattering amplitudes on

the Coulomb branch [19] and in higher dimensions [19–22]; and the form of the on-shell

recursion relations for the four-dimensional planar integrand [23]. Many review articles are
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available on different aspects of all of these developments, including refs. [24–31]. For the

purposes of this paper the important point is simply that the Ward identity (1.3) requires

the function R6 to depend only on the invariant cross ratios u, v and w.

Much recent progress [32–36] has focused on understanding the structure of the re-

mainder function, in part due to the fact that this same function governs the structure of

scattering amplitudes, both at strong coupling [1] and in the MHV sector in perturbation

theory [5–7]. Understanding its form then promises to greatly enhance our understanding

of scattering amplitudes in general. A very important result in this direction was the ana-

lytic calculation of the Feynman integrals appearing at two loops in the hexagonal Wilson

loop [32, 33], which provided a closed-form expression for the remainder function in terms

of (many) multi-dimensional polylogarithms, or Goncharov polylogarithms. Remarkably,

this seemingly complicated expression could be dramatically simplified into a few lines of

classical polylogarithms [35]. An important tool for finding such a compact form of the

two-loop, six-point remainder function is the notion of the symbol of a transcendental

function [37]. The symbol is a quantity which preserves the underlying algebraic nature

of the function, while forgetting about certain analytic properties, such as the particular

branch cut on which the function should be evaluated. Complicated identities between

polylogarithms reduce to simple algebraic relations at the level of symbols. The symbol

can therefore be a key step in discerning the analytic structure of amplitudes. For example,

a conjecture has been made recently for the symbol of the two-loop remainder function for

an arbitrary number of points [38]. Of course, eventually one would like to reconstruct the

actual function represented by the symbol.

Another important property of polygonal Wilson loops is that they should respect

a particular operator product expansion (OPE) in the region where several consecutive

edges are nearly collinear [39, 40]. This idea has recently been used to argue that at two

loops the hexagon remainder function can be uniquely fixed from the knowledge only of

the leading corrections to the energies of the exchanged states in the OPE [41]. The OPE

has also recently been used to address the same problem for Wilson loops with more than

six sides [42], and for super Wilson loops associated with non-MHV amplitudes [43].

An important kinematical limit of higher-point scattering amplitudes is the multi-

Regge limit. This limit is a generalization of the high-energy limit of four-point scattering,

but is one in which multiple parameters can survive, related to the ordering of the final-state

particles in rapidity. For the MHV amplitudes in planar N = 4 super Yang-Mills theory,

this structure has been explored in several papers [44–50]. Indeed, this limit provided early

evidence that the BDS ansatz needed to be corrected at two loops, starting with the six-

point amplitude [44]. While the remainder function R6(u, v,w) vanishes in the Euclidean

version of multi-Regge kinematics [51–53], in the physical region its discontinuity is nonzero

and can be analysed. When dual conformal invariance holds, this discontinuity depends

nontrivially on two dimensionless variables, rather than the three variables u, v and w

characterizing generic kinematics.

A consequence of the duality between MHV amplitudes and Wilson loops is that the

multi-Regge behaviour of the amplitude should be consistent with the OPE behaviour

of the Wilson loop in the near-collinear limit. That is, there is a further limit one can
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take of the multi-Regge kinematics which is collinear in nature. This combined limit was

studied recently [50], and it was shown that constraints from the two limits pass a self-

consistency test.

In this paper, inspired by all these exciting recent developments, we will make an

ansatz for the symbol of the three-loop hexagon remainder function, R
(3)
6 (u, v,w), which

is heavily constrained by the structures described above. We are able to apply all of

the physical requirements, such as the correct collinear behaviour, OPE expansion, multi-

Regge limits and so on, at the level of the symbol. The correct near-collinear behaviour,

governed by the OPE expansion, is one of the strongest constraints on our ansatz. It

is quite non-trivial that there is a consistent solution to the combined constraints. For

general kinematics, the solution for the symbol is not unique, but contains 26 arbitrary

constants. However, all but three of these parameters are irrelevant in the multi-Regge

limit. Analysing the symbol in this limit, and imposing consistency with the leading

logarithmic prediction [48], we find that two of the three parameters relevant in this limit

can be fixed. Hence the symbol is completely fixed, up to a single constant parameter, in

this regime. An additional constraint enables us to show that this extra constant parameter

actually vanishes. The latter constraint is an all-loop-order prediction [49] concerning the

behaviour of the real part of the remainder function in the multi-Regge limit, after analytic

continuation to 3 → 3 kinematics. We have found functions corresponding to the symbol

in this limit, and we constrain the possible beyond-the-symbol ambiguities in term of a few

additional constants. These functions are all expressible in terms of classical logarithms

and polylogarithms. Thus we are able to make new, rather non-trivial predictions for the

next-to-leading and next-to-next-to-leading logarithmic approximations to the scattering

of six gluons at three loops in the multi-Regge limit.

We then examine the implications of imposing a further requirement on the form of

the final entries of our symbol. This restriction constrains the derivatives of the remainder

function. It can be motivated by the differential equations obeyed by one-loop [54–56] and

multi-loop integrals [57] related to scattering amplitudes in planar N = 4 super-Yang-Mills

theory. The same restriction has also been identified within a supersymmetric formulation

of the Wilson loop [38]. We find that imposing this final-entry condition fixes the symbol

completely up to just two free parameters, and furthermore it determines the symbol

uniquely in the multi-Regge limit, and consistently with the all-loop-order prediction for

3→ 3 scattering.

The paper is organised as follows. Section 2 contains a brief review of pure functions

and properties of their associated symbols. In section 3 we make an ansatz for the symbol

of the remainder function of a particular, natural form, and we describe the constraints

that it must satisfy in order to be consistent. In section 4 we discuss the most involved

constraints, namely the ones coming from certain leading terms in the OPE expansion.

Our focus is on the interesting case of the hexagon at three loops. We find that our

ansatz is consistent with all of the constraints we apply, and indeed there is a 26-parameter

solution at this stage. In section 5 we analyse our symbol in multi-Regge kinematics, and

produce new expressions for the next-to-leading and next-to-next-to-leading logarithmic

approximations at three loops. In section 6 we discuss the condition we impose on the final
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entry of the symbol, and describe how it reduces our ansatz to just two free parameters.

We also remark that for generic values of u, v and w, the three-loop remainder function

cannot be described in terms of classical polylogarithms, in contrast to what happened

at two loops. In section 7 we present our conclusions and give a brief outlook. Three

appendices give some useful relations between different sets of kinematic variables, as well

as an alternate representation of the logarithmic coefficients in the multi-Regge limit.

In additional files accompanying this article, as both Mathematica notebooks and plain

text files, we provide the symbol for the three-loop remainder function, after imposing the

final-entry constraint. We also provide the symbols associated with the remainder function

in the multi-Regge limit.

2 Pure functions and symbols

The remainder function of N = 4 SYM is expected to be described in terms of pure

functions. We define a pure function of degree (or weight) k recursively, by demanding

that its differential satisfies

d f (k) =
∑

r

f (k−1)
r d log φr . (2.1)

Here the sum over r is finite and φr are algebraic functions. This recursive definition is

for all positive k; the only degree zero pure functions are constants. The definition (2.1)

includes logarithms and classical polylogarithms, as well as other iterated integrals, such

as harmonic polylogarithms of one [58] or more [59–62] variables.

The symbol [37] S(f) of a pure function f is defined recursively with respect to eq. (2.1),

S(f (k)) =
∑

r

S(f (k−1)
r )⊗ φr . (2.2)

If we continue this process until we reach degree 0, we find that S(f (k)) is an element of

the k-fold tensor product of the space of algebraic functions,

S(f (k)) =
∑

~α

φα1 ⊗ . . . ⊗ φαk
, (2.3)

where ~α ≡ {α1, . . . , αk}. The symbol of a function does not contain all the information

about the function. In particular, it loses information about which logarithmic branch

the integrand of an iterated integral is on, at each stage of integration. It also does not

detect functions that are transcendental constants multiplied by pure functions of lower

degree. (That is, such functions have zero symbol.) The symbol therefore corresponds to

an equivalence class of functions that differ in these aspects. Nevertheless, the symbol is

extremely useful, because complicated identities between transcendental functions defined

by iterated integrals become simple algebraic identities.

If a symbol can be expressed as a sum of terms, with all entries in each term belonging

to a given set of variables, then we say that the symbol can be factorised in terms of that
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set of variables. From the definition of the symbol, a term containing an entry which is a

product can be split into the sum of two terms, according to

. . . ⊗ φ1φ2 ⊗ . . . = . . .⊗ φ1 ⊗ . . . + . . .⊗ φ2 ⊗ . . . . (2.4)

Performing this factorisation is usually necessary to identify all algebraic relations between

terms. It is often necessary to perform the step again after taking a kinematic limit, because

the algebraic relations in the limit are different than for generic kinematics.

The elements of the symbol are not all independent. In particular the integrability

condition d2f (k) = 0 for any function implies relations among the different elements. These

relations can be described simply: One picks two adjacent slots in the symbol φαi
⊗ φαi+1

and replaces the corresponding elements by the wedge product d log φαi
∧ d log φαi+1 in

every term. The resulting expression must vanish.

It is very helpful in our analysis to consider the discontinuities of the functions involved.

The symbol makes clear the locations of the discontinuities of the function. If we have

S(f (k)) =
∑

~α

φα1 ⊗ . . . ⊗ φαk
, (2.5)

then the degree k function f (k) will have a branch cut starting at φα1 = 0. The discontinuity

across this branch cut, denoted by ∆φα1
f (k), will also be a pure function, of degree k − 1.

Its symbol is found by clipping the first element off the symbol for f (k):

S(∆φα1
f (k)) =

∑

~α

φα2 ⊗ . . .⊗ φαk
. (2.6)

In general, taking discontinuities commutes with taking derivatives.

3 Constraining the three-loop remainder function

We will now describe a procedure for constraining the form of the remainder function based

on a plausible ansatz for its symbol. Our experience with six-point integrals in both four

and six dimensions [54, 55, 63] is that their symbols are always formed of terms with entries

drawn from the following set of nine elements,

{u, v,w, 1 − u, 1− v, 1 − w, yu, yv, yw} . (3.1)

Here we use the notation

yu =
u− z+
u− z−

, yv =
v − z+
v − z−

, yw =
w − z+
w − z−

, (3.2)

where

z± =
1

2

[

−1 + u+ v + w ±
√

∆
]

, ∆ = (1− u− v − w)2 − 4uvw . (3.3)

Thus our ansatz for the remainder function at l loops will be the most general symbol of

degree 2l that we can make from the above set of nine elements. That is, we assume that

the symbol for the remainder function can be factorised in terms of the set (3.1).

– 6 –
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We can also write the cross ratios in terms of ratios of two-brackets of CP
1 variables

wi,

u =
(23)(56)

(25)(36)
, v =

(34)(61)

(36)(41)
, w =

(45)(12)

(41)(52)
, (3.4)

where (ij) = −(ji) = ǫabw
a
i w

b
j . In these variables, ∆ is a perfect square,

√
∆ = ±(12)(34)(56) + (23)(45)(61)

(14)(25)(36)
. (3.5)

Taking the positive branch of the square root, and using the Schouten identity for the

two-brackets, we have

1− u =
(35)(26)

(25)(36)
, 1− v =

(46)(31)

(36)(41)
, 1− w =

(51)(42)

(41)(52)
, (3.6)

yu =
(23)(46)(15)

(56)(13)(24)
, yv =

(61)(24)(35)

(34)(51)(26)
, yw =

(45)(62)(31)

(12)(35)(46)
. (3.7)

Note that under a cyclic permutation, wi → wi+1, with indices modulo 6, the sign of
√

∆

flips,
√

∆→ −
√

∆. So the y variables permute as yu → 1/yv → yw → 1/yu. This inversion

will not affect the symmetry properties of the parity-even functions and symbols in which

we are interested, which involve even numbers of y variables.

From eqs. (3.4), (3.6) and (3.7) we see that our ansatz is equivalent to saying that the

symbol can be factorised in terms of two-brackets (ij) (or equivalently momentum-twistor

four-brackets) at the six-point level. (There are 15 two-brackets (ij), but only combinations

that are invariant under rescaling of individual wi coordinates are allowed, which reduces

the number of independent combinations to the nine exhibited in eqs. (3.4), (3.6) and (3.7).)

Note that we can fix a coordinate choice wi = (1, zi), where these variables coincide with the

zi variables of ref. [35], so that our ansatz is also equivalent to assuming that the symbol can

be factorised in terms of differences of the zi. The form of our ansatz is certainly sufficient

at the two-loop level, because the remainder function is explicitly known [6, 7, 32, 33, 35],

and its symbol is indeed of this form [35]. In the above variables, it is given by

S(R
(2)
6 )=−1

8

{[

u⊗ (1−u) ⊗ u

(1−u)2 +2
(

u⊗ v+v ⊗ u)⊗ w

1−v+2 v ⊗ w

1−v ⊗ u
]

⊗ u

1−u
+

[

u⊗ (1− u)⊗ yuyvyw − 2u⊗ v ⊗ yw

]

⊗ yuyvyw

}

+ permutations , (3.8)

where the sum is over the 6 permutations of u, v and w, which correspondingly permute

yu, yv and yw.

What constraints should the symbol of the remainder function obey?

• It should be integrable, i.e. it should actually be the symbol of a function.

• The first entry in any term of the symbol should be a cross ratio u, v or w. The

leading entries describe the locations of the discontinuities of the function, which can

only originate at x2
ij = 0, as can be seen by considering the unitarity cuts of the

amplitude [41]. These points correspond to cuts in u, v or w originating at either 0

or ∞. A first entry containing 1− u, yu, etc., would lead to a discontinuity starting

at an unphysical point.
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Within our ansatz for the symbol of the three-loop remainder function, these two

constraints are sufficient to show (by explicit enumeration) that the second entry of the

symbol can only be drawn from the set {u, v,w, 1−u, 1−v, 1−w}. This result is consistent

with a conjecture of some of the authors of ref. [41]. The second-entry property is of

course true for the known two-loop remainder function. We also have the following further

conditions on the symbol of the remainder function:

• It should be completely symmetric in the cross ratios u, v,w.

• It should be parity even. Because the y variables of eq. (3.2) invert under parity (the

exchange of z+ and z−), there should be an even number of y entries in any given

term in the symbol.

• It should vanish in the collinear limit. This constraint can be implemented at the

level of the symbol as follows. In the limit w → 0, we find that the y variables behave

as

yu −→
u

1− v , yv −→
v

1− u , yw −→
w(1 − u)(1− v)

(1− u− v)2 . (3.9)

The collinear limit can be obtained by first taking the w → 0 limit, factorising the

symbol and then taking the limit v → 1− u. The symbol of the remainder function

should then vanish. (A term in the symbol vanishes if at least one of its entries goes

smoothly to 1.)

We have analysed the implications of the above constraints up to three loops (i.e. up

to symbols of degree six). At one loop we find that there are no symbols obeying all of

the above properties. This result is expected, since the remainder function, which vanishes

in the collinear limit, starts appearing only at two loops and beyond. At two loops there

is a four-parameter family of symbols obeying the constraints that we have outlined. Not

surprisingly, it contains the symbol of the two-loop remainder function which is explicitly

known [35] and satisfies the above conditions. At three loops we find a 59-parameter

space of symbols obeying the constraints outlined above. We would like to impose more

constraints to see if we can further restrict the space of possible solutions. We have the

following two classes of additional constraints:

• As well as vanishing in the strict collinear limit, the Wilson loop in the near-collinear

regime should have an OPE expansion as described in refs. [39–41]. Roughly speaking,

this expansion comes about because a Wilson loop can be expanded around the limit

where a set of adjacent sides becomes collinear. A scaling parameter τ measures how

close the Wilson loop is to the collinear configuration (τ → ∞ corresponds to the

strict collinear limit). In terms of this parameter the Wilson loop1 should have an

expansion of the form

W =

∫

dnCn e
−Enτ . (3.10)

1More accurately, one considers the logarithm of a particular finite, conformally invariant ratio of

Wilson loops.
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Here n is shorthand for the set of labels corresponding to the state being exchanged,

En is the ‘energy’ of the state (i.e. its eigenvalue under the τ scaling), and Cn cor-

responds roughly to the probability of emission and absorption of a given state. In

principle, a complete knowledge of the set of states labeled by n, and expressions for

the energies En and the overlap functions Cn entirely fix the remainder function. In

fact, armed with a knowledge of only the leading corrections to the energies of the

simplest single-particle states, we can predict the leading discontinuity at any loop

order. At two loops this information is sufficient to determine the entire symbol [41],

because the leading discontinuity is just a single discontinuity, ∆vR
(2)
6 . The discon-

tinuities in the other two cross ratios, ∆uR
(2)
6 and ∆wR

(2)
6 , are related by symmetry.

Using the fact that the first entry of the symbol is either u, v or w, and eq. (2.6) for

the symbol of the discontinuity, we see that knowing ∆vR
(2)
6 allows the full two-loop

symbol to be reconstructed by appending a v to the front and summing over cyclic

permutations. At three loops, the leading corrections to the En suffice to constrain

the double discontinuity, ∆v∆vR
(3)
6 . This is a powerful constraint, although it does

not uniquely determine the remainder function on its own.

• The remainder function should also obey particular constraints in multi-Regge kine-

matics [47–50]. In this limit, u→ 1, while v and w vanish in a particular way,

u −→ 1 ,
v

1− u −→ x ,
w

1− u −→ y . (3.11)

Here x and y are free parameters.2 One must be careful about the branch on which

the limit is taken. In fact, the functions we are interested in vanish in this limit in

the Euclidean region [51–53] (when all separations xij are taken to be spacelike) but

are non-vanishing and even logarithmically divergent in physical regions for 2 → 4

and 3→ 3 processes [44, 45, 48, 49, 52].

The symbol of the two-loop remainder function is entirely fixed by the OPE [41] to

agree with the symbol of the expression found in ref. [35]. The two-loop remainder function

has also been shown to obey the multi-Regge constraints [47, 48]. At three loops we find

that, of the 59 independent symbols obeying integrability, symmetry and the collinear limit,

26 have no double discontinuity in a given channel. These functions therefore cannot be

constrained by the OPE analysis. For the remaining 33 symbols we find that there does

exist a unique solution to the OPE constraints (thus adding support to the correctness

of the ansatz we have adopted). Thus the OPE fixes 33 of the 59 free parameters of

our symbol.

Analysing the multi-Regge limits we find that, of the 26 functions without any double

discontinuity, only three are non-vanishing in the multi-Regge kinematics. One has beyond-

leading-log behaviour (it is proportional to log3(1−u) in the limit (3.11)), and is therefore

ruled out. Another parameter is fixed by the known leading-log behaviour, proportional to

log2(1−u) [48, 49]. Thus a single parameter is left undetermined in the multi-Regge limit.

2The variable y introduced in eq. (3.11) should not be confused with the variables yu, yv and yw used

for generic kinematics.
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This free parameter appears in the next-to-leading log behaviour, but not at the next-to-

next-to-leading log level. We will see later that it has to be set to zero for consistency with

the all-loop-order prediction concerning 3→ 3 scattering [49].

Having examined the consequences of the above constraints, we find a symbol of the

form,

S(R
(3)
6 ) = S(X) +

26
∑

i=1

αi S(fi) . (3.12)

The first term, S(X), is the piece that is fixed by the OPE constraints. The remaining

free parameters αi accompany symbols of functions fi which have no double discontinuity.

Examining the form of S(X) we find it can be written in such a way that its final entries

are always of the form,
{ u

1− u,
v

1− v ,
w

1− w, yu, yv, yw

}

. (3.13)

Note that this is not in contradiction with the ansatz (3.1), since the entries can always be

factorised. Instead it is a more restrictive statement, because only 6 out of the 9 potential

variables actually appear in the final entry. This result concerning the restricted structure

of the final entries of S(X) is closely connected to the observations of ref. [38], which

suggests that this fact may be related to a supersymmetric formulation of the Wilson loop.

Similar restrictions appear [57] in differential equations obeyed [54–56] by integrals related

to planar N = 4 super-Yang-Mills scattering amplitudes [23]. These observations suggest

that the full symbol S(R
(3)
6 ), not just S(X), should be of a form in which its final entries

are drawn from the list (3.13). Imposing this condition on the final entries of S(R
(3)
6 )

reduces the number of free parameters to just two. The fact that it is possible to impose

this restriction, consistently with the known multi-Regge behaviour, is highly non-trivial.

Finally, let us note that even if we were able to fix the entire symbol and find a function

with all the desired analytic properties, vanishing in the collinear limit with the correct

OPE behaviour, etc., there would always remain the possibility of adding some amount of

the two-loop remainder function multiplied by ζ2, that is,

R
(3)
6 −→ R

(3)
6 + γ ζ2R

(2)
6 , (3.14)

for some constant γ. We will see such ‘beyond-the-symbol’ ambiguities appearing in a

particular way in our predictions for the multi-Regge behaviour of the three-loop remain-

der function.

We will now discuss the OPE analysis in further detail, and then describe the predic-

tions for the three-loop remainder function in the multi-Regge kinematics. We will conclude

with a discussion of the conditions on the final entries, and the remaining ambiguities after

imposing all our constraints.

4 OPE constraints

In order to describe the OPE expansion for a light-like Wilson loop, the authors of ref. [39]

introduced a reference square with null sides, denoted by Wsquare in figure 1. Two of the

sides of the square coincide with two of the sides of the Wilson loop, while the other two
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Worig Wtop Wbottom Wsquare

Figure 1. The four different Wilson loops entering the definition of the ratio (4.1). The reference

square is shown by the dashed line. The top and bottom Wilson loops are obtained by replacing a

sequence of edges by the corresponding part of the square.

sides are formed by finding other null lines that intersect the two previous ones as well

as two of the corners of the original loop. One can then consider the finite, conformally

invariant quantity made from a ratio of Wilson loops,

r = log
WorigWsquare

WtopWbottom
. (4.1)

The four different Wilson loops appearing in the ratio are depicted in figure 1.

Note that at six points, the top and bottom loops are five-sided. The four-sided and

five-sided loops appearing in the ratio r are entirely determined by the conformal Ward

identity (1.3). Thus knowledge of the quantity r is equivalent to knowing the six-point

remainder function.

As described in ref. [41], the Wilson loop, or more precisely the ratio r, is expected to

have an OPE expansion of the form

r =

∫

dnCn e
−Enτ . (4.2)

At one loop, the states labelled by n are free single-particle exchanges between the bottom

half of the the loop and the top half. Beyond one loop there can be interactions between

the particles and the vertical Wilson lines in figure 1, as well as multi-particle exchanges,

and so forth. The quantities Cn and En entering the OPE should be expanded in the

coupling constant. In principle, to determine r (and hence the remainder function) one

needs to know the space of states and the dependence of Cn and En on the coupling.

There is, however, a piece of the remainder function that is completely constrained at

l loops, just from knowing the one-loop anomalous dimensions [64] of the single-particle

states being exchanged [41]. In the near-collinear limit, one of the cross ratios vanishes,

say v → 0. It vanishes exponentially quickly as τ → ∞; that is, τ is proportional to log v

in this limit. The special piece of the remainder function (or r) is the leading discontinuity

in v, which is the repeated (l − 1)-fold discontinuity ∆l−1
v r. This discontinuity can be

extracted from the OPE by first Taylor expanding the energies of the intermediate states

in the coupling constant,

En = E(0)
n + g2E(1)

n + g4E(2)
n + . . . . (4.3)
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After Taylor expanding the exponential in eq. (3.10) in g2 we find

r =

∫

dnCn e
−E

(0)
n τ

[

1− g2τE(1)
n + g4

(1

2
τ2(E(1)

n )2 − τE(2)
n

)

+ . . .
]

. (4.4)

Because τ is proportional to log v as τ → ∞, the leading discontinuity in v at any loop

order is given by the term involving the highest power of τ . This term is always obtained

from the one-loop corrections E
(1)
n to the energies of the simplest single-particle states —

those states whose overlap functions Cn are non-vanishing at order g2.

The exchanged states carry other quantum numbers in addition to the energy En.

There is a ‘momentum’ p conjugate to the other scaling (σ-scaling) invariance of the square

and a discrete label m, conjugate to the rotational invariance (φ-rotation) in the two

directions orthogonal to the square. These three invariances of the square can be used

to completely parametrise the three variables u, v and w on which r (or the six-point

remainder function) depends. Explicitly, the variables σ, τ and φ are related to u, v and w

via

u =
eσ sinh τ tanh τ

2(cosh σ cosh τ + cosφ)
, v =

1

cosh2 τ
, w =

e−σ sinh τ tanh τ

2(cosh σ cosh τ + cosφ)
. (4.5)

A more detailed description of the leading discontinuity of r at l loops is then

∆l−1
v r(l) ∝ (−1)l

(l − 1)!

∫

dp

2π
e−ipσ

( ∞
∑

m=1

[γm+2(p)]
l−1 cos(mφ)

p2 +m2
(4.6)

+

∞
∑

m=2

[γm−2(p)]
l−1 cos((m− 2)φ)

p2 + (m− 2)2

)

Cm(p)Fm/2,p(τ) .

The one-loop anomalous dimensions γm(p) are the energies E
(1)
n of conformal primary

states, and they are given by [64],

γm(p) = ψ
(m+ ip

2

)

+ ψ
(m− ip

2

)

− 2ψ(1) . (4.7)

The explicit formulae for the overlap functions Cm(p) and the conformal blocks Fm/2,p(τ),

which account for the exchange of conformal descendant states, are given in ref. [41]. The

formula (4.6) has been slightly adapted from the corresponding one for two loops [41]

by raising the anomalous dimensions γm(p) to the power l − 1 instead of 1. This power

originates simply from the highest power of τ at each loop order in eq. (4.4), as in this

term the anomalous dimension appears in the exponent accompanied by a factor of τ . In

summary, the leading discontinuity in any of the cross ratios (which are all related by the

permutation symmetry) is completely predicted by the OPE, in a formula very similar to

the two-loop case.

Evaluating the expression (4.6) is quite involved. However, following ref. [41] we can

say that it must obey certain differential equations. The differential operators D± of ref. [41]

should annihilate any function given by a sum of two towers of conformal blocks. Using
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results from appendix A, one can work out the form of these operators in terms of the cross

ratios u, v and w:

D± =
4

1− v
[

− z±u∂u − (1− v)v∂v − z±w∂w

+ (1− u)vu∂uu∂u + (1− v)2v∂vv∂v + (1− w)vw∂ww∂w

+ (−1 + u− v + w)
(

(1− v)u∂uv∂v − vu∂uw∂w + (1− v)v∂vw∂w

)

]

. (4.8)

At any given loop order beyond one loop, the symbol of the remainder function R
(l)
6 is

actually equal to the symbol of the Wilson loop ratio r(l). The difference between the two

functions comes from additional terms in the expansion of eq. (4.1) in the coupling. For

example, in eq. (1.5), Rn is a constant for the four- and five-point contributions to r, but

there are degree two functions (at most) related to FWL
n ,1−loop that will contribute to the dif-

ference between r and the remainder function, when they are multiplied by transcendental

constants from higher-order terms in γK . These terms drop out of the symbol.

For our three-loop analysis we require that the symbol of the leading (double) discon-

tinuity (∆v)
2R

(3)
6 is annihilated by the product of D+ and D−,

S
(

D+D−∆v∆vR
(3)
6 (u, v,w)

)

= 0 . (4.9)

The above is a very general constraint, which should apply to all expressions admitting an

OPE expansion of the form described in ref. [39]. Within our specific ansatz it becomes

extremely powerful. We find that it fixes 33 out of the 59 coefficients that were undeter-

mined after imposing integrability, symmetry and the collinear limit. The remaining 26

terms have no double discontinuity in any single channel, so they cannot be fixed without

supplying additional information.

In ref. [41] the sum (4.6) was performed for the single discontinuity ∆vR
(2)
6 at two

loops, for which only a single power of the anomalous dimensions γm(p) appears. One

method used is to compute the discontinuities of the discontinuity. We can perform a

similar analysis for the double discontinuities of the double discontinuity at three loops.

At two loops the discontinuity ∆vR
(2)
6 has further discontinuities of the type ∆u, ∆w

and ∆1−v. The double discontinuity ∆w∆vR
(2)
6 is a degree two function. When computing

the integral (4.6) over p as a sum over residues, it arises from double poles in the p plane

for l = 2. The formula (4.7) for γm(p) contains single poles, with constant residues, at

p = i(m+2k) for non-negative integers k. They can combine with single poles at the same

locations in the overlap functions Cm(p). For p = im they can also combine with poles

from the p2 +m2 denominator factor. Double poles give rise to derivatives with respect to

p, which can hit the exponential e−ipσ (the only place σ appears) and bring down a factor

of σ. Because logw is proportional to σ in eq. (4.5) as σ → +∞, the coefficient of the term

linear in σ yields the discontinuity with respect to w.

Similarly, at three loops the double discontinuity of the double discontinuity

∆w∆w∆v∆vR
(3)
6 arises from triple poles in the p plane in the expression (4.6) for l = 3,

which generate two derivatives with respect to p acting on e−ipσ. The analysis of appendix

B.1 of ref. [41] is almost directly applicable to ∆w∆w∆v∆vR
(3)
6 . However, there is a small
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mismatch due to the factor of p2 + m2 in the denominator of the terms in the first sum

in eq. (4.6). This factor contributes a pole at p = im, which combines with the pole coming

from Cm(p) to produce a double-pole contribution to the two-loop expression ∆w∆vR
(2)
6 ,

without requiring a pole from γm+2(p). There are no such contributions for the three-loop

expression ∆w∆w∆v∆vR
(3)
6 , because the only triple poles come from combining [γm(p)]2

with Cm(p).

On the other hand, if we could remove the p2 + m2 factor in the denominator of

eq. (4.6), then the same analysis for the two-loop problem would also apply directly at

three loops. It is important for this conclusion that the residues of γm(p) are constants,

independent of m and p. Removing the denominator amounts to acting with the particular

second-order operator � = −(∂2
σ + ∂2

φ) described in ref. [41]. In terms of the cross ratios,

using results from appendix A, the operator � is given by

� =
4uw

1− v
[

u∂u+w∂w−(1−u)∂uu∂u−(1−w)∂ww∂w +(1−u−v−w+2uw)∂u∂w

]

. (4.10)

We therefore conclude that

�∆w∆w∆v∆vR
(3)
6 ∝ �∆w∆vR

(2)
6 =

w(1− u+ v − w)

(1− v)(1− w)
. (4.11)

The second equation can be found by acting with � on the symbol for the discontinuity of

R
(2)
6 ,

S(∆w∆vR
(2)
6 ) = −1

4

{

u⊗ uvw

(1− u)(1− v)(1 − w)
− (1− w)⊗ v

1− v − (1− v)⊗ w

1− w
− yu ⊗ yuyvyw

}

, (4.12)

which is easily extracted from the symbol (3.8) for R
(2)
6 . It can also be found by applying �

to the explicit representation for the discontinuity X3 found in ref. [41]. (We have not yet

fixed the overall normalization of R
(3)
6 ; we will do this subsequently when we match to the

leading-logarithmic behaviour in the multi-Regge limit.) Remarkably, the symbol obtained

after imposing the condition (4.9) is perfectly consistent with the condition (4.11), which

is a non-trivial check of our analysis.

In conclusion, after imposing the leading OPE constraints we find a solution consistent

with our ansatz containing 26 unfixed parameters αi,

S(R
(3)
6 ) = S(X) +

26
∑

i=1

αi S(fi) . (4.13)

Each of the symbols appearing in the above expression is required to be integrable, and so

there do exist functions X, fi with those symbols. The double discontinuities of X and the

fi obey

∆v∆vX 6= 0, D+D−∆v∆vX = 0, S(∆v∆vfi) = 0 . (4.14)

Although the symbol for X is one of the central results of this article, it is also rather

lengthy. Therefore we do not present it directly in the text. Instead we give it in accompa-

nying Mathematica and plain text files. In these files, a term a⊗ b⊗ . . . ⊗ f is written as
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SB[a, b, . . . , f ]. Using symbol(ic) manipulation programs, it is straightforward to extract

information about various limits and discontinuities from the symbol. The next section

describes one such limit, multi-Regge kinematics.

5 Predictions for multi-Regge kinematics

We now analyse our symbol in the multi-Regge limit (3.11), in which u → 1 while v

and w vanish. First we find that in the Euclidean version of this limit, the symbol we

have found vanishes, in agreement with observations [51–53] about the consistency of the

BDS ansatz in this type of limit. Next we analytically continue to a physical branch,

defined by letting u → e−2πiu. For physical 2 → 4 scattering, v and w remain at their

Euclidean values. The imaginary terms on the physical branch that are generated by this

transformation of u come from the discontinuity of the function in the u channel in the

multi-Regge limit. As mentioned in section 2, the symbol of the discontinuity of a function

f in a given channel (u say) can be found by taking the terms in the original symbol S(f)

with initial entry u and stripping off that entry. The result, after multiplying by (−2πi), is

the symbol of the discontinuity S(∆uf). The real terms for 2→ 4 scattering come from a

double discontinuity in the u channel. They are found from S(∆u∆uf), after multiplying

by (2πi)2. (In principle, there can be contributions to the imaginary and real parts from

triple and higher order discontinuities in u as well. However, through three loops there are

no such terms.)

The behaviour we expect for the l-loop remainder function in the multi-Regge limit in

the physical region is

R
(l)
6 −→ (2πi)

l−1
∑

r=0

logr(1− u)
[

g(l)
r (x, y) + 2πi h(l)

r (x, y)
]

, (5.1)

where the logarithmic expansion coefficients g
(l)
r and h

(l)
r are functions that depend only

on the finite ratios x and y defined in eq. (3.11). It is convenient to change variables to

describe these functions. Following ref. [48], we introduce the variables w,w∗ defined by3

x =
1

(1 + w)(1 + w∗)
, y =

ww∗

(1 + w)(1 + w∗)
. (5.2)

In terms of these variables, the symbols of the functions g
(l)
r and h

(l)
r have as their only

entries w,w∗, (1 + w), and (1 + w∗).

Both g
(l)
r and h

(l)
r are invariant under two Z2 symmetries:

conjugation : w←→ w∗, (5.3)

which is a reality condition for the case that w∗ is the complex conjugate of w, and

inversion : w←→ 1/w, w∗ ←→ 1/w∗. (5.4)

3The new variable w in the multi-Regge limit (which is always accompanied by a w
∗) should not be

confused with the original cross ratio w.
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The combined operation of inversion and conjugation is the reflection symmetry x ↔ y,

which is inherited from the permutation symmetry v ↔ w for generic kinematics. We also

expect the functions g
(l)
r and h

(l)
r to be single-valued as w is rotated around the origin of

the complex plane. Finally, the functions should vanish for |w| → 0, which is the collinear

limit on top of the Regge limit.

In taking the multi-Regge limit (3.11) of symbols, we note that any symbol containing

a u or a yu entry can be discarded, because u→ 1 and yu → 1 in this limit. We recall the

definition of x and y in eq. (3.11). The variables yv and yw go to finite values, ỹv and ỹw,

in the limit:

yv −→ ỹv =
−1− x+ y +

√

∆̃

−1− x+ y −
√

∆̃
=

1 + w∗

1 + w
, (5.5)

yw −→ ỹw =
−1 + x− y +

√

∆̃

−1 + x− y −
√

∆̃
=

(1 + w)w∗

w(1 +w∗)
, (5.6)

where ∆̃ = (1− x− y)2 − 4xy is the limit of ∆/(1− u)2. The relation of ỹv and ỹw to the

(w,w∗) variables can be found with the aid of formulae in appendix B.

The symbols S(g
(l)
r ) and S(h

(l)
r ) do not fix the functions g

(l)
r and h

(l)
r uniquely. One can

always add transcendental constants such as ζ2, multiplied by lower transcendentality func-

tions which vanish in the symbol. However, the above symmetries, eqs. (5.3) and (5.4), and

analytic properties around w = 0, greatly restrict the form of such potential ambiguities.

In particular there are no such functions of degree 0 or 1 obeying these constraints.

Before describing the three-loop predictions, we recall [47, 48] the corresponding ex-

pansion (5.1) at two loops, as obtained from the formula of ref. [35],

g
(2)
1 (w,w∗) =

1

4
log |1+w|2 log

|1+w|2
|w|2 , (5.7)

g
(2)
0 (w,w∗) =

1

4
log |w|2 log2 |1+w|2− 1

6
log3 |1+w|2+

1

2
log |w|2

[

Li2(−w)+Li2(−w∗)
]

− Li3(−w)−Li3(−w∗) . (5.8)

It is not always the case that w∗ is the complex conjugate of w. (That only happens if
√

∆̃ is imaginary.) In the general case, |w|2 is just a shorthand for ww∗, and |1 + w|2 is a

shorthand for (1 + w)(1 + w∗).

The functions controlling the real parts depend on whether the scattering is 2→ 4 or

3→ 3. In 2→ 4 scattering, the multi-Regge limit has vanishing real part at two loops [47],

h
(2)
1 (w,w∗) = 0 , (5.9)

h
(2)
0 (w,w∗) = 0 . (5.10)

In the case of 3→ 3 scattering, v and w have to be analytically continued to the opposite

sign from their Euclidean values [49]; that is,

u→ |u|e2πi , v → |v|eπi , w→ |w|eπi . (5.11)
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In fact, the remainder function for 3→ 3 scattering can be derived from the 2→ 4 case by

the simple substitution

log(1− u) −→ log(u− 1)− iπ , (5.12)

followed by complex conjugation [49].

Whereas the function g
(2)
1 in eq. (5.7) is manifestly invariant under both conjugation

and inversion symmetries, g
(2)
0 in eq. (5.8) only has manifest invariance under w↔ w∗. On

the other hand, this form makes clear that g
(2)
0 vanishes as |w| → 0, and also that it acquires

no phase as w is rotated around the origin of the complex plane. The latter property is

obvious for |w| < 1 and true by inversion symmetry for |w| > 1. Simple polylogarithm

identities can be used to demonstrate the w inversion symmetry. In fact, assuming maximal

transcendentality, the functions g
(2)
1 and g

(2)
0 , of degree 2 and 3 respectively, can be fixed

uniquely, just by knowing the symbol of the two-loop remainder function and imposing

these requirements. The uniqueness holds because the symbol fixes the functions up to

constants like ζ3 or ζ2, multiplied by functions of corresponding lower degree, and there

are no functions with degree 0 or 1 obeying the constraints.

At three loops we find that in the multi-Regge limit, the symbol S(X) has the form of

the symbol of the right-hand side of eq. (5.1) for l = 3, with the leading divergence being

a double logarithmic one. We also find that in this limit, all but three of the S(fi) vanish.

We will call the functions with non-vanishing symbols in the limit f24, f25, f26. We find that

one symbol, S(f26), has a triple logarithmic divergence in the multi-Regge limit, which is

one logarithm beyond the known degree of divergence. Therefore the coefficient α26 must

vanish. The symbol S(X) contributes to the double logarithmic divergence exactly what

is required to match the symbol of the leading-log prediction [48]. We find that S(f25) also

contributes a double logarithmic divergence (different in form from that of S(X)). Hence

we deduce that its coefficient α25 must vanish, so that it does not spoil the agreement with

the leading-log prediction. The final symbol S(f24) then contributes to the next-to-leading-

log term (i.e. to S(g
(3)
1 )) but not to the next-to-next-to-leading one (i.e. not to S(g

(3)
0 )).

Because it is the only arbitrary coefficient from the expression (4.13) that survives in the

multi-Regge limit (after imposing the constraints we have just discussed), we give it a new

name, α24 = c.

Now we describe our predictions for the multi-Regge limit, after imposing the condi-

tions,

α24 = c, α25 = 0, α26 = 0 . (5.13)

We find (as described above) that the symbol of g
(3)
2 agrees precisely with the symbol of

the coefficient of the log2(1− u) term predicted in ref. [48], namely

S(g
(3)
2 ) =

1

32

(

2x⊗ x⊗ y + 3x⊗ y ⊗ xy − x⊗ ỹw ⊗ ỹvỹw

)

+ (x←→ y) . (5.14)

We have adjusted the overall normalization of X so that this term in the multi-Regge

limit agrees with ref. [48]. This normalization is based on the loop expansion parameter

a = g2Nc/(8π
2) and eq. (1.6).
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When written in terms of the w,w∗ variables, the symbol (5.14) can be seen to be the

symbol of the following function,

g
(3)
2 (w,w∗) =

1

8
g
(2)
0 (w,w∗)− 1

32
log |1 + w|2 log

|1 + w|2
|w|2 log

|1 +w|4
|w|2 , (5.15)

exactly as predicted in ref. [48]. Just as in the two-loop case, this degree 3 function is

uniquely determined by its symbol, because there are no suitable degree 1 or 0 functions

one could add. Also, we find from the double u discontinuity that the real part at leading-

log level vanishes,

h
(3)
2 (w,w∗) = 0 , (5.16)

as expected.

We also have predictions for the symbols of g
(3)
1 , g

(3)
0 and h

(3)
0 (and their corresponding

functions) which are new. The function h
(3)
1 for 2→ 4 kinematics was predicted in ref. [48],

and we obtain the same function. Remarkably, all these functions can be expressed in terms

of classical polylogarithms.

As the transcendental degree increases, it becomes more difficult to write the result

in a form that is simultaneously invariant under inversion of w, and manifestly has good

behaviour as |w| → 0. We choose to express the functions in a form where the |w| → 0

behaviour is manifest. (Alternate forms with manifest inversion symmetry can be found in

appendix C.) At the next-to-leading-log level, we find

g
(3)
1 (w,w∗) =

1

8

{

log |w|2
[

Li3

(

w

1 + w

)

+ Li3

(

w∗

1 + w∗

)]

+ (5 log |1 + w|2 − 2 log |w|2)
[

Li3(−w) + Li3(−w∗)
]

− 3

2
log |w|2 log

|1 + w|4
|w|2

[

Li2(−w) + Li2(−w∗)
]

− 1

12
log2 |1 + w|2

[

log |w|2 (log |w|2 + 2 log |1 + w|2)− 10 log2 |1 + w|2
|w|2

]

+
1

2
log |w|2 log

|1 + w|2
|w|2 log(1 + w) log(1 + w∗)− 2 ζ3 log |1 + w|2

}

+

(

5

2
+ γ′

)

ζ2 g
(2)
1 (w,w∗) + c ga

1 . (5.17)

For this degree-four function there are only two constants to determine. The first one, γ′,

corresponds to the freedom to add the two-loop remainder function, multiplied by ζ2, to the

three-loop remainder function, as in eq. (3.14). The second constant, c, is the remaining

ambiguity at the level of the symbol. It multiplies the function,

ga
1(w,w∗)= 4 log

|1+w|2
|w|2

[

Li3(−w)+Li3(−w∗)
]

− 4 log |w|2
[

Li3

(

w

1+w

)

+Li3

(

w∗

1+w∗

)]

+2
[

Li2(−w)−Li2(−w∗)+log |w|2 log
1+w

1+w∗

][

Li2(−w)− Li2(−w∗)
]

+
1

6
log3 |1+w|2 (log |1+w|2+2 log |w|2)

−2 log |w|2 log |1+w|2 log(1+w) log(1+w∗)+8 ζ3 log |1+w|2 . (5.18)
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We will see later that this function does not enter, i.e. that c = 0, if we impose consistency

with the all-loop-order prediction for 3→ 3 kinematics [49]. Also, in section 6 we will see

that this function can also be excluded by imposing an additional constraint on the form

of the final entries in the symbol of R
(3)
6 .

We rule out additional constants multiplying lower-degree transcendental functions

in eq. (5.17) by first assuming that potential functions must be built from logarithms and (at

high enough degree) polylogarithms containing the same arguments found in the leading-

transcendentality (symbol-level) terms, namely logw, log(1 + w), Lim(−w), Lim(w/(1 +

w)) and Lim(1/(1 + w)) (for m = 2, 3 these polylogarithms are not all independent).

After enumerating such functions, we impose the four constraints discussed above: the

conjugation and inversion symmetries; vanishing of the function in the (collinear-Regge)

|w| → 0 limit; and absence of a phase as w is rotated around the origin of the complex

plane. These constraints rule out functions of degree 0 or 1. The unique function of degree

2 obeying these conditions is g
(2)
1 (w,w∗) . If we had omitted the final-entry condition, for

example, we could have added a term proportional to

ζ2 log

(

1 + w

1 + w∗

)

log

(

(1 + w)w∗

(1 + w∗)w

)

. (5.19)

This term has both symmetries and vanishes as |w| → 0; in fact, it is the unique term at

degree two that satisfies the other three constraints but violates the phase condition.

The degree-three function controlling the real part at next-to-leading-log level, h
(3)
1 ,

can be found from the multi-Regge limit of the double u discontinuity. (There is an overall

factor of 1/2 associated with the fact that the symbol of log2 u is 2u⊗ u.) We find

S(h
(3)
1 ) = S(g

(3)
2 )− 1

8

[

x⊗ y ⊗ y + y ⊗ x⊗ y + y ⊗ y ⊗ x + (x←→ y)
]

, (5.20)

which integrates to

h
(3)
1 (w,w∗) = g

(3)
2 (w,w∗) +

1

16
log |1 + w|2 log

|1 + w|2
|w|2 log

|1 + w|4
|w|2 . (5.21)

This result agrees with that found in ref. [48].

Moving on to next-to-next-to-leading-log level, we find the degree-five function con-

trolling the imaginary part,

g
(3)
0 (w,w∗)=− 1

32

{

−60
[

2
(

Li5(−w)+Li5(−w∗)
)

− log |w|2
(

Li4(−w)+Li4(−w∗)
)]

+12

[

2

(

Li5

(

w

1+w

)

+Li5

(

1

1+w

)

+
1

24
logw log4(1+w)

+Li5

(

w∗

1+w∗

)

+Li5

(

1

1+w∗

)

+
1

24
logw∗ log4(1+w∗)

)

+log
|1+w|2
|w|2

(

Li4

(

w

1+w

)

+Li4

(

w∗

1+w∗

))

+log |1+w|2
(

Li4

(

1

1+w

)

− 1

6
logw log3(1+w)

+Li4

(

1

1+w∗

)

− 1

6
logw∗ log3(1+w∗)

)]
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− 2
(

5 (log2 |w|2 − log2 |1+w|2)+6 log |w|2 log |1+w|2
)(

Li3(−w)+Li3(−w∗)
)

− 2 log |w|2 log
|1+w|4
|w|2

(

Li3

(

w

1+w

)

+Li3

(

w∗

1+w∗

))

− 6 log |w|2 log |1+w|2 log
|1+w|2
|w|2

(

Li2(−w)+Li2(−w∗)
)

+
5

3
log5 |1+w|2 − 5

2
log |w|2 log4 |1+w|2+

4

3
log2 |w|2 log3 |1+w|2

− log |w|2 log2(1+w) log2(1+w∗)− 2 log3 |1+w|2 log(1+w) log(1+w∗)

+ζ2 log |w|2 log |1+w|2(log |w|2 − 3 log |1+w|2)+4 ζ3 log |w|2 log |1+w|2 − 48 ζ5

}

+ζ3 d1 g
(2)
1 (w,w∗)+ζ2 γ

′′ g
(2)
0 (w,w∗)+ζ2 d2 log |1+w|2 log

|1+w|2
|w|2 log

|1+w|4
|w|2 . (5.22)

Note that although Lim(1/(1 + w)) has logarithmic branch-cut behaviour near w = 0, the

combination

Lim

(

1

1 + w

)

− (−1)m

(m− 1)!
logw logm−1(1 + w) (5.23)

is well-behaved. This property can be verified inductively by differentiating with respect

to w and using
d

dw
Lim

(

1

1 + w

)

= − 1

1 + w
Lim−1

(

1

1 + w

)

. (5.24)

After using the combination (5.23) in g
(3)
0 , there are no other bare logw terms; they all

come along with a logw∗ to form log |w|2. Note that for m = 3 one can use an identity

to eliminate Li3(1/(1 + w)) in favor of Lim(−w) and Li3(w/(1 + w)), but there is no such

identity for m > 3.

As was the case for g
(3)
1 , all possible constraints will be satisfied by a function propor-

tional to the two-loop remainder function, multiplied by ζ2. This accounts for the term

proportional to g
(2)
0 (w,w∗). In addition, we can multiply the two-loop leading-log multi-

Regge coefficient g
(2)
1 by ζ3, to get something with the right transcendental degree and

satisfying the above constraints. Presumably its coefficient, d1, can be fixed by additional

beyond-the-symbol information. Finally, there is another degree-three function satisfying

all the constraints we imposed, with a coefficient d2 which we expect to be fixed in a sim-

ilar fashion. This purely-logarithmic degree-three function is a linear combination of the

next-to-leading-log two-loop function g
(2)
0 and the leading-log three-loop function g

(3)
2 , as

in eq. (5.15).

The real part at next-to-next-to-leading-log level is given by the degree-four function,

h
(3)
0 (w,w∗)=

1

16

{

−
(

3 log |1+w|2 − 2 log |w|2
)[

Li3(−w)+Li3(−w∗)
]

+log |w|2
[

Li3

(

w

1+w

)

+Li3

(

w∗

1+w∗

)]

+
1

2
log |w|2 log

|1+w|4
|w|2

[

Li2(−w)+Li2(−w∗)
]

− 1

2
log4 |1+w|2+

5

6
log3 |1+w|2 log |w|2 − 1

4
log2 |1+w|2 log2 |w|2

+
1

2
log |w|2 log

|1+w|2
|w|2 log(1+w) log(1+w∗)− 2 ζ3 log |1+w|2

}

+ζ2 γ
′′′ g

(2)
1 . (5.25)
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As was the case for eq. (5.17), the term containing an explicit ζ3 in eq. (5.25) is fixed using

the symmetries and the vanishing of h
(3)
0 as |w| → 0. There is an arbitrary constant γ′′′

multiplying g
(2)
1 , but we will see shortly how to fix it.

In ref. [46], the scattering amplitude in the multi-Regge limit was expressed as a sum

of Regge pole and Mandelstam cut contributions. By using this representation, general

formulae were obtained for the multi-Regge limit of the remainder function in both 2→ 4

and 3→ 3 kinematics, in terms of a real function f(ω;x, y) characterizing the partial waves

entering the Mandelstam cut,

exp[R6 + iπδ] = cos πωab + i

∫ i∞

−i∞

dω

2πi
f(ω;x, y) e−iπω |1− u|−ω (2→ 4), (5.26)

exp[R6 − iπδ] = cos πωab − i
∫ i∞

−i∞

dω

2πi
f(ω;x, y) |1 − u|−ω (3→ 3). (5.27)

Here

exp[R6] = 1 + a2R
(2)
6 + a3R

(3)
6 + . . . , (5.28)

δ = −γK

8
log
|1 + w|4
|w|2 , (5.29)

ωab =
γK

8
log |w|2 , (5.30)

and the cusp anomalous dimension γK is given by

γK = 4 a− 4 ζ2 a
2 + 22 ζ4 a

3 + . . . , (5.31)

in terms of the coupling constant a = g2Nc/(8π
2). Note that the quantity appearing

in eqs. (5.26) and (5.27) is the ratio of the full amplitude (or Wilson loop) to the BDS

ansatz, which according to our conventions (see eqs. (1.5) and (1.6)) is the exponential of

the remainder function. The phase δ comes from the behavior of the BDS ansatz in the

multi-Regge limit, while ωab is derived from the Regge-pole contribution.

Remarkably, the second term in eq. (5.27), containing f(ω;x, y), drops out when we

take the real part of the equation, leading to the all-loop-order relation for 3→ 3 kinemat-

ics [49],

Re
{

exp[R6 − iπδ]
}

= cos πωab (3→ 3) . (5.32)

The factor of e−iπω inside the integral in eq. (5.26) prevents an analogously simple relation

from holding for 2→ 4 scattering.

By using the results given above for the functions g
(l)
r and h

(l)
r through l = 3, we can

easily test eq. (5.32) at the three-loop level. We assemble the exponential of the remainder

function, exp[R6] in eq. (5.28), using eq. (5.1) for 2 → 4 kinematics. Then we apply the

substitution (5.12), followed by complex conjugation, to convert the result into the one

for 3 → 3 kinematics. Dressing the result with e−iπδ, taking the real part, and setting

h
(2)
1 = h

(2)
0 = h

(3)
2 = 0, we find the following relations, at orders a2, a3 log(u − 1) and a3,
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respectively:

g
(2)
1 =

(γ
(1)
K )2

64
log |1 + w|2 log

|1 + w|2
|w|2 , (5.33)

h
(3)
1 = g

(3)
2 +

γ
(1)
K

16
log
|1 + w|4
|w|2 g

(2)
1 , (5.34)

h
(3)
0 =

1

2
g
(3)
1 +

γ
(1)
K

16
log
|1 + w|4
|w|2 g

(2)
0 −

γ
(1)
K γ

(2)
K

64
log |1 + w|2 log

|1 + w|2
|w|2 , (5.35)

where γ
(1)
K = 4, γ

(2)
K = −4 ζ2. Equation (5.33) is equivalent to eq. (5.7), and eq. (5.34) is

equivalent to eq. (5.21). Inserting the above values for h
(3)
0 , g

(3)
1 and g

(2)
0 into eq. (5.35),

we see that eq. (5.32) is satisfied precisely, through three loops — but only if we set c = 0

in eq. (5.17) for g
(3)
1 . In addition we must fix the constant γ′′′ in eq. (5.25) for h

(3)
0 to the

value,

γ′′′ =
9

4
+
γ′

2
. (5.36)

The imaginary part g
(3)
1 for 2 → 4 kinematics contributes to the real part of R

(3)
6 for

3 → 3 kinematics because of the substitution (5.12) and the fact that g
(3)
1 is multiplied

by log(1 − u) in eq. (5.1). In fact, the only function that does not enter eq. (5.32) is

the degree-five function g
(3)
0 , because it is from the imaginary part and has no log(1− u)

multiplying it. Hence eq. (5.32) is a powerful check on our results.

The c = 0 constraint imposed by eq. (5.32) also arises from considering restrictions on

the final entry of the symbol, as we shall do in the next section.

6 Constraints on the final entry of the symbol

We have shown that within the specific ansatz (3.1) we were able to write the symbol of

the three-loop remainder function in the form

S(R
(3)
6 ) = S(X) +

24
∑

i=1

αi S(fi) . (6.1)

There are 24 unfixed parameters αi, after imposing all of the constraints we have outlined,

including the constraints coming from the multi-Regge limit (5.13). Moreover, by exam-

ining the symbol S(X) we find that it is possible to write it so that the final entries are

drawn from the following set,
{ u

1− u,
v

1− v ,
w

1− w, yu, yv, yw

}

. (6.2)

The same restriction is true for the symbol of the full remainder function R
(2)
6 at two loops,

given in eq. (3.8). As mentioned above, it has been suggested [38] that this fact is related

to a supersymmetric formulation of the Wilson loop; and similar restrictions appear [57]

in differential equations [54–56] for integrals related to scattering amplitudes [23]. It is

reasonable to think that the full symbol S(R
(3)
6 ) should obey this condition, including
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the ambiguities S(fi). In fact, it is possible to impose this condition on the remaining

ambiguities, leaving just two free parameters,

S(R
(3)
6 ) = S(X) + α1 S(f1) + α2 S(f2) . (6.3)

The fact that this form for the symbol is consistent with the known Regge behaviour

is highly non-trivial. Indeed, one can adopt the constraint on the final entries from the

beginning. In this case, after imposing the OPE constraints, the triple-log in the multi-

Regge limit vanishes automatically, and the leading-log contribution g
(3)
2 is uniquely fixed

to agree with the prediction of refs. [49, 50]. Finally, the single remaining free parameter

in the multi-Regge limit (which appears in the function g
(3)
1 in eq. (5.17)) is fixed,

c = 0 , (6.4)

leaving a completely unambiguous prediction for the symbol of g
(3)
1 in this limit (the symbol

for g
(3)
0 was already fixed unambiguously). It is reassuring that the same vanishing value

for c is also dictated by the relation (5.32) for the multi-Regge limit for 3→ 3 kinematics.

The symbol S(f1) is extremely simple: It is entirely composed from the entries

{u, v,w, 1 − u, 1 − v, 1 − w}; the square-root containing y variables in eq. (3.1) do not

appear in S(f1). This property makes it straightforward to find an explicit function f1,

which has the symbol S(f1). The function can be written in the form,

f1(u, v,w) = h(u)h(v) + h(u)h(w) + h(v)h(w) + k(u) + k(v) + k(w) . (6.5)

Here the single-variable functions h and k are given by

h(u) =
1

3
log3 u+ log uLi2(1− u)− Li3(1− u)− 2Li3(1− 1/u) , (6.6)

k(u) =− log3 uH3 +
3

2
log2 u (H4 −H2,2 − 4H3,1)

− log u (H2,3 − 6H4,1 +H2,1,2 + 6H2,2,1 + 18H3,1,1)

+ 3H2,4 + 4H3,3 + 3H4,2 +H2,1,3 −H2,2,2 − 2H2,3,1

− 2H3,1,2 + 9H4,1,1 − 2H2,1,2,1 − 9H2,2,1,1 − 24H3,1,1,1 . (6.7)

The arguments of the harmonic polylogarithms appearing in k(u) are all (1− u) and have

been suppressed to save space. A subscript m stands for m− 1 zero entries followed by a

single 1 entry [58]; so for example H3,1,2 = H0,0,1,1,0,1(1− u).
The function f1 above has been chosen so that it obeys

∂uf1 =
1

u(1− u)(pure function) . (6.8)

The fact that taking the derivative yields a pure function with the particular 1/(u(1− u))
prefactor is the functional consequence of the final-entry condition on the symbol. The

function f1 is real-valued in the Euclidean region but does not vanish in the collinear limit.

It only vanishes up to terms involving explicit appearances of ζ2 (π2) and ζ3, which is what
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is guaranteed by the form of its symbol. In fact, already at the ζ2 level we find that f1 is

divergent in this limit,

lim
w→0

f1 =ζ2

[

logw
(1

2
log u log2(1−u)+log uLi2(u)+2 log(1− u)Li2(u)−3Li3(u)+3H2,1(u)

)

+ finite
]

+ ζ3

[

. . .
]

+ ζ4

[

. . .
]

+ ζ5

[

. . .
]

+ ζ2 ζ3

[

. . .
]

. (6.9)

In fact there exists no degree 4 function with a symbol within our ansatz, and also obeying

the property (6.8), which could be used to remove this divergence in the collinear limit. This

fact suggests that if we insist on preserving the functional consequence of the final entry

condition (6.8), beyond the level of the symbol, then there will be additional constraints

on the parameter α1 when completing the symbol S(R
(3)
6 ) to a genuine function.

The function f2 is intermediate in complexity between f1 and X. Its symbol contains

terms with up to two y-variable entries, while the symbol for X has terms with four y-

variable entries. Files containing the symbols for f1, f2 and X, as well as the symbols of

the functions characterizing the multi-Regge limit (which for c = 0 come entirely from X),

are provided as auxiliary material for this paper.

We leave to later work an explicit construction of functions associated with the other

symbols, particularly S(X) and S(f2). However, we can already say some things about

the full three-loop remainder function. In particular, for any values of α1 and α2, it is

impossible to represent its symbol by a function given in terms of (products of) only

single-variable harmonic polylogarithms H~w(x), whose weight vectors ~w contain only the

entries 0 and 1. As a corollary, it is not possible to represent the symbol by a function

given purely in terms of the classical polylog functions Lin(x), for any choices of x. This

result can be obtained by performing symmetry operations similar to those described in

ref. [35]. It is sufficient, and a bit simpler, to test not the full symbol, but a particular piece

of it. We take the double discontinuity in w, and then set w → 0, using the relations (3.9).

This symbol is given by

S(∆w∆wX)|w→0 =
1

8

{

u⊗ u⊗
[

−(1− u)⊗ uv

(1− u)(1− u− v) + v ⊗ 1− v
1− u− v

]

+ u⊗ (1− u)⊗
[

1− u
(1− u− v)2 ⊗

uv

(1− u)(1− u− v) +
u

(1− u− v)2 ⊗
(1− u)2(1− v)
(1− u− v)3

+ v(1− u− v)⊗ (1− u)(1− v)
(1− u− v)2

]

+ u⊗ v ⊗
[

−2
(1− u)(1− v)

1− u− v ⊗ uv

(1− u− v)2 + u(1− u− v)⊗ 1− v
1− u− v

+ v(1 − u− v)⊗ 1− u
1− u− v

]

}

+ (u←→ v) . (6.10)

We replace each term of the form a ⊗ b ⊗ c ⊗ d in this expression with the following

antisymmetrisation [35]:

[

(a⊗ b⊗ c⊗ d− (c↔ d))− (a↔ b)
]

−
[

(a, b)↔ (c, d)
]

. (6.11)
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We find that eq. (6.10) is nonvanishing under this operation. The symbol of a degree four

function constructed solely from products of single-variable harmonic polylogarithms with

labels 0 and 1 (which includes all Lin functions) vanishes under this operation. Hence

(∆w∆wX)w→0, and also X itself, must include functions beyond this class.

We have also performed a similar test on the full degree six function. Given a degree

six symbol which is a sum of terms of the form a⊗ b⊗ c⊗ d⊗ e⊗ f , we replace each term

with the following antisymmetrisation,
[

(

(a⊗ b⊗ c⊗ d⊗ e⊗ f − (e↔ f))− (c↔ d)
)

− (a↔ b)
]

−
[

(a, b)↔ (e, f)
]

. (6.12)

The symbol of a degree six function constructed solely from products of single-variable

harmonic polylogarithms with labels 0 and 1 vanishes under this operation. We find that

S(X) does not vanish under this operation, so again we conclude that X must include

functions beyond this class.

7 Conclusions and outlook

In this paper we determined the symbol of the remainder function for the three-loop

hexagon Wilson loop, or six-point MHV scattering amplitude, in planar N = 4 super-

Yang-Mills theory, up to a few undetermined constants. There are 26 such constants in a

more general ansatz, but this number drops to just two if a final-entry restriction is im-

posed on the symbol. The OPE expansion, as analysed in refs. [39–41], provides a powerful

constraint for this problem, which is straightforward to implement with the aid of sym-

bols. In particular, we uniquely determined the symbol S(X) for the part of the three-loop

remainder function that has a leading discontinuity.

In the multi-Regge limit, all but one of the symbol-level constants drop out (all of

them drop out when we impose the final-entry restriction). In this limit, we are able to

complete the symbols for the coefficients in the logarithmic expansion into full analytic

functions of degree 3, 4 and 5. These functions depend on two variables, yet they can

all be expressed in terms of classical polylogarithms. Three of these functions represent

new predictions for the behaviour of the amplitude in the multi-Regge limit. We found

confirmation of the final-entry restriction by testing an all-order relation for the remainder

function in multi-Regge kinematics for 3→ 3 scattering.

Although only classical polylogarithms appear in the multi-Regge limit, we could use

our symbol to show that for more generic kinematics, the three-loop remainder function

cannot be expressed solely in terms of classical polylogarithms. Clearly it is an important

task to complete the terms in this symbol into full functions. For f1, one of the two terms

that we could not fix using the leading discontinuity (assuming the final-entry restriction),

we were able to accomplish this task. This function is particularly simple due to the fact

that its symbol does not depend on the y variables, but only on {u, v,w, 1−u, 1−v, 1−w}.
It factorises into single-variable functions constructed out of harmonic polylogarithms.

The next simplest component is f2. It is only quadratic in the y variables, so in some

sense it is not much more complicated than the two-loop remainder function, although it

is of degree six instead of four. The most complicated term is X, which is quartic in the

– 25 –



J
H
E
P
1
1
(
2
0
1
1
)
0
2
3

y variables. However, we are optimistic that a relatively compact representation for it, as

well as f2, may be possible to find. We are also encouraged by the fact that the collinear

limits of f1, which diverge beyond the symbol level, cannot be repaired within functions

obeying the final-entry restriction. This fact suggests that the repair may come instead

through the collinear behaviour of X and f2, which could in turn fix one or both of the

arbitrary constants α1 and α2. It would be remarkable if the three-loop remainder function

could be completely determined, or perhaps up to a single ambiguity associated with the

two-loop remainder function, without ever directly evaluating a single loop integral, for

either a Wilson loop or a scattering amplitude.
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A Change of variables between u, v, w and τ, σ, φ

In this appendix we provide handy equations for relating various differential operators in

term of the variables τ , σ and φ to those in terms of the cross ratio variables u, v and w.

From eq. (4.5) we have the auxiliary relations

1− u− v − w
1− v =

cosφ

coshσ cosh τ + cosφ
,

4uvw

(1− v)2 =
1

(cosh σ cosh τ + cosφ)2
, (A.1)

√
∆

1− v =
i sinφ

coshσ cosh τ + cosφ
, tanh τ =

√
1− v . (A.2)

Using these relations, it is simple to show that

1

u

∂u

∂τ
=

1

w

∂w

∂τ
=

1− u+ v − w√
1− v ,

1

v

∂v

∂τ
= −2

√
1− v , (A.3)

1

u

∂u

∂σ
=

1− u− v + w

1− v ,
1

w

∂w

∂σ
= −1 + u− v − w

1− v ,
∂v

∂σ
= 0 , (A.4)

1

u

∂u

∂φ
=

1

w

∂w

∂φ
=

1

i

√
∆

1− v ,
∂v

∂φ
= 0 . (A.5)

Then the operators differentiating with respect to τ , σ and φ are

∂τ =
1√

1− v
[

−2(1− v)v∂v + (1− u+ v − w)(u∂u + w∂w)
]

, (A.6)

∂σ =
1

1− v
[

(1− u− v + w)u∂u − (1 + u− v − w)w∂w

]

, (A.7)

∂φ =

√
∆

i(1− v) (u∂u +w∂w) . (A.8)
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Inserting these expressions into the form for D± given in ref. [41],

D± = ∂2
τ + 2 coth(2τ) ∂τ + sech2τ ∂2

σ + ∂φ(∂φ ∓ 2i) , (A.9)

it is straightforward to obtain the form in terms of u, v and w given in eq. (4.8). Similarly,

the operator � = −(∂2
σ + ∂2

φ) is found to have the form given in eq. (4.10).

B Change of variables between u, v, w and yu, yv, yw

Although the y variables are constructed using square roots of the original cross ratios u,

v and w, the cross ratios themselves are rational combinations of the variables yu, yv and

yw. The explicit relations are,

u =
yu(1−yv)(1−yw)

(1−ywyu)(1−yuyv)
, v =

yv(1−yw)(1−yu)

(1−yuyv)(1−yvyw)
, w =

yw(1−yu)(1−yv)

(1−yvyw)(1−ywyu)
,

(B.1)

1−u =
(1−yu)(1−yuyvyw)

(1−ywyu)(1−yuyv)
, 1−v =

(1−yv)(1−yuyvyw)

(1−yuyv)(1−yvyw)
, (B.2)

1−w =
(1−yw)(1−yuyvyw)

(1−yvyw)(1−ywyu)
,
√

∆ =
(1−yu)(1−yv)(1−yw)(1−yuyvyw)

(1−yuyv)(1−yvyw)(1−ywyu)
, (B.3)

where we have picked a particular branch of
√

∆. These formulas are also useful in the

multi-Regge limit. The limit (3.11) corresponds to taking yu → 1, yv → ỹv, yw → ỹw. We

find in the limit,

x =
ỹv(1− ỹw)2

(1− ỹvỹw)2
, y =

ỹw(1− ỹv)
2

(1− ỹvỹw)2
,

√

∆̃ =
(1− ỹv)(1− ỹw)

1− ỹvỹw
. (B.4)

The variables w and w∗ used in the multi-Regge limit, defined in eq. (5.2), are also rational

combinations of ỹv and ỹw:

w =
1− ỹv

ỹv(1− ỹw)
, w∗ =

ỹw(1− ỹv)

1− ỹw
. (B.5)

Inverting these equations gives the expressions for ỹv and ỹw in terms of w and w∗ given

in eqs. (5.5) and (5.6).

C Inversion-symmetric form of functions describing the multi-Regge

limit

Here we write the three-loop functions g
(3)
r and h

(3)
r in a form that makes the w inversion and

w ↔ w∗ symmetries manifest. To do so, we introduce functions ĝ
(l)
r (w,w∗) and ĥ

(l)
r (w,w∗)

such that the sum over images under the two symmetries yields the full functions:

g(l)
r (w,w∗) = ĝ(l)

r (w,w∗) + ĝ(l)
r (w∗, w) + ĝ(l)

r (1/w, 1/w∗) + ĝ(l)
r (1/w∗, 1/w) , (C.1)

h(l)
r (w,w∗) = ĥ(l)

r (w,w∗) + ĥ(l)
r (w∗, w) + ĥ(l)

r (1/w, 1/w∗) + ĥ(l)
r (1/w∗, 1/w) . (C.2)
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We find that

ĝ
(3)
2 (w,w∗) = − 1

32

[

2Li3(−w) − log |w|2 Li2(−w)

− 1

12
log2 |1 + w|2

(

log |1 + w|2 − 9 log
|1 + w|2
|w|2

)]

, (C.3)

which agrees with eq. (5.15) and with ref. [48] after the use of a few polylogarithm identities.

Similarly, h
(3)
1 can be written symmetrically using

ĥ
(3)
1 (w,w∗) = − 1

32

[

2Li3(−w)− log |w|2 Li2(−w)

− 1

12
log2 |1 + w|2

(

log |1 +w|2 + 3 log
|1 + w|2
|w|2

)]

. (C.4)

The new functions found in this paper are g
(3)
1 , g

(3)
0 and h

(3)
0 . For g

(3)
1 the symmetric

form uses

ĝ
(3)
1 (w,w∗) = − 1

32

{

4
(

5 log |1+w|2 − 2 log |w|2
)

Li3

(

1

1+w

)

+3 log |w|2 log
|1+w|4
|w|2 Li2(−w)

+
3

16

[

log4 |w|2+8 log2 |w|2 log(1+w∗) log
1+w

w
+2 log |w|2 log

w

w∗
log2 (1+w)2

w

]

− 5 log
|1+w|2
|w|2 log |1+w|2 log(1+w) log

1+w

w
+

3

2
ζ2 log2 |w|2 − 8 ζ3 log |1+w|2

}

+
ζ2
4
γ′ g

(2)
1 (w,w∗) + c ĝa

1 , (C.5)

The constant c multiplies the function,

ĝa
1 =− 4 log |1 + w|2 Li3

(

w

1 + w

)

+ Li2(−w)
[

Li2(−w)− Li2(−w∗) + log |w|2 log
1 + w

1 + w∗

]

+
1

24
log4 |1 + w|2 − 1

4
log |w|2 log2 |1 + w|2 log

|1 + w|2
|w|2

+
1

2
log |w|2 logw log(1 + w) log

1 + w

w∗

+
1

3
log |1 + w|2 log2(1 + w) (2 log(1 + w)− 3 logw)

− ζ2 log |1 + w|2 log
|1 + w|2
|w|2 + 4 ζ3 log |1 + w|2 . (C.6)

Recall that c = 0 if we impose either the all-loop-order prediction for 3→ 3 scattering [49],

or an additional constraint on the form of the final entries in the symbol of R
(3)
6 , as described

in section 6.
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The function entering the symmetric form for g
(3)
0 is

ĝ
(3)
0 (w,w∗) = − 1

32

{

(C.7)

− 30
(

2Li5(−w)−log |w|2 Li4(−w)
)

+12

(

2Li5

(

1

1+w

)

+log |1+w|2 Li4

(

1

1+w

))

+
(

−6 log2 |w|2−4 log |w|2 log |1+w|2+5 log2 |1+w|2
)

Li3(−w)

+log |w|2 log
|1+w|4
|w|2 Li3

(

1

1+w

)

−3 log |w|2 log |1+w|2 log
|1+w|2
|w|2 Li2(−w)

− 1

48
log
|1+w|4
|w|2

(

log4 |1+w|2+log4 |1+w|2
|w|2 −9 log2 |1+w|2 log2 |1+w|2

|w|2
)

+
1

32
log2 w

w∗
log |w|2 log2 |1+w|2

− 1

32
log

1+w

1+w∗

(

log2 |w|2+2 log |1+w|2 log
|1+w|2
|w|2

)

×
(

2 log
w

w∗
log |1+w|2−log

1+w

1+w∗
log
|1+w|4
|w|2

)

+
1

2
ζ3 log2 |w|2−12 ζ5

}

+
ζ3
4
d1 g

(2)
1 (w,w∗)+

ζ2
4
γ′′ g

(2)
0 (w,w∗)+

ζ2
4
d2 log |1+w|2 log

|1+w|2
|w|2 log

|1+w|4
|w|2 .

Finally, the function needed to write h
(3)
0 in a symmetric form is

ĥ
(3)
0 (w,w∗) =

1

128

{

8
(

3 log |1+w|2 − 2 log |w|2
)

Li3

(

1

1+w

)

+2 log |w|2 log
|1+w|4
|w|2 Li2(−w)

+
1

8

[

log4 |w|2+8 log2 |w|2 log(1+w∗) log
1+w

w
+2 log |w|2 log

w

w∗
log2 (1+w)2

w

]

− 6 log
|1+w|2
|w|2 log |1+w|2 log(1+w) log

1+w

w
+ζ2 log2 |w|2 − 16 ζ3 log |1+w|2

}

+
ζ2
4

(

3

4
+γ′′′

)

g
(2)
1 (w,w∗) . (C.8)

Polylogarithm identities are required to go between the manifestly symmetric forms

of the functions g
(3)
r (w,w∗) and h

(3)
r (w,w∗) given in this appendix, and the

forms (5.15), (5.17), (5.18), (5.21), (5.22) and (5.25) given in the main text, which have

good behaviour as w → 0.
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