
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP/2011-099
2013/01/30

CMS-SUS-10-009

Inclusive search for squarks and gluinos
in pp collisions at

√
s = 7 TeV

The CMS Collaboration∗

Abstract

A search is performed for heavy particle pairs produced in
√

s = 7 TeV proton-proton
collisions with 35 pb−1 of data collected by the CMS experiment at the LHC. The
search is sensitive to squarks and gluinos of generic supersymmetry models, pro-
vided they are kinematically accessible, with minimal assumptions on properties of
the lightest superpartner particle. The kinematic consistency of the selected events is
tested against the hypothesis of heavy particle pair production using the dimension-
less razor variable R, related to the missing transverse energy Emiss

T . The new physics
signal is characterized by a broad peak in the distribution of MR, an event-by-event
indicator of the heavy particle mass scale. This new approach is complementary to
Emiss

T -based searches. After background modeling based on data, and background re-
jection based on R and MR, no significant excess of events is found beyond the stan-
dard model expectations. The results are interpreted in the context of the constrained
minimal supersymmetric standard model as well as two simplified supersymmetry
models.
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1 Introduction
Models with softly broken supersymmetry (SUSY) [1–5] predict superpartners of the standard
model (SM) particles. Experimental limits from the Tevatron and LEP showed that superpart-
ner particles, if they exist, are significantly heavier than their SM counterparts. Proposed ex-
perimental searches for R-parity conserving SUSY at the Large Hadron Collider (LHC) have
therefore focused on a combination of two SUSY signatures: multiple energetic jets and/or
leptons from the decays of pair-produced squarks and gluinos, and large missing transverse
energy (Emiss

T ) from the two weakly interacting lightest superpartners (LSP) produced in sepa-
rate decay chains.

In this article a new approach is presented that is inclusive not only for SUSY but also in the
larger context of physics beyond the standard model. The focal point for this novel razor analy-
sis [6] is the production of pairs of heavy particles (of which squarks and gluinos are examples),
whose masses are significantly larger than those of any SM particle. The analysis is designed
to kinematically discriminate the pair production of heavy particles from SM backgrounds,
without making strong assumptions about the Emiss

T spectrum or details of the decay chains of
these particles. The baseline selection requires two or more reconstructed objects, which can
be calorimetric jets, isolated electrons or isolated muons. These objects are grouped into two
megajets. The razor analysis tests the consistency, event by event, of the hypothesis that the
two megajets represent the visible portion of the decays of two heavy particles. This strategy
is complementary to traditional searches for signals in the tails of the Emiss

T distribution [7–
16] and is applied to data collected with the Compact Muon Solenoid (CMS) detector from pp
collisions at

√
s = 7 TeV corresponding to an integrated luminosity of 35 pb−1.

2 The CMS Apparatus
A description of the CMS detector can be found elsewhere [17]. A characteristic feature of
the CMS detector is its superconducting solenoid magnet, of 6 m internal diameter, provid-
ing a field of 3.8 T. The silicon pixel and strip tracker, the crystal electromagnetic calorime-
ter (ECAL) and the brass/scintillator hadron calorimeter (HCAL) are contained within the
solenoid. Muons are detected in gas-ionization chambers embedded in the steel return yoke.
The ECAL has an energy resolution of better than 0.5 % above 100 GeV. The HCAL combined
with the ECAL, measures the jet energy with a resolution ∆E/E ≈ 100 %/

√
E/ GeV⊕ 5 %.

CMS uses a coordinate system with the origin located at the nominal collision point, the x-
axis pointing towards the center of the LHC, the y-axis pointing up (perpendicular to the LHC
plane), and the z-axis along the counterclockwise beam direction. The azimuthal angle φ is
measured with respect to the x-axis in the xy plane and the polar angle θ is defined with respect
to the z-axis. The pseudorapidity is η = − ln[tan(θ/2)].

3 The Razor Analysis
The pair production of two heavy particles, each decaying to an unseen LSP plus jets, gives
rise to a generic SUSY-like signal. Events in this analysis are forced into a dijet topology by
combining all jets in the event into two megajets. When an isolated lepton is present, it can be
included in the megajets or not, as described in Sections 4 and 5. To the extent that the pair of
megajets accurately reconstructs the visible portion of the underlying parent particle decays,
the kinematic properties of the signal are equivalent to the pair production of, for example,
two heavy squarks q̃1, q̃2, with q̃i → jiχ̃0

i , for i = 1, 2, where ji and χ̃0
i denote the visible and



2 3 The Razor Analysis

invisible products of the decays, respectively. In the approximation that the heavy squarks are
produced at threshold and their visible decay products are massless, the center of mass (CM)
frame four-momenta are

pj1 =
M∆

2
(1, û1) , pj2 =

M∆

2
(1, û2) , (1)

pχ̃1 =
M∆

2

(
2Mq̃

M∆
− 1,−û1

)
, pχ̃2 =

M∆

2

(
2Mq̃

M∆
− 1,−û2

)
, (2)

where ûi is the unit vector in the direction of ji, and

M∆ ≡
M2

q̃ −M2
χ̃

Mq̃
, (3)

where Mq̃ and Mχ̃ are the squark and LSP masses, respectively.

In events with two undetected particles in the partonic final state, it is not possible to recon-
struct the actual CM frame. Instead, an approximate event-by-event reconstruction is made
assuming the dijet signal topology, replacing the CM frame with the R frame [6], defined as
the longitudinally boosted frame that equalizes the magnitude of the two megajets’ three-
momenta. The R frame would be the CM frame for signal events, if the squarks were produced
at threshold and if the CM system had no overall transverse momentum from initial-state ra-
diation. The longitudinal Lorentz boost factor is defined by

βR ≡
Ej1 − Ej2

pj1
z − pj2

z
, (4)

where Ej1 , Ej2 and pj1
z , pj2

z are the megajet energies and longitudinal momenta , respectively. To
the extent that the R frame matches the true CM frame, the maximum value of the scalar sum
of the megajets’ transverse momenta (p1

T, p2
T) is M∆ for signal events. The maximum value of

the Emiss
T is also M∆. A transverse mass MR

T is defined whose maximum value for signal events
is also M∆ in the limit that the R and CM frames coincide:

MR
T ≡

√
Emiss

T (pj1
T + pj2

T)− ~Emiss
T ·(~p j1

T + ~p j2
T )

2
. (5)

The event-by-event estimator of M∆ is

MR ≡ 2|~pR
j1 | = 2|~pR

j2 | , (6)

where ~pR
j1 and ~pR

j2 are the 3-momenta of the megajets in the R frame. For signal events in the
limit where the R frame and the true CM frame coincide, MR equals M∆, and more generally
MR is expected to peak around M∆ for signal events. For QCD dijet and multijet events the
only relevant scale is

√
ŝ, the CM energy of the partonic subprocess. The search for an excess

of signal events in a tail of a distribution is thus recast as a search for a peak on top of a steeply
falling SM residual tail in the MR distribution. To extract the peaking signal, the QCD multijet
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background needs to be reduced to manageable levels. This is achieved using the razor variable
defined as:

R ≡ MR
T

MR
. (7)

Since for signal events MR
T has a maximum value of M∆ (i.e., a kinematic edge), R has a max-

imum value of approximately 1 and the distribution of R for signal events peaks around 0.5.
These properties motivate the appropriate kinematic requirements for the signal selection and
background reduction. It is noted that, while MR

T and MR measure the same scale (one as an
end-point, the other as a peak), they are largely uncorrelated for signal events, as shown in
Fig. 1. In this figure, the W+jets and tt+jets backgrounds peak at MR values partially deter-
mined by the W and top quark masses, respectively.
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Figure 1: Scatter plot in the (MR, R) plane for simulated events: (top left) QCD multijet, (top
right) W+jets, (bottom left) tt+jets, and (bottom right) the SUSY benchmark model LM1 [18]
with M∆ = 597 GeV. The yields are normalized to an integrated luminosity of 35 pb−1. The bin
size is (20 GeV × 0.015).

In this analysis the SM background shapes and normalizations are obtained from data. The
backgrounds are extracted from control regions in the R and MR distributions dominated by
SM processes. Initial estimates of the background distributions in these regions are obtained
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from the individual simulated background components, but their shapes and normalizations
are then corrected using data. The analysis flow is as follows:

1. The inclusive data sets are collected using the electron, muon, and hadronic-jet triggers.

2. These data sets are examined for the presence of a well-identified isolated electron or
muon, irrespective of the trigger path. Based on the presence or absence of such a lepton,
each event is assigned to one of three disjoint event samples, referred to as the electron,
muon, and hadronic boxes. These boxes serve as controls of processes in the SM with
leptons, jets, and neutrinos, e.g. QCD multijet, W+jets or Z+jets, and t+X. The diboson
background is found to be negligible. Exclusive multilepton boxes are also defined but
are not sufficiently populated to be used in this analysis.

3. Megajets are constructed for events passing a baseline kinematic selection, and the R and
MR event variables are computed. In the electron box, electrons are clustered with jets
in the definition of the megajets. Jets matched to these electrons are removed to avoid
double-counting. In the muon box, muons are included in the megajet clustering.

4. In order to characterize the distribution of the SM background events in the (MR, R)
plane, a kinematic region is identified in the lepton boxes that is dominated by W(`ν)+jets.
Another region is found that is dominated by the sum of the non-QCD backgrounds.

5. Events remaining in the hadronic box primarily consist of QCD multijet, Z(νν̄)+jets,
W(`ν)+jets, and t+X events that produce `+jets+Emiss

T final states with charged leptons
that do not satisfy the electron or muon selections. The shapes and normalizations of
these non-QCD background processes in the hadronic box are estimated using the results
from the lepton boxes in appropriate regions in the (MR, R) plane.

6. The QCD background shape and normalization in each of the lepton boxes is extracted
by reversing the lepton isolation requirements to obtain control samples dominated by
QCD background.

7. The QCD background in the hadronic box is estimated using QCD control samples col-
lected with prescaled jet triggers.

8. The large-R and high-MR regions of all boxes are signal candidate regions not used for
the background estimates. Above a given R threshold, the MR distribution of the back-
grounds observed in the data is well modeled by simple exponential functions. Having
determined the R and MR shape and normalization of the backgrounds in the control re-
gions, the SM yields are extrapolated to the large-R and high-MR signal candidate regions
for each box.

4 Event Selection
The analysis uses data sets recorded with triggers based on the presence of an electron, a muon,
or on HT, the uncorrected scalar sum of the transverse energy of jets reconstructed at the trigger
level. Prescaled jet triggers with low thresholds are used for the QCD multijet background
estimation in the hadronic box.

The analysis is guided by studies of Monte Carlo (MC) event samples generated with the
PYTHIA [19] and MADGRAPH [20] programs, simulated using the CMS GEANT-based [21] de-
tector simulation, and then processed by the same software used to reconstruct real collision
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data. Events with QCD multijet, top quarks, and electroweak bosons were generated with
MADGRAPH interfaced with PYTHIA for parton showering, hadronization, and underlying
event description. To generate Monte Carlo samples for SUSY, the mass spectrum was first
calculated with SOFTSUSY [22] and the decays with SUSYHIT [23]. The PYTHIA program was
used with the SLHA interface [24] to generate the events. The generator level cross section
and the K factors for the next-to-leading order (NLO) cross section calculation were computed
using PROSPINO [25].

Events are required to have at least one good reconstructed interaction vertex [26]. When
multiple vertices are found, the one with the highest associated ∑track pT is used. Jets are re-
constructed offline from calorimeter energy deposits using the infrared-safe anti-kT [27] algo-
rithm with radius parameter 0.5. Jets are corrected for the nonuniformity of the calorimeter
response in energy and η using corrections derived with the simulation and are required to
have pT > 30 GeV and |η| < 3.0. The jet energy scale uncertainty for these corrected jets is 5%
[28]. The Emiss

T is reconstructed using the particle flow algorithm [29].

The electron and muon reconstruction and identification criteria are described in [30]. Isolated
electrons and muons are required to have pT > 20 GeV and |η| < 2.5 and 2.1, respectively, and
to satisfy the selection requirements from [30]. The typical lepton trigger and reconstruction
efficiencies are 98% and 99%, respectively, for electrons and 95% and 98% for muons.

The reconstructed hadronic jets, isolated electrons, and isolated muons are grouped into two
megajets, when at least two such objects are present in the event. The megajets are constructed
as a sum of the four-momenta of their constituent objects. After considering all possible par-
titions of the objects into two megajets, the combination minimizing the invariant masses
summed in quadrature of the resulting megajets is selected among all combinations for which
the R frame is well defined.

After the construction of the two megajets the boost variable |βR| is computed; due to the
approximations mentioned above, |βR| can fall in an unphysical region (≥1) for signal or back-
ground events; these events are removed. The additional requirement |βR| ≤ 0.99 is imposed to
remove events for which the razor variables become singular. This requirement is typically 85%
efficient for simulated SUSY events. The azimuthal angular difference between the megajets is
required to be less than 2.8 radians; this requirement suppresses nearly back-to-back QCD di-
jet events. These requirements define the inclusive baseline selection. After this selection, the
signal efficiency in the constrained minimal supersymmetric standard model (CMSSM) [31–34]
parameter space for a gluino mass of ∼600 GeV is over 50%.

5 Background Estimation
In traditional searches for SUSY based on missing transverse energy, it is difficult to model
the tails of the Emiss

T distribution and the contribution from events with spurious instrumental
effects. The QCD multijet production is an especially daunting background because of its very
high cross section and complicated modeling of its high-pT and Emiss

T tails. In this analysis a cut
on R makes it possible to isolate the QCD multijet background in the low-MR region.

Apart from QCD multijet backgrounds, the remaining backgrounds in the lepton and hadronic
boxes are processes with genuine Emiss

T due to energetic neutrinos and leptons from massive
vector boson decays (including W bosons from top quark decays). After applying an R thresh-
old, the MR distributions in the lepton and hadronic boxes are very similar for these back-
grounds; this similarity is exploited in the modeling and normalization of these backgrounds.
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5.1 QCD multijet background

The QCD multijet control sample for the hadronic box is defined from event samples recorded
with prescaled jet triggers and passing the baseline analysis selection for events without a well-
identified isolated electron or muon. The trigger requires at least two jets with an average
uncorrected pT > 15 GeV. Because of the low jet threshold, the QCD multijet background
dominates this sample for low MR, thus allowing the extraction of the MR shapes with different
R thresholds for QCD multijet events. These shapes are corrected for the HT trigger turn-on
efficiency.

The MR distributions for events satisfying the QCD control box selection, for different values
of the R threshold, are shown in Fig. 2 (left). The MR distribution is exponentially falling,
after a turn-on at low MR resulting from the pT threshold requirement on the jets entering
the megajet calculation. After the turn-on which is fitted with an asymmetric Gaussian, the
exponential region of these distributions is fitted for each value of R to extract the exponential
slope, denoted by S. The value of S that maximizes the likelihood in the exponential fit is
found to be a linear function of R2, as shown in Fig. 2 (right); fitting S to the form S = a + bR2

determines the values of a and b.
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Figure 2: (Left) MR distributions for different values of the R threshold for data events in the
QCD control box. Fits of the MR distribution to an exponential function and an asymmetric
Gaussian at low MR, are shown as dotted black curves. (Right) The exponential slope S from
fits to the MR distribution, as a function of the square of the R threshold for data events in the
QCD control box.

When measuring the exponential slopes of the MR distributions as a function of the R thresh-
old, the correlations due to events satisfying multiple R threshold requirements are neglected.
The effect of these correlations on the measurement of the slopes is studied by using pseudo-
experiments and is found to be negligible.

To measure the shape of the QCD background component in the lepton boxes, the correspond-
ing lepton trigger data sets are used with the baseline selection and reversed lepton isolation
criteria. The QCD background component in the lepton boxes is found to be negligible.
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The R threshold shapes the MR distribution in a simple therefore predictable way. Event selec-
tions with combined R and MR thresholds are found to suppress jet mismeasurements, includ-
ing severe mismeasurements of the electromagnetic or hadronic component of the jet energy,
or other anomalous calorimetric noise signals such as the ones described in [35, 36].

5.2 W+jets, Z+jets, and t+X backgrounds

Using the muon (MU) and electron (ELE) control boxes defined in Section 3, MR intervals domi-
nated by W(`ν)+jets events are identified for different R thresholds. In both simulated and data
events, the MR distribution is well described by two independent exponential components. The
first component of W(`ν)+jets corresponds to events where the highest pT object in one of the
megajets is the isolated electron or muon; the second component consists of events where the
leading object in both megajets is a jet, as is typical also for the t+X background events. The
first component of W(`ν)+jets can be measured directly in data, because it dominates over all
other backgrounds in a control region of lower MR set by the R threshold. At higher values
of MR, the first component of W(`ν)+jets falls off rapidly, and the remaining background is
instead dominated by the sum of t+X and the second component of W(`ν)+jets; this defines a
second control region of intermediate MR set by the R threshold.

Using these two control regions in a given box, a simultaneous fit determines both exponen-
tial slopes along with the absolute normalization of the first component of W(`ν)+jets and
the relative normalization of the sum of the second component of W(`ν)+jets with the other
backgrounds. The MR distributions as a function of R are shown in Fig. 3 (left). The slope pa-
rameters characterizing the exponential behavior of the first W(`ν)+jets component are shown
in Fig. 3 (right); they are consistent within uncertainties between the electron and muon chan-
nels. The values of the parameters a and b that describe the R2 dependence of the slope are in
good agreement with the values extracted from simulated W(`ν)+jets events.

The data/MC ratios ρ(a)data/MC
1 , ρ(b)data/MC

1 of the first component slope parameters a, b mea-
sured in the MU and ELE boxes are thus combined yielding

ρ(a)data/MC
1 = 0.97± 0.02 ; ρ(b)data/MC

1 = 0.97± 0.02 , (8)

where the quoted uncertainties are determined from the fits.

The ratios ρdata/MC are taken as correction factors for the shapes of the Z+jets and t+X back-
grounds as extracted from simulated samples for the MU and ELE boxes; the same corrections
are used for the shape of the first component of W(`ν)+jets as extracted from simulated sam-
ples for the hadronic (HAD) box.

The data/MC correction factors for the Z(νν̄)+jets and t+X backgrounds in the HAD box, as
well as the second component of W(`ν)+jets in the MU, ELE, and HAD boxes, are measured in
the MU and ELE boxes using a lepton-as-neutrino treatment of leptonic events. Here the electron
or muon is excluded from the megajet reconstruction, kinematically mimicking the presence of
an additional neutrino. With the lepton-as-neutrino treatment in the MU and ELE boxes only
one exponential component is observed both in data and in W(`ν)+jets simulated events. In
the simulation, the value of this single exponential component slope is found to agree with the
value for the second component of W(`ν)+jets obtained in the default treatment.

The combined data/MC correction factors measured using this lepton-as-neutrino treatment
are

ρ(a)data/MC
2 = 1.01± 0.02 ; ρ(b)data/MC

2 = 0.94± 0.07. (9)
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Figure 3: (Left) MR distributions for different values of the R threshold from data events se-
lected in the MU (upper) and ELE (lower) boxes. Dotted curves show the results of fits using
two independent exponential functions and an asymmetric Gaussian at low MR. (Right) The
slope S of the first exponential component as a function of the square of the R threshold in the
MU (upper) and ELE (lower) boxes. The dotted lines show the results of the fits to the form
S = a + bR2.
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For the final background prediction the magnitude of the relative normalization between the
two W(`ν)+jets components, denoted f W, is determined from a binned maximum likelihood
fit in the region 200 < MR < 400 GeV.

6 Results
6.1 Lepton box background predictions

Having extracted the MR shape of the W+jets and Z+jets backgrounds, their relative normal-
ization is set from the W and Z cross sections measured by CMS in electron and muon final
states [30]. Similarly, the normalization of the cc background relative to W+jets is taken from
the tt cross section measured by CMS in the dilepton channel [37]. The measured values of
these cross sections are summarized below:

σ(pp→WX)× B(W→ `ν) = 9.951± 0.073 (stat)± 0.280 (syst)± 1.095 (lum) nb ,
σ(pp→ ZX)× B(Z→ ``) = 0.931± 0.026 (stat)± 0.023 (syst)± 0.102 (lum) nb , (10)

σ(pp→ tt) = 194± 72 (stat)± 24 (syst)± 21 (lum) pb .

For an R > 0.45 threshold the QCD background is virtually eliminated. The region 125 <
MR < 175 GeV where the QCD contribution is negligible and the W(`ν)+jets component is
dominant is used to fix the overall normalization of the total background prediction. The final
background prediction in the ELE and MU boxes for R > 0.45 is shown in Fig. 4.

 [GeV]RM

100 200 300 400 500 600

E
ve

nt
s 

/ 4
0 

G
eV

1

10

210

310
DATA

Total SM

W+jets

Z+jets

Top+X

=7 TeVsCMS   

-1 L dt = 35 pb∫ 

ELE BOX

 [GeV]RM

100 200 300 400 500 600

E
ve

nt
s 

/ 4
0 

G
eV

1

10

210

310 DATA

Total SM

W+jets

Z+jets

Top+X

=7 TeVsCMS   

-1 L dt = 35 pb∫ 
MU BOX

Figure 4: The MR distributions with R > 0.45 in the ELE (left) and MU (right) boxes for data
(points) and backgrounds (curves). The bands show the uncertainties of the background pre-
dictions.

The number of events with MR > 500 GeV observed in data and the corresponding number
of predicted background events are given in Table 1 for the ELE and MU boxes. Agreement
between the predicted and observed yields is found. The p-value of the measurement in the
MU box is 0.1, given the predicted background (with its statistical and systematic uncertainties)
and the observed number of events. A summary of the uncertainties entering the background
measurements is presented in Table 2.
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Table 1: The number of predicted background events in the ELE and MU boxes for R >0.45
and MR > 500 GeV and the number of events observed in data.

Predicted Observed
ELE box 0.63 ± 0.23 0
MU box 0.51 ± 0.20 3

Table 2: Summary of the uncertainties on the background predictions for the ELE and MU
boxes and their relative magnitudes. The range in the Monte Carlo uncertainties is owing to
the different statistical precisions of the simulated background samples.

Parameter Description Relative magnitude
Slope parameter a systematic bias from correlations in fits 5%
Slope parameter b systematic bias from correlations in fits 10%
Slope parameter a uncertainty from Monte Carlo 1–10%
Slope parameter b uncertainty from Monte Carlo 1–10%

ρ(a)data/MC data fit 3%
ρ(b)data/MC data fit 3%

Normalization systematic+statistical component 3–8%
f W extracted from fit (W only) 30%

PW/tt cross section ratio CMS measurements (top only) 40%
W/Z cross section ratio CMS measurements (Z only) 19%

6.2 Hadronic box background predictions

The procedure for estimating the total background predictions in the hadronic box is summa-
rized as follows:

• Construct the non-QCD background shapes in MR using measured values of a and
b from simulated events, applying correction factors derived from data control sam-
ples, and taking into account the HT trigger turn-on efficiency.

• Set the relative normalizations of the W+jets, Z+jets, and t+X backgrounds using the
relevant inclusive cross section measurements from CMS (Eq. 10).

• Set the overall normalization by measuring the event yields in the lepton boxes,
corrected for lepton reconstruction and identification efficiencies. The shapes and
normalizations of all the non-QCD backgrounds are now fixed.

• The shape of the QCD background is extracted, as described in Section 5.1, and its
normalization in the HAD box is determined from a fit to the low-MR region, as
described below.

The final hadronic box background prediction is calculated from a binned likelihood fit of the
total background shape to the data in the interval 80 < MR < 400 GeV with all background
normalizations and shapes fixed, except for the following free parameters: i) the HT trigger
turn-on shapes, ii) f W as introduced in Section 5.2, and iii) the overall normalization of the
QCD background. A set of pseudo-experiments is used to test the overall fit for coverage of the
various floated parameters and for systematic biases. A 2% systematic uncertainty is assigned
to the high-MR background prediction that encapsulates systematic effects related to the fitting
procedure. Figure 5 shows the final hadronic box background predictions with all uncertainties
on this prediction included for R > 0.5. The observed MR distribution is consistent with the
predicted one over the entire MR range. The predicted and observed background yields in the
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high-MR region are summarized in Table 3. A summary of the uncertainties entering these
background predictions is listed in Table 4. A larger R requirement is used in the HAD box
analysis due to the larger background.

Table 3: Predicted and observed yields for MR> 500 GeV with R > 0.5 in the HAD box.

MR Predicted Observed

MR > 500 GeV 5.5 ± 1.4 7

Table 4: Summary of uncertainties entering the background predictions for the HAD box.

Parameter Description Relative magnitude
Slope parameter a systematic bias from correlations in fits 5%
Slope parameter b systematic bias from correlations in fits 10%
Slope parameter a uncertainty from Monte Carlo 1–10%
Slope parameter b uncertainty from Monte Carlo 1–10%

ρ(a)data/MC data fit 3%
ρ(b)data/MC data fit 3%

Normalization systematic+statistical component 8%
Trigger parameters systematic from fit pseudo-experiments 2%

f W extracted from fit (W only) 13%
W/tt cross section ratio CMS measurements (top only) 40%
W/Z cross section ratio CMS measurements (Z only) 19%

7 Limits in the CMSSM Parameter Space
Having observed no significant excess of events beyond the SM expectations, we extract a
model-independent 95% confidence level (CL) limit on the number of signal events. This limit
is then interpreted in the parameter spaces of SUSY models.

The likelihood for the number of observed events n is modeled as a Poisson function, given
the sum of the number of signal events (s) and the number of background events. A posterior
probability density function P(s) for the signal yield is derived using Bayes theorem, assuming
a flat prior for the signal and a log-normal prior for the background.

The model-independent upper limit is derived by integrating the posterior probability density
function between 0 and s∗ so that

∫ s∗

0 P(s)ds = 0.95. The observed upper limit in the hadronic
box is s∗ = 8.4 (expected limit 7.2 ± 2.7); in the muon box s∗ = 6.3 (expected limit 3.5 ± 1.1);
and in the electron box s∗ = 2.9 (expected limit 3.6 ± 1.1). For 10% of the pseudo-experiments
in the muon box the expected limit is higher than the observed. The stability of the result
was studied with different choices of the signal prior. In particular, using the reference priors
derived with the methods described in Ref. [38], the observed upper limits in the hadronic,
muon, and electron boxes are 8.0, 5.3, and 2.9, respectively.

The results can be interpreted in the context of the CMSSM, which is a truncation of the full
SUSY parameter space motivated by the minimal supergravity framework for spontaneous soft
breaking of supersymmetry. In the CMSSM the soft breaking parameters are reduced to five:
three mass parameters m0, m1/2, and A0 being, respectively, a universal scalar mass, a univer-
sal gaugino mass, and a universal trilinear scalar coupling, as well as tan β, the ratio of the
up-type and down-type Higgs vacuum expectation values, and the sign of the supersymmetric
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Higgs mass parameter µ. Scanning over these parameters yields models which, while not en-
tirely representative of the complete SUSY parameter space, vary widely in their superpartner
spectra and thus in the dominant production channels and decay chains.

The upper limits are projected onto the (m0, m1/2) plane by comparing them with the predicted
yields, and excluding any model if s(m0, m1/2) > s∗. The systematic uncertainty on the signal
yield (coming from the uncertainty on the luminosity, the selection efficiency, and the theoret-
ical uncertainty associated with the cross section calculation) is modeled according to a log-
normal prior. The uncertainty on the selection efficiency includes the effect of jet energy scale
(JES) corrections, parton distribution function (PDF) uncertainties [39], and the description of
initial-state radiation (ISR). All the effects are summed in quadrature as shown in Table 5. The
JES, ISR, and PDF uncertainties are relatively small owing to the insensitivity of the signal R
and MR distributions to these effects.

Table 5: Summary of the systematic uncertainties on the signal yield and totals for each of the
event boxes. For the CMSSM scan the NLO signal cross section uncertainty is included.

box MU ELE HAD
Experiment

JES 1% 1% 1%
Data/MC ε 6% 6% 6%
L[40] 4% 4% 4%

Theory
ISR 1% 1% 0.5%
PDF 3–6% 3–6% 3–6%
Subtotal 8–9% 8–9% 8–9%

CMSSM
NLO 16–18% 16–18% 16–18%
Total 17–19% 17–19% 17–19%

The observed limits from the ELE, MU, and HAD boxes are shown in Figs. 6, 7, and 8, re-
spectively, in the CMSSM (m0, m1/2) plane for the values tan β = 3, A0 = 0, sgn(µ) = +1,
together with the 68% probability band for the expected limits, obtained by applying the same
procedure to an ensemble of background-only pseudo-experiments. The band is computed
around the median of the limit distribution. Observed limits are also shown in Figs. 9 –11 in
the CMSSM (m0, m1/2) plane for the values tan β = 10, A0 = 0, sgn(µ) = +1, and in Figs. 12–13
for the values tan β = 50, A0 = 0, sgn(µ) = +1.

Figure 14 shows the same result in terms of 95% CL upper limits on the cross section as a
function of the physical masses for two benchmark simplified models [13, 41–43]: four-flavor
squark pair production and gluino pair production. In the former, each squark decays to one
quark and the LSP, resulting in final states with two jets and missing transverse energy, while
in the latter each gluino decays directly to two light quarks and the LSP, giving events with
four jets and missing transverse energy.

8 Summary

We performed a search for squarks and gluinos using a data sample of 35 pb−1 integrated
luminosity from pp collisions at

√
s = 7 TeV, recorded by the CMS detector at the LHC. The

kinematic consistency of the selected events was tested against the hypothesis of heavy particle
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Figure 9: Observed (solid curve) and expected (dot-dashed curve) 95% CL limits in the (m0,
m1/2) CMSSM plane with tan β = 10, A0 = 0, sgn(µ) = +1 from the ELE box selection (R >
0.45, MR > 500 GeV). The ± one standard deviation equivalent variations in the uncertainties
are shown as a band around the expected limits.

pair production using the dimensionless razor variable R related to the missing transverse
energy Emiss

T , and MR, an event-by-event indicator of the heavy particle mass scale. We used
events with large R and high MR in inclusive topologies.

The search relied on predictions of the SM backgrounds determined from data samples domi-
nated by SM processes. No significant excess over the background expectations was observed,
and model-independent upper limits on the numbers of signal events were calculated. The
results were presented in the (m0, m1/2) CMSSM parameter space. For simplified models the
results were given as limits on the production cross sections as a function of the squark, gluino,
and LSP masses.

These results demonstrate the strengths of the razor analysis approach; the simple exponential
behavior of the various SM backgrounds when described in terms of the razor variables is
useful in suppressing these backgrounds and in making reliable estimates from data of the
background residuals in the signal regions. Hence, the razor method provides an additional
powerful probe in searching for physics beyond the SM at the LHC.
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Figure 14: Upper limits on two simplified models: di-squark production (top) resulting in a 2-
jet + Emiss

T final state and di-gluino (lower) production resulting in a 4-jet + Emiss
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P. Baessoa,b, U. Berzanoa, S.P. Rattia,b, C. Riccardia,b, P. Torrea ,b, P. Vituloa,b, C. Viviania,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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9: Also at Université de Haute-Alsace, Mulhouse, France
10: Also at Brandenburg University of Technology, Cottbus, Germany
11: Also at Moscow State University, Moscow, Russia
12: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
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