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Abstract

A measurement of the production cross section of top quark pairs (tt̄) in proton-proton collisions at a center-of-mass
energy of 7 TeV recorded with the ATLAS detector at the Large Hadron Collider is reported. Candidate events are
selected in the dilepton topology with large missing transverse energy and at least two jets. Using a data sample
corresponding to an integrated luminosity of 35 pb−1, a tt̄ production cross section σtt̄ = 177± 20(stat.) ± 14(syst.) ±
7(lum.) pb is measured for an assumed top quark mass of mt = 172.5 GeV. A second measurement requiring at least
one jet identified as coming from a b quark yields a comparable result, demonstrating that the dilepton final states are
consistent with being accompanied by b-quark jets. These measurements are in good agreement with Standard Model
predictions.

Keywords: top physics, heavy quark production, total cross section

1. Introduction

The study of top quarks probes the validity of the Stan-
dard Model (SM) and plays an important role in the search
for new physics. At the Large Hadron Collider (LHC) the
tt̄ production cross section (σtt̄) in proton-proton (pp) col-
lisions at a center-of-mass energy

√
s = 7 TeV is predicted

by an approximate next-to-next-to-leading-order (NNLO)
SM calculation to be 165+11

−16 pb [1, 2]. A measurement of
σtt̄ in various decay channels tests perturbative QCD and
the description of top quark decay. Moreover, tt̄ produc-
tion is an important background in searches for the Higgs
boson and physics beyond the Standard Model. The study
of tt̄ events may provide evidence for new physics that
modifies the production and/or decay of top quarks.
In the SM the top quark decays to a W boson and

a b quark (t → Wb) with a branching ratio close to
100% [3, 4, 5]. The tt̄ event topologies are determined
by the decays of the two W bosons: a pair of quarks
(W → qq′) or a lepton-neutrino pair (W → ℓνℓ), where
ℓ refers to an electron, muon or tau lepton and νℓ is the
corresponding neutrino. Top quark production in dilep-
ton final states has been previously studied using proton-
antiproton collisions at

√
s = 1.96 TeV [6, 7] and LHC

measurements have recently been reported in several final
states [8, 9]. In this letter, we present a measurement of
the tt̄ production cross section using the dilepton chan-
nel, in which both W bosons decay to leptons. A selected
event should exhibit two opposite-sign leptons, unbalanced
transverse momentum indicating the presence of neutrinos
from the W -boson decays and two b-quark jets. The mea-
surement is performed with ten times more data than the
previous ATLAS observation of tt̄ production [9].

The tt̄ dilepton final states can be efficiently selected
using kinematic requirements on the final state objects.
To further reduce backgrounds and verify that the dilep-
ton final states are accompanied by b-quark jets, a sepa-
rate measurement is performed requiring the presence of
a jet identified as coming from a b quark and relaxing the
kinematic selection. Both cross section measurements are
reported in this letter. Leptons are either well-identified
electron or muon candidates or, to reduce losses from lep-
ton identification inefficiencies, isolated tracks (referred to
as track-lepton candidates). Selected events have either
two well-identified lepton candidates (ee, µµ and eµ), or
one well-identified lepton candidate and one track-lepton
candidate (eTL and µTL), together creating five separate
dilepton channels. Each selected dilepton channel is ex-
clusive, i.e. has no overlap with the other channels. Tau
leptons are not explicitly reconstructed, but reconstructed
leptons can arise from leptonic tau decays and a track-
lepton can arise from all one-prong tau decay modes.

The number of candidate events in the selected sample
is corrected for background contributions from Z/γ∗+jets,
single top and diboson production, and from events with
misidentified lepton candidates. The cross section is mea-
sured taking into account the tt̄ signal acceptance. The
primary background contributions are estimated using
complementary data samples to reduce the uncertainties
associated with the simulation and theoretical calculations
of background rates.
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2. Detector and Data Sample

The ATLAS detector [10] at the LHC covers nearly the
entire solid angle1 around the collision point. It consists of
an inner tracking detector (ID) comprising a silicon pixel
detector, a silicon microstrip detector (SCT), and a transi-
tion radiation tracker, providing tracking capability within
|η| < 2.5. The ID is surrounded by a thin superconduct-
ing solenoid providing a 2 T magnetic field, and by liquid-
argon (LAr) electromagnetic sampling calorimeters with
high granularity. An iron-scintillator tile calorimeter pro-
vides hadronic energy measurements in the central rapidity
range (|η| < 1.7). The end-cap and forward regions are in-
strumented with LAr calorimetry for both electromagnetic
and hadronic energy measurements up to |η| < 4.9. The
calorimeter system is surrounded by a muon spectrometer
incorporating three superconducting toroid magnet assem-
blies.
A three-level trigger system is used to select the high-

pT events for this analysis. The level-1 trigger is imple-
mented in hardware and uses a subset of the detector in-
formation to reduce the rate to a design value of at most
75 kHz. This is followed by two software based trigger lev-
els, that together reduce the event rate to about 200Hz.
The analyses use collision data with a center-of-mass en-
ergy of

√
s = 7 TeV recorded in 2010 with an integrated

luminosity of 35.3± 1.2 pb−1 [11].

3. Simulated Samples

Monte-Carlo (MC) simulation samples are used to cal-
culate the tt̄ acceptance and to evaluate the contributions
from those background processes that are difficult to esti-
mate from complementary data samples. All MC samples
are processed with the Geant4 [12] simulation of the AT-
LAS detector [13] and events are passed through the same
analysis chain as the data.
The generation of tt̄ and single top quark events uses the

MC@NLO generator [14, 15, 16] with the CTEQ6.6 [17]
parton distribution function (PDF) set and a top quark
mass of 172.5 GeV. The tt̄ cross section is normalized to
the prediction of Hathor [18] that employs an approx-
imate NNLO pertubative QCD calculation. Single top
quark production with MC@NLO includes the s, t and
Wt channels, and the diagram-removal scheme [19] is used
to reduce overlap with the tt̄ final state.
Drell-Yan events (Z/γ∗+jets) are modeled with the

Alpgen generator using the MLM matching scheme [20]

1ATLAS uses a right-handed coordinate system with its origin at
the nominal interaction point (IP) in the center of the detector and
the z-axis along the beam pipe. The x-axis points from the IP to the
center of the LHC ring, and the y axis points upward. Cylindrical
coordinates (r, φ) are used in the transverse plane, φ being the az-
imuthal angle around the beam pipe. The pseudorapidity is defined
in terms of the polar angle θ as η = − ln tan(θ/2). Distances in η−φ

space are given as ∆R =
√

φ2 + η2.

and the CTEQ6L1 [21] PDF set. The Z/γ∗+jets sam-
ples, including light and heavy flavor jets, are normal-
ized to NNLO calculations from the FEWZ program [22]
with a K-factor of 1.25. Background contributions from
the W+jets final states come primarily from events where
the W boson decays leptonically and the second lepton
candidate is a misidentified jet. They are estimated us-
ing auxiliary data samples. All MC simulated events are
hadronized using the Herwig shower model [23, 24] sup-
plemented by the Jimmy underlying event model [25].
Both hadronization programs are tuned to data using the
ATLAS MC10 tune [26]. Diboson WW , WZ and ZZ
events are modeled using the Alpgen generator normal-
ized with K-factors of 1.26 (WW ), 1.28 (WZ) and 1.30
(ZZ) to match the total cross section from NLO QCD pre-
dictions using calculations with the MCFM program [27].
For backgrounds, such as W+jets and QCD multijet

events, that are mainly selected through non-prompt or
misidentified leptons, simulated MC samples are not used,
but instead data-driven estimations are employed (see Sec-
tion 6).

4. Object Selection

Electron candidates are reconstructed from energy de-
posits in the calorimeter, which are then associated to
reconstructed tracks of charged particles in the ID. The
candidates are required to pass a stringent selection [28],
which uses calorimeter and tracking variables, and are re-
quired to have pT > 20 GeV and |η| < 2.47. Electrons
in the transition region between the barrel and endcap
calorimeters, defined as 1.37 < |η| < 1.52, are excluded.
Muon candidates are reconstructed [29] by searching

for track segments in different layers of the muon cham-
bers. These segments are combined starting from the out-
ermost layer and matched with tracks found in the ID.
The candidates are refit using the complete track informa-
tion from both detector systems and are required to satisfy
pT > 20 GeV and |η| < 2.5.
Both lepton candidates are required to be isolated to

reduce backgrounds arising from jets and to suppress the
selection of leptons from heavy flavor decays inside jets.
For electron candidates, the transverse energy (ET) de-
posited in the calorimeter and not associated to the elec-
tron is summed in a cone in η−φ space of radius ∆R = 0.2
around the electron. This ET is required to be less than
4 GeV. For muon candidates, both the corresponding
calorimeter isolation ET and the analogous track isolation
transverse momentum (pT) must be less than 4 GeV in a
cone of ∆R = 0.3. The track isolation pT is calculated
from the sum of the track transverse momenta for tracks
with pT > 1 GeV around the muon candidate. Addition-
ally, muon candidates must be separated by a distance
∆R > 0.4 from any jet with pT > 20 GeV, further sup-
pressing muon candidates from heavy flavor decays.
Muon candidates arising from cosmic rays are rejected

by removing candidate pairs that are back-to-back in the
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r − φ plane and that have transverse impact parameter
relative to the beam axis |d0| > 0.5 mm.

Track-lepton candidates are defined by an ID track
with pT > 20 GeV and a series of quality cuts optimized
for high efficiency and discrimination between signal and
the main background (non-Z boson background, see Sec-
tion 6). Tracks must have at least six SCT hits and at
least one hit in the innermost pixel layer. They also must
have |d0| < 0.2 mm, and the uncertainty on the momen-
tum measurement must be less than 20%. Tracks have
to be isolated from other nearby tracks: the track iso-
lation as defined for muon candidates, but using tracks
with pT > 0.5 GeV, must be less than 2 GeV. The use
of track-lepton candidates primarily recovers acceptance
losses from uninstrumented regions in the muon system
and calorimeter transition regions.

Jets are reconstructed with the anti-kt algorithm [30]
with radius parameter R = 0.4 starting from energy clus-
ters of adjacent calorimeter cells. These jets are calibrated
by first correcting the jet energy using the scale estab-
lished for electromagnetic objects and then performing a
further correction to the hadronic energy scale using pT-
and η-dependent correction factors obtained from simula-
tion [31]. Jets are corrected for additional energy deposits
from the presence of multiple pp interactions. The jets
used in the analysis are required to have no electron can-
didate or, in case of lepton+track events (see Sec. 5), no
track-lepton candidate within ∆R = 0.4, pT > 20 GeV
and |η| < 2.5.

Jets are identified as b-quark candidates using the Jet-

Prob b-tagging algorithm [32]. This algorithm takes all
well-measured tracks associated with a given jet and forms
a p-value2 for the hypothesis that the set of tracks comes
from a common primary vertex of a pp interaction, taking
into account the track measurement uncertainties. The p-
value requirement results in a b-tagging efficiency of ≈ 70%
per jet in tt̄ candidate events, and a mistag rate of order
1% for both light-quark and gluon jets.

The missing transverse energy (Emiss
T ) calculation begins

with the vector sum of transverse momenta of all jets with
pT > 20 GeV and |η| < 4.5. The transverse energies of
electron candidates are added. The contributions from all
well-identified muon candidates and calorimeter clusters
not belonging to a reconstructed object are also included.
To suppress backgrounds from Z/γ∗+jets, the Emiss

T is cor-
rected by the pT of the track-lepton in muon+track events
if the ∆φ between the Emiss

T and track direction is less than
0.15 and there is no muon candidate within ∆R = 0.05 of
the track-lepton candidate. This properly accounts for the
contribution to Emiss

T of track-lepton candidates.

2Probability value for a jet formed by the individual track prob-
abilities.

5. Event Selection

The analysis requires events selected online by an in-
clusive single-lepton trigger (e or µ). The detailed trigger
requirements vary through the data-taking period, due to
the rapidly increasing LHC luminosity and the commis-
sioning of the trigger system, but with a trigger threshold
that ensures full efficiency for the lepton candidates with
pT > 20 GeV that are used in the analysis. To ensure that
the event was triggered by the selected lepton candidates,
one of the well-identified leptons and the trigger object are
required to match within ∆R < 0.15.
Events are required to have a primary interaction vertex

with at least five tracks. The event is discarded if any jet
with pT > 20 GeV fails quality cuts designed to reject jets
arising from out-of-time activity or calorimeter noise [33].
If an electron candidate and a muon candidate share a
track, the event is also discarded.
The selection of events in the signal region consists of

a series of kinematic requirements on the reconstructed
objects. The requirements on Emiss

T , the dilepton invari-
ant mass (mℓℓ), and the scalar pT sum of all selected jets
and leptons (HT) are optimized using simulated events for
maximum significance, defined as S/

√
S + σB

2 where S is
the expected number of signal events and σB is the total
uncertainty on the number of background events, B.
The presence of exactly two oppositely-charged well-

identified lepton candidates is required. If only one well-
identified lepton candidate is found, the event is retained
if an oppositely charged track-lepton candidate is present,
forming a lepton+track candidate event. Events must have
at least two jets with pT > 20 GeV and |η| < 2.5. Further-
more, events in all channels other than eµ are required to
have mℓℓ > 15 GeV in order to reject backgrounds from
bottom quark production and vector meson decays.
The following additional kinematic requirements are

made:

• Events in the ee and µµ channels must satisfy Emiss
T >

40 GeV, and mℓℓ must differ by at least 10 GeV from
the Z-boson mass, mZ , to suppress backgrounds from
Z/γ∗+jets and multi-jet events.

• Events in the eµ channel have no Emiss
T or mℓℓ

cuts applied. In this case, remaining background
from Z/γ∗+jets production is suppressed by requir-
ing HT > 130 GeV.

• The lepton+track event candidates must have
Emiss

T > 40 GeV, HT (including the track-lepton)
> 150 GeV, |mℓℓ −mZ | > 10 GeV.

The requirement of at least one b-tagged jet using the
JetProb algorithm allows for a kinematic event selection
that can be optimized further. To define the b-tagged sam-
ple, the selection described above is modified to require
only events with two well-identified lepton candidates;
the lepton+track candidates are discarded. The dilep-
ton invariant mass must satisfy |mℓℓ −mZ | > 5 GeV, and
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the Emiss
T and HT requirements are modified to Emiss

T >
30 GeV and HT > 110 GeV.
The overall tt̄ signal efficiencies with respect to all tt̄

events (to all dilepton events) are 1.69% (16.1%) and
1.23% (11.7%) for the untagged and tagged analysis, re-
spectively.

6. Backgrounds

The tt̄ event selection is designed to reject Z/γ∗+jets
events. However, a small fraction of such events will re-
main in the signal sample primarily due to Emiss

T mismea-
surements. These events are difficult to model properly in
simulations due to large uncertainties on the non-Gaussian
tails of the Emiss

T distribution, on the Z boson cross sec-
tion for higher jet multiplicities and on the lepton energy
resolution. To estimate the Z/γ∗+jets background (the
Z → ττ channel is not considered here) in a data-assisted
way, the number of Z/γ∗+jets events is measured in a
control region orthogonal to the tt̄ dilepton signal region.
The control region is formed by events with the same jet
requirements as the signal region, but with |mℓℓ −mZ | <
10 GeV and a lower Emiss

T cut (Emiss
T > 15 GeV for the

lepton+track event candidates and Emiss
T > 30 GeV for

the others). Contamination in the control region from sig-
nal and background processes considered in the analysis is
predicted by MC simulations and is subtracted. A scale
factor, the ratio between the number of events predicted
in the signal and control regions, is determined using MC
simulations and is used to extrapolate the Z/γ∗+jets event
rate from the control region measured in data into the sig-
nal region. Although the predictions from MC calculations
agree with the data-driven estimates, the estimates have
smaller uncertainties.
Non-Z boson backgrounds mainly come from W+jets,

tt̄ production with a single lepton in the final state and
single top production. Such background events contain
non-prompt leptons (e.g. leptons coming from b-hadron de-
cays) or misidentified leptons arising from jets (e.g. lighter
hadron decays with a leading π0 decaying to photons).
The term “fake lepton” refers to both misidentified and
non-prompt lepton candidates.
The yield of background events with two well-identified

lepton candidates that contain at least one fake lepton is
estimated from data using a matrix method [9]. From
data control regions the probability for single loose lep-
tons to pass the full identification cuts (tight leptons) is
measured. A loose lepton refers to a lepton candidate that
passes looser isolation criteria. The control regions are se-
lected such that either dominantly real or fake leptons are
selected by the looser cuts. The probability for real leptons
is measured from the Z → ee and Z → µµ control regions.
The probability for fake leptons is measured in a data sam-
ple dominated by dijet production with events containing
one loose lepton candidate and having low Emiss

T . These
probabilities enter a matrix that relates the numbers of ob-
served dilepton candidate events with every combination

of loose or tight leptons with the numbers of events from
the sources of either real leptons or objects that might re-
sult in a fake lepton candidate. The matrix is inverted in
order to estimate the real and fake content of the observed
event sample.

In the lepton+track channels, the largest source of non-
Z boson backgrounds are events with a fake track lepton
candidate. This background rate is determined from a
γ+jets data sample selected with photon triggers. The
fake rate is applied to a second sample enriched in W+jets
events with exactly one lepton and no track leptons but
using the same kinematic cuts as for the signal sample. In
this second sample the fake probabilities are summed over
all jets in all events and the fake rates are calculated as a
function of the jet multiplicity.
The contributions from other electroweak background

processes with two real leptons (other EW), such as single
top, Z → ττ , WW , ZZ and WZ production are estimated
from Monte-Carlo simulations and found to be relatively
small. The numbers of background events estimated with
each method are included in Table 1.

The modeled acceptances, efficiencies and data-driven
background estimation methods are validated by compar-
ing Monte-Carlo predictions with data in control regions
that are depleted of tt̄ events but have similar kinematics.
In particular, the Emiss

T , mℓℓ and jet multiplicity distribu-
tions in a sample of Z boson candidates defined by requir-
ing |mℓℓ −mZ | < 10 GeV and low Emiss

T are compared to
MC predictions and are in good agreement with data.

The background contributions after requiring at least
one b-tagged jet are determined using the same techniques
described above to evaluate the rate of the background
sources before making the b-tag requirement. Measured
light quark and gluon jet rejection factors [34] are then
applied to estimate the number of background events that
remain in the candidate sample.

7. Systematic Uncertainties

The uncertainties due to MC simulation modeling of
the lepton trigger, lepton and track-lepton reconstruction
and selection efficiencies are assessed using Z → ee and
Z → µµ candidate events found in the same data sample
used for the tt̄ analyses before applying Z boson veto re-
quirements. Scale factors are applied to MC samples when
calculating acceptances to account for any observed differ-
ences in predicted and observed efficiencies. The modeling
of lepton momentum scale and resolution is studied using
the mll distributions of Z/γ∗ candidate events, and the
simulation is adjusted accordingly. The acceptance un-
certainty from the lepton modeling is dominated by the
electron selection efficiency uncertainty.

The jet energy scale (JES) and its uncertainty are de-
rived by combining information from test-beam data, LHC
collision data and simulation [35]. For the selected jets, the
JES uncertainty varies in the range 2 − 8% as a function
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Untagged Tagged
ee µµ eµ eTL µTL ee µµ eµ

Z/γ∗ → ee/µµ 1.1 ± 0.5 3.5 ± 1.4 - 7.1± 1.5 2.2± 0.9 2.6± 1.3 5.0± 1.7 -

Z/γ∗ → ττ 0.4 ± 0.3 1.2 ± 0.6 3.0 ± 1.3 1.9± 1.0 2.2± 0.9 0.2± 0.1 0.2± 0.1 0.8± 0.4

Fake leptons 1.0 ± 0.9 0.4 ± 0.5 1.9 ± 1.7 8.1± 2.9 8.2± 2.9 0.5± 0.5 0.4± 0.5 0.2± 1.1

Single Top 0.6 ± 0.1 1.2 ± 0.2 2.4 ± 0.3 0.5± 0.1 0.6± 0.1 0.6± 0.1 1.1± 0.2 1.8± 0.3

Diboson 0.5 ± 0.1 0.9 ± 0.1 2.0+0.3
−0.2 0.5± 0.1 0.4± 0.1 0.2± 0.1 0.2± 0.0 0.4± 0.1

Total Background 3.6 ± 1.2 7.2 ± 1.6 9.4 ± 2.5 18.1± 3.4 13.8± 3.2 4.1± 1.4 6.9± 1.8 3.2± 1.2

Predicted tt̄ 10.9 ± 1.2 19.4 ± 1.5 45.7 ± 3.7 10.2± 1.3 11.0± 1.8 11.1± 1.4 20.6+1.7
−2.2 38.9+3.5

−4.4

Total 14.5 ± 1.7 26.6 ± 2.1 55.1 ± 4.4 28.3± 3.6 24.6± 3.7 15.2± 2.0 27.5+2.5
−2.9 42.1 +3.7

−4.6

Observed 17 30 57 29 21 17 32 49

Table 1: Full breakdown of the expected tt̄ signal and background events compared to the observed event yields for each dilepton channel.
For the expected number of events a tt̄ cross section of 165+11

−16 pb [1, 2] is used. All systematic uncertainties are included and correlations
between different background sources are taken into account. The fake leptons category includes both misidentified and non-prompt lepton
candidates.

of jet pT and η. The jet energy resolution and jet re-
construction efficiency measured in data and in simulation
are compared and are in good agreement. The statisti-
cal uncertainties on the comparisons, 10% and 1− 2% for
the energy resolution and the efficiency, respectively, are
taken as systematic uncertainties associated with these ef-
fects. The effect on the acceptance is dominated by the
JES uncertainty.

The systematic uncertainty in the efficiency of the Jet-

Prob tagging algorithm has been estimated to be 6% for b-
quark jets, based on b-tagging calibration studies using in-
clusive lepton and multijet final states [34]. The uncertain-
ties on the tagging efficiencies for light and charm quarks
are several times higher, but are not a large source of un-
certainty due to the intrinsically high signal-to-background
ratios in the dilepton final states. The acceptance uncer-
tainty due to b-tagging ranges from 4 to 6% depending on
the channel.

The uncertainty in the kinematic distribution of the tt̄
signal events gives rise to systematic uncertainties in the
signal acceptance, with contributions from the choice of
generator, the modeling of initial and final state radiation
(ISR/FSR) and the PDFs. The generator uncertainty is
evaluated by comparing the MC@NLO MC predictions
with those of the Powheg MC [36, 37, 38] interfaced to
both Herwig or Pythia [39] shower models. The uncer-
tainty due to ISR/FSR is evaluated using the AcerMC

generator [40] interfaced to the Pythia shower model, and
by varying the parameters controlling ISR and FSR in a
range consistent with experimental data [41]. Finally, the
PDF uncertainty is evaluated using a range of current PDF
sets [9]. The dominant uncertainty in this category of sys-
tematics is the modeling of ISR/FSR and generator choice.

For Z/γ∗+jets background events the normalization un-
certainty is modeled by separately considering events with
a given jet multiplicity. While the cross section in the 0-jet
multiplicity sample has 4% uncertainty, the extrapolation

to each following jet multiplicity increases the uncertainty
by an additional 24% [42].
Overall normalization uncertainties on the backgrounds

from single top quark and diboson production are taken
to be 10 % [43, 44] and 5 % [45], respectively.
The systematic uncertainties from the background esti-

mates employing complementary samples include the sta-
tistical uncertainties as well as the systematic uncertain-
ties arising from the objects and MC estimates that are
used in the methods. The uncertainty on the data-driven
Z/γ∗+jets estimation is included by varying the Emiss

T cut
in the control region by ±5 GeV. An additional systematic
uncertainty for the fake track-lepton estimate is derived
from the difference in the observed and predicted number
of fake events in control regions, defined as opposite sign
events with zero or one jet without anHT cut or same sign-
events with more than one jet. Both data-driven methods
are limited primarily by the statistical uncertainty in the
number of events in the respective control regions.

8. Cross Section Measurement

The expected and measured numbers of events in the
signal region after applying all selection cuts for each of
the individual dilepton channels are shown in Table 1. A
total of 154 candidate events is observed for the analysis
without b-tagging, 104 events in the well-identified dilep-
ton channels and 50 events in the lepton+track channels.
A total of 98 candidate events are observed in the anal-
ysis using b-tagging, with 84 events in common with the
untagged analysis.
In Fig. 1 the distributions of the jet multiplicity are

shown for the ee, µµ and eµ channels and the sum of all
five channels together with the expectation for 35 pb−1.
The distributions of Emiss

T for the sum of the ee and µµ
channels, the sum of the track-lepton channels and of HT

for the eµ channel are shown in Fig. 2 and for the b-tag
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Figure 1: Jet multiplicity distributions for the signal region omitting the Njets ≥ 2 requirement in (a) the ee channel, (b) the µµ channel,
(c) the eµ channel and (d) all five channels combined. The fake lepton contribution in (d) is the sum of the fake track-lepton and the fake
lepton contribution. Contributions from diboson and single top events are summarized as ‘other EW’. The uncertainty on the data points
are statistical uncertainties only, whereas the uncertainty bands include statistical and systematic uncertainies.
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Figure 2: The Emiss
T

distribution in the signal region without the Emiss
T

> 40 GeV requirement (a) for the ee and µµ channels and (b) for the
lepton+track channels. Fake denotes the contribution from fake track-leptons. The HT distribution in the signal region for the eµ channel is
shown in (c) without the HT > 130 GeV requirement. Contributions from diboson and single top events are summarized as ‘other EW’. In
all figures the last bin contains the overflow. The uncertainty on the data points are statistical uncertainties only, whereas the uncertainty
bands include statistical and systematic uncertainies.
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∆σ/σ (%)
Untagged Tagged

ee µµ eµ eTL µTL comb. ee µµ eµ comb.

Statistics +33/−29
+26/−23

+17/−15
+53/−46

+67/−58
+12/−11

+35/−29
+24/−21

+16/−15
+12/−11

MC Stat. +5/−1
+4/−3

+2/−1
+12/−14

+10/−12
+1/−2

+3/−5
+4/−3

+1/−1
+1/−2

Lepton +11/−5
+4/−0

+5/−4
+7/−6

+3/−4
+4/−3

+9/−7
+2/−2

+5/−4
+4/−3

eTL/µTL - - - +3/−2
+4/−5

+1/−1 - - - -
Jet/Emiss

T
+5/−4

+4/−3
+3/−3

+13/−11
+12/−7

+3/−4
+5/−4

+6/−4
+2/−2

+4/−3

Z/γ∗+jets +4/−4
+4/−3 - +0/−5

+4/−6
+1/−1

+6/−8
+5/−6 - +2/−2

Fake +8/−6
+3/−1

+3/−4
+25/−27

+39/−41
+3/−3

+2/−5
+2/−2

+3/−2
+1/−2

Generator +6/−4
+5/−6

+4/−4
+16/−11

+17/−17
+5/−5

+10/−8
+7/−5

+5/−4
+6/−4

b-tagging - - - - - - +3/−4
+5/−3

+5/−4
+5/−4

Luminosity +4/−4
+4/−4

+4/−4
+4/−4

+5/−5
+4/−4

+4/−3
+4/−3

+4/−4
+3/−4

Table 2: The tt̄ cross section uncertainties. These include the uncertainties from the data and MC statistics, the uncertainties related to
the object selection (grouped in lepton, track lepton eTL/µTL, jet/Emiss

T
and b-tagging uncertainties), the background estimation methods

(Z/γ∗+jets and fakes), the uncertainties on the simulated samples (generator) and the luminosity uncertainty.

analysis in Fig. 3. All requirements are applied except on
the variable whose distribution is shown in the figure.
The dominant background in the ee and µµ channels

is Z/γ∗+jets production. The next largest background
are events with fake leptons. From simulation it is found
that this is mainly W+jets production with an additional
lepton candidate (mostly from b-quark decays).
The cross section results are obtained with a likelihood

fit [46] in which the probability of observing a number of
signal and background events, Nobs

i , in each channel i is
modeled by a Poisson distribution, P , given an expected
number of events, N exp

i,tot. The integrated luminosity, L, is
modeled with a Gaussian distribution, G, about its central
value, L0. The variation in N exp

i,tot due to each system-
atic source j is modeled with a Gaussian distribution, Gj ,
for the associated nuisance parameter αj , where αj = ±1
represents the ± 1 standard deviation variation of the sys-
tematic source. The cross section, σsig, is left as a free
parameter in the fit of the likelihood function:

L(σsig , L, ~α) =
∏

i∈{channel}

P
(

Nobs
i |N exp

i,tot(~α)
)

× G(L0|L, σL) ×
∏

j∈syst

Gj(0|αj , 1) .

The cross section is inferred from the profile likelihood

ratio λ(σsig) = L(σsig,
ˆ̂
L,

ˆ̂
~α)/L(σ̂sig, L̂, ~̂α), where a single

circumflex represents the maximum likelihood estimate
(MLE) of the parameter and the double circumflex rep-
resents the conditional MLE for a given σsig. Ensembles
of pseudo-data are generated for Nobs

i and the resulting
estimate of σ̂sig is confirmed to be unbiased. Additionally,
the variance of σ̂sig is found to be consistent with the cur-
vature of the profile likelihood at its minimum and with
the mean square spread observed in the ensemble tests.
Table 2 lists the uncertainties for each contribution from
the data and MC statistics, the uncertainties related to the
object selection (grouped in lepton, track-lepton, jet/Emiss

T

Channel σtt̄ (pb) b-tag σtt̄ (pb)

ee 202+67
−57

+30
−26 190+66

−56
+36
−28

µµ 192+49
−44

+17
−15 200+48

−42
+26
−20

eµ 172 ± 27 ± 13 193+31
−28

+18
−13

eTL 175+92
−81

+65
−59 −

µTL 110+74
−64

+56
−49 −

Combined 171 ±22 ±15 194 ±23 +18
−14

Table 3: Measured cross sections in each dilepton channel, and the
combination of the untagged and tagged channels with their statisti-
cal and systematic uncertainties. The luminosity uncertainty is not
included here.

and b-jet uncertainties), the background estimation meth-
ods and the uncertainties on the simulated samples. The
variation of the cross section due to the luminosity uncer-
tainty is obtained by repeating the likelihood minimiza-
tion while fixing the luminosity to the nomimal value ±1
standard deviation. For the final result the luminosity un-
certainty is the difference of the total uncertainties for the
likelhood function with and without the luminosity term.
Table 3 summarizes the cross sections extracted from the
profile likelihood ratio for the individual channels and for
the combination of all channels for the analysis with and
without a b-tagging requirement, respectively.

9. Results

The top quark pair production cross section is measured
using events selected by requiring two oppositely-charged
lepton candidates, at least two additional jets and missing
transverse energy. The result is

σtt̄ = 177± 20(stat.)± 14(syst.)± 7(lum.) pb.
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Figure 3: The Emiss
T

distributions for the (a) ee and (b) µµ channels omitting the Emiss
T

requirement, and (c) the HT distribution for the eµ
channel omitting the HT requirement, in each case after b-tagging has been applied. Contributions from diboson and single top events are
summarized as ‘other EW’. The last bin in all figures contains the overflow. The uncertainty on the data points are statistical uncertainties
only, whereas the uncertainty bands include statistical and systematic uncertainies.

A measurement made requiring at least one of the jets to
be identified as a b-quark jet results in

σtt̄ = 194± 23(stat.)+18
−14(syst.)± 7(lum.) pb.

The two measurements agree with each other, taking into
account that from all events 14% (tagged analysis) and
45% (untagged analysis) of the events are uncorrelated,
and that the b-tagging systematic uncertainty is also un-
correlated. The agreement confirms that the candidate
events are consistent with arising from top quark pair pro-
duction.
The measured cross sections are in good agreement with

a similar measurement performed by the CMS collabora-
tion [8], ATLAS measurements made in the complemen-
tary lepton+jets channels [47] and the SM prediction of
165+11

−16 pb.
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D. Schaile98, R.D. Schamberger148, A.G. Schamov107, V. Scharf58a, V.A. Schegelsky121, D. Scheirich87, M. Schernau163,
M.I. Scherzer14, C. Schiavi50a,50b, J. Schieck98, M. Schioppa36a,36b, S. Schlenker29, J.L. Schlereth5, E. Schmidt48,
K. Schmieden20, C. Schmitt81, S. Schmitt58b, M. Schmitz20, A. Schöning58b, M. Schott29, D. Schouten142,
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G. Zevi della Porta57, Z. Zhan32d, D. Zhang32b,aa, H. Zhang88, J. Zhang5, X. Zhang32d, Z. Zhang115, L. Zhao108,
T. Zhao138, Z. Zhao32b, A. Zhemchugov65, S. Zheng32a, J. Zhong151,ae, B. Zhou87, N. Zhou163, Y. Zhou151,
C.G. Zhu32d, H. Zhu41, J. Zhu87, Y. Zhu172, X. Zhuang98, V. Zhuravlov99, D. Zieminska61, R. Zimmermann20,
S. Zimmermann20, S. Zimmermann48, M. Ziolkowski141, R. Zitoun4, L. Živković34, V.V. Zmouchko128,∗,
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90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
100 Nagasaki Institute of Applied Science, Nagasaki, Japan
101 Graduate School of Science, Nagoya University, Nagoya, Japan
102 (a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
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113 Palacký University, RCPTM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a)INFN Sezione di Pavia; (b)Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
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136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a
l’Energie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of
America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
144 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear
Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the
Witwatersrand, Johannesburg, South Africa
146 (a)Department of Physics, Stockholm University; (b)The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo,
Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a)TRIUMF, Vancouver BC; (b)Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
161 Science and Technology Center, Tufts University, Medford MA, United States of America
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
164 (a)INFN Gruppo Collegato di Udine; (b)ICTP, Trieste; (c)Dipartimento di Fisica, Università di Udine, Udine, Italy
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