ATLAS RESULTS

KEVIN BLACK BOSTON UNIVERSITY FOR THE ATLAS COLLABORATION

** ATLAS Detector and Status ** Luminosity and Data Collected ** Performance of the Detector ** Overview of Results

General Purpose Collider Detector

Broad Physics Program: Heavy Ions, Electroweak, QCD, Top, Higgs, exotics...

		Subdetector	Number of Channels	Approximate Operational Fraction
Magnets	2T solenoid 3 air-core toroids	Pixels	80 M	96.9%
		SCT Silicon Strips	6.3 M	99.1%
Tracking	silicon + transition radiation tracker	TRT Transition Radiation Tracker	350 k	97.5%
		LAr EM Calorimeter	170 k	99.5%
		Tile calorimeter	9800	97.9%
EM Calorimetry	sampling LAr technology	Hadronic endcap LAr calorimeter	5600	99.6%
		Forward LAr calorimeter	3500	99.8%
		LVL1 Calo trigger	7160	99.9%
Hadron	plastic scintillator (barrel) LAr technology (endcap)	LVL1 Muon RPC trigger	370 k	99.5%
		LVL1 Muon TGC trigger	320 k	100%
Calorimetry		MDT Muon Drift Tubes	350 k	99.8%
Muon	independent system with trigger capabilities	CSC Cathode Strip Chambers	31 k	98.5%
		RPC Barrel Muon Chambers	370 k	97.0%
		TGC Endcap Muon Chambers	320 k	98.4%

DATASETS

Rapidly increasing dataset

World record at hadron machine

Expect ~ 5.0 x 10³³ cm⁻² s⁻¹
in 2011

Wednesday, June 1, 2011

PERFORMANCE: Electrons

Sexcellent
performance over a wide range of momenta

Data/MC comparison quite good slightly better resolution for high momentum electrons in simulation

PERFORMANCE: MUONS

Dimuon Resonances - Excellent Clean final state to calibrate the detector

Good agreement with simulation

Wednesday, June 1, 2011

PERFORMANCE: JETS

Tracks used to validate jet energy measurements

Relatively well known fraction of charged/neutral particles

Tracker calibration independent of calorimeters

TRACK VALIDATION OF JETS

Compare the sum of the charged tracks within a jet to the jet energy measurement

Low momentum tracks fail reconstruction cuts but still deposit energy in calorimeter. Use double ratio.

PERFORMANCE: HIGH PT JETS

Resolution and scale uncertainty generally improve at highest momentum

Suffer statistical uncertainties at highest jet momentum

Calibrate lower energy jets and then use events where several low energy jets balance high momentum jet

p_T Leading Jet

JET SHAPES

Momentum fraction of jet in annulus of radius r inside jet cone with radius R

 $\rho(r) = \frac{p_T'}{p_T^R}$

Shown here for different jet pt

JET MASS AND SUBSTRUCTURE

 $\sqrt{d_{12}} = \min(p_{Ta}, p_{Tb}) \times \delta R_{a,b}$

- Splitting scale variable of the two subjets (a,b) before the final clustering step
- Jet mass and splitting scale can be used to understand the structure of jets
- Search for highly boosted objects->jets

JET CROSS-SECTIONS

- Highest E_T probes shortest distances
 - Tevatron: r_q<10⁻¹⁸ m
 - LHC: r_q<10⁻¹⁹ m (?)
 - Could e.g. reveal substructure of quarks
- Tests perturbative QCD at highest energies

JET CROSS-SECTIONS

Double differential cross section (pt,y)

Differential cross section (pt)

 $1.4x10^{-2} < x < 0.3$

% pQCD with NLOJET++ 4.1.2

AZIMUTHAL DECORRELATIONS IN JET EVENTS

Dijets have $\Delta \phi \sim \pi$

- * Presence of other partons causes $\Delta \phi << \pi$
- pQCD has prediction
 for shape

AZIMUTHAL DECORRELATIONS IN JET EVENTS

Divided into 9 ranges of the leading jet P_T

Normalized by total dijet cross section for each range

 $|\Delta y| < 0.8 \text{ and } |y| < 2.8$ probes $0.02 \le x \le 0.14$

AZIMUTHAL DECORRELATIONS IN JET EVENTS

Wednesday, June 1, 2011

INCLUSIVE ISOLATED PHOTON CROSS-SECTION

Test pQCD with a colorless probe

Important for wide variety of BSM searches

Measured with 40 <pT < 400 (GeV), split into several η ranges (shown here in most central and forward regions)

ELECTROWEAK W/Z

Jacobian peak of W in transverse mass distribution $m_T = \sqrt{|p_T^l|^2 + |p_T^\nu|^2 - (\vec{p}_T^l + \vec{p}_T^\nu)^2}$ # High momentum lepton + MET

Two high momentum leptons

W/Z CROSS-SECTIONS

Total cross-section x branching ratio measurement in electrons and muons

Look at ratio to reduce systematics

Good agreement with NNLO theory

% pp (valence quarks, sea anti-quarks)

W charge asymmetry sensitive to PDF

Roughly in agreement with all sets - slight preference for CTEQ

W+JETS

Test of pQCD at NLO

Test of showering model and Matrix Element + Parton Shower

Important background to many exotics signatures

#also Z+jets not shown here

W+JET MULTIPLICITY

Comparison of jet multiplicity ratio sensitive to modeling of ME+PS

Pythia alone expected to have deviations at high jet multiplicity

AT HIGHER X

 * Fit dijet mass spectra over large range
 * Look for evidence of deviation from prediction - resonant particle decay

ANGULAR ANALYSIS

- Look for deviations from QCD prediction in rapidity distribution of jets
- More sensitive in some models
- Less sensitivity to largest systematic of jet energy scale

No evidence of disagreement with OCD

LIMITS

In fact, remarkable agreement over many decades

LHC and ATLAS are a huge success!

Many Many Measurements, Searches, on broad topics! Too many to cover here!

Section Sec