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We derive a geometrical approach to produce the mass of particles that could be suitably tested
at LHC. Starting from a 5D unification scheme, we show that all the known interactions could be
suitably deduced as an induced symmetry breaking of the non-unitary GL(4)-group of diffeomor-
phisms. The deformations inducing such a breaking act as vector bosons that, depending on the
gravitational mass states, can assume the role of interaction bosons like gluons, electroweak bosons
or photon. The further gravitational degrees of freedom, emerging from the reduction mechanism in
4D, eliminate the hierarchy problem since generate a cut-off comparable with electroweak one at TeV
scales. In this "economic" scheme, gravity should induce the other interactions in a non-perturbative
way.
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I. INTRODUCTION

The Standard Model of Particles can be considered
a successful relativistic quantum field theory both from
particle physics and group theory points of view. Tech-
nically, it is a non-Abelian gauge theory (a Yang-Mills
theory) associated with the tensor product of the inter-
nal symmetry groups SU(3)× SU(2)× U(1), where the
SU(3) color symmetry for quantum chromodynamics, is
treated as exact, whereas the SU(2) × U(1) symmetry,
responsible for generating the electro-weak gauge fields,
is considered spontaneously broken.

So far, as we know, there are four fundamental forces in
Nature; namely, electromagnetic, weak, strong and grav-
itational forces. The Standard Model well represents the
first three, but not the gravitational interaction. On the
other hand, General Relativity (GR) is a geometric the-
ory of the gravitational field which is described by the
metric tensor gµν defined on pseudo-Riemannian space-
times. The Einstein field equations are nonlinear and
have to be satisfied by the metric tensor. This nonlin-
earity is indeed a source of difficulty in quantization of
General Relativity. Since the Standard Model is a gauge
theory where all the fields mediating the interactions are
represented by gauge potentials, the question is why the
fields mediating the gravitational interaction are different
from those of the other fundamental forces. It is reason-
able to expect that there may be a gauge theory in which
the gravitational fields stand on the same footing as those
of other fields [1]. As it is well-known, this expectation
has prompted a re-examination of GR from the point of
view of gauge theories.

While the gauge groups involved in the Standard
Model are all internal symmetry groups, the gauge groups
in GR must be associated with external space-time sym-
metries. Therefore, the gauge theory of gravity cannot
be dealt under the standard of the usual Yang-Mills the-
ories. It must be one in which gauge objects are not only
gauge potentials but also tetrads that relate the symme-
try group to the external space-time. For this reason we
have to consider a more complex nonlinear gauge theory
where all the interactions should be dealt under the same
standard [3]. In GR, Einstein took the space-time met-
ric components as the basic set of variables representing
gravity, whereas Ashtekar and collaborators employed
the tetrad fields and the connection forms as the funda-
mental variables [2]. We also will consider the tetrads and
the connection forms as the fundamental fields but with
the difference that this approach gives rise to a covari-
ant symplectic formalism capable of achieving the result
of dealing with physical fields under the same standard
[4, 5].

In order to frame historically our approach, let us
sketch a quick summary of the various attempts where
the Standard Model and GR have been considered under
the same comprehensive picture. In 1956, Utiyama sug-
gested that gravitation may be viewed as a gauge theory
[6] in analogy to the Yang-Mills [7] theory (1954). He
identified the gauge potential due to the Lorentz group
with the symmetric connection of the Riemann geome-
try, and reproduced the Einstein GR as a gauge theory of
the Lorentz group SO(3, 1) with the help of tetrad fields
introduced in an ad hoc manner. Although the tetrads
were necessary components of the theory (to relate the
Lorentz group) adopted as an internal gauge group to the
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external space-time, they were not introduced as gauge
fields. In 1961, Kibble [8] constructed a gauge theory
based on the Poincaré group P (3, 1) = T (3, 1)⋊SO(3, 1)
(the symbol ⋊ represents the semi-direct product) which
resulted in the Einstein-Cartan theory characterized by
curvature and torsion. The translation group T (3, 1) is
considered responsible for generating the tetrads as gauge
fields. Cartan [9] generalized the Riemann geometry in
order to include torsion in addition to curvature. The
torsion (tensor) arises from an asymmetric connection.
Sciama [10], and others (Fikelstein [11], Hehl [12, 13])
pointed out that intrinsic spin may be the source of tor-
sion of the underlying space-time manifold.

Since the form and the role of tetrad fields are very dif-
ferent from those of gauge potentials, it has been thought
that even Kibble’s attempt is not satisfactory as a full
gauge theory. There have been a number of gauge the-
ories of gravitation based on a variety of Lie groups
[12, 13, 15–19]. It was argued that a gauge theory of
gravitation corresponding to GR can be constructed with
the translation group alone, in the so-called teleparallel
scheme [14].

Inomata et al. [20] proposed that Kibble’s gauge the-
ory could be obtained, in a way closer to the Yang-Mills
approach, by considering the de Sitter group SO(4, 1),
which is reducible to the Poincaré group by a group-
contraction. Unlike the Poincaré group, the de Sitter
group is homogeneous and the associated gauge fields
are all of gauge potential type and by the Wigner-Inönu
group contraction procedure, one of the five vector po-
tentials reduces to the tetrad.

It is standard to use the fiber-bundle formulation by
which gauge theories can be constructed on the basis of
any Lie group. Works by Hehl et al. [19], on the so-called
Metric Affine Gravity (MAG), adopted as a gauge group
the affine group A(4, R) = T (4) ⋊GL(4, R), which can
be linearly realized. The tetrad has been identified by
the nonlinearly realized translational part of the affine
connection, on the tangent bundle. In MAG theory, the
Lagrangian is quadratic in both curvature and torsion, in
contrast to the Einstein-Hilbert Lagrangian of GR which
is linear in the scalar curvature. The theory has the Ein-
stein limit on one hand and leads to the Newtonian in-
verse distance potential plus the linear confinement po-
tential (in the weak field approximation) on the other
hand. In summary, as we have seen, there are many at-
tempts to formulate gravitation as a gauge theory but
currently no theory has been uniquely accepted as the
gauge theory of gravity.

The nonlinear approach to group realizations was orig-
inally introduced by Coleman, Wess and Zumino [21, 22]
in the context of internal symmetry groups (1969). It was
later extended to the case of space-time symmetries by
Isham, Salam, and Strathdee [23] considering the nonlin-
ear action of GL(4, R), modulus the Lorentz subgroup.
In 1974, Borisov, Ivanov and Ogievetsky [24, 25], consid-
ered the simultaneous nonlinear realization (NLR) of the
affine and conformal groups. They stated that GR can be

viewed as a consequence of spontaneous breakdown of the
affine symmetry, in the same way that chiral dynamics,
in quantum chromodynamics, is a result of spontaneous
breakdown of chiral symmetry. In their model, gravi-
tons are considered as Goldstone bosons associated with
the affine symmetry breaking. As we will see below, this
approach can be pursued in general.

In 1978, Chang and Mansouri [26] used the NLR
scheme adopting GL(4, R) as the principal group. In
1980, Stelle and West [27] investigated the NLR induced
by the spontaneous breakdown of SO(3, 2). In 1982
Ivanov and Niederle considered nonlinear gauge theo-
ries of the Poincaré, de Sitter, conformal and special
conformal groups [28, 29]. In 1983, Ivanenko and Sar-
danashvily [30] considered gravity to be a spontaneously
broken GL(4, R) gauge theory. The tetrads fields arise,
in their formulation, as a result of the reduction of the
structure group of the tangent bundle from the general
linear to Lorentz group. In 1987, Lord and Goswami
[31, 32] developed the NLR in the fiber bundle formal-
ism based on the bundle structure G (G/H , H) as sug-
gested by Ne’eman and Regge [33]. In this approach,
the quotient space G/H is identified with physical space-
time. Most recently, in a series of papers, Lopez-Pinto,
Julve, Tiemblo, Tresguerres and Mielke discussed nonlin-
ear gauge theories of gravity on the basis of the Poincaré,
affine and conformal groups [34–39].

Now, following the prescriptions of GR, the physical
space-time is assumed to be a four-dimensional differen-
tial manifold. In Special Relativity (SR), this manifold
is the Minkwoski flat-space-time M4 while, in GR, the
underlying space-time is assumed to be curved in order
to describe the effects of gravitation.

As we said, Utiyama [6] proposed that GR can be seen
as a gauge theory based on the local Lorentz group in
the same way that the Yang-Mills gauge theory [7] is de-
veloped on the basis of the internal iso-spin gauge group.
In this formulation, the Riemannian connection is the
gravitational counterpart of the Yang-Mills gauge fields.
While SU(2), in the Yang-Mills theory, is an internal
symmetry group, the Lorentz symmetry represents the
local nature of space-time rather than internal degrees
of freedom. The Einstein Equivalence Principle, asserted
for GR, requires that the local space-time structure can
be identified with the Minkowski space-time possessing
Lorentz symmetry.

In order to relate local Lorentz symmetry to the ex-
ternal space-time, we need to solder the local space to
the external space. The soldering tools can be the tetrad
fields. Utiyama regarded the tetrads as objects given a

priori while they can be dynamically generated [3] and
the space-time has necessarily to be endowed with tor-
sion in order to accommodate spinor fields [40]. In other
words, the gravitational interaction of spinning particles
requires the modification of the Riemann space-time of
GR to be a (non-Riemannian) curved space-time with
torsion. Although Sciama used the tetrad formalism
for his gauge-like handling of gravitation, his theory fell
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shortcomings in treating tetrad fields as gauge fields.
Following the Kibble approach [8], it can be demon-

strated how gravitation can be formulated starting from
a pure gauge viewpoint. In particular, gravity can be
seen as a gauge theory which can be obtained starting
from some local invariance, e.g. the local Poincaré sym-
metry, leading to a suitable unification scheme [3]. This
dynamical structure can be based on a nonlinear real-
ization of the local conformal-affine group of symmetry
transformations [41].

Here, we start from a General Invariance Principle,
as requested in the so called Open Quantum Relativity
(OQR) [1, 42] and consider first the Global Poincaré In-
variance and then the Local Poincaré Invariance. This
approach leads to construct a given theory of gravity as
a gauge theory. Such a viewpoint, if considered in detail,
can avoid many shortcomings and could be useful to for-
mulate self-consistent schemes for quantum gravity and
then the unification of all interactions [3].

In particular, the idea of an unification theory, capable
of describing all the fundamental interactions of physics
under the same standard, has been one of the main is-
sues of modern physics, starting from the early efforts
of Einstein, Weyl, Kaluza and Klein [43] until the most
recent approaches [44]. Nevertheless, the large number
of ideas, up to now proposed, which we classify as uni-

fied theories, results unsuccessful due to several reasons:
the technical difficulties connected with the lack of a uni-
tary mathematical description of all the interactions; the
huge number of parameters introduced to "build up" the
unified theory and the fact that most of them cannot be
observed neither at laboratory nor at astrophysical (or
cosmological) conditions [45]; the very wide (and several
times questionable since not-testable) number of extra-
dimensions requested by several approaches. Due to this
situation, it seems that unification is a useful (and aes-
thetic) paradigm, but far to be achieved, if the trend is
continuing to try to unify interactions (i.e. to make some-
thing simple) by adding and adding ingredients: new par-
ticles and new parameters (e.g. dark matter forest). A
different approach could be to consider the very essential
physical quantities and try to achieve unification without
any ad hoc new ingredients. This approach can be pur-
sued starting from straightforward considerations which
lead to reconsider modern physics under a sort of eco-
nomic issue: let us try to unifying forces approaching
new schemes but without adding new parameters 1. A
prominent role deserves the conservation laws and the
fact that each of them brings out the existence of a sym-
metry [3].

As a general remark, the Noether Theorem states that,
for every conservation law of Nature, a symmetry must

exist. This leads to a fundamental result also from a

1 Following Occam’s Razor prescription: Entia non sunt multipli-

canda praeter necessitatem.

mathematical point of view since the presence of symme-
tries technically reduces dynamics (i.e. gives rise to first
integrals of motion) and, in several cases, allows to get
the general solution. With these considerations in mind,
we can try to change our point of view and investigate
what will be the consequences of the absolute validity
of conservation laws without introducing any arbitrary
symmetry breaking.

In order to see what happens as soon as we ask for the
absolute validity of conservation laws, we could take into
account the Bianchi identities. Such geometrical identi-
ties work in every covariant field theory (e.g. Electromag-
netism or GR) and can be read as equations of motion
also in a fiber bundle approach [106]. We want to show
that, the absolute validity of conservation laws, intrinsi-
cally contains symmetric dynamics; moreover, reducing
dynamics from 5D to 4D, it gives rise to the physical
quantities characterizing particles as the mass.

The minimal ingredient which we require to achieve
these results is the fact that a 5-dimensional, singular-
ity free space, where conservation laws are always and
absolutely conserved, has to be defined. Specifically, in
such a space, Bianchi identities are asked to be always
valid and, moreover, the process of reduction to 4D-space
generates the mass spectra of particles. In this sense, a
dynamical unification scheme will be achieved where a
fifth dimension has the physical meaning of inducing the
mass of particles by deformations of space-time. In other
words, we will show that deformations can be parame-
terized as "effective" scalar fields in a GL(4)-group of
diffeomorphisms. In this sense, we do not need any spon-
taneous symmetry breaking but just a self-consistent way
to classify deformations as "gauge bosons". The layout
of the paper is the following. In Sec.II, we discuss in de-
tail the conformal-affine structure of gravitational field
showing that the nonlinear realization of a group pro-
vides a way to determine the transformation properties
of fields defined on a given quotient space G/H . In other
words, we show that gravitational field can be realized
in many equivalent ways and we will use this feature to
show that gravitational massive states are possible. Sec.
III is devoted to the group structure. We show that the
4D-group of diffeomorphisms can be embedded in that
in 5D. Furthermore, it is straightforward to show that
GL(4) contains all the generators of the Standard Model
plus generators of the gravitational field. The space-time
deformations as elements of GL(4)-group are discussed
in Sec.IV. The main result of this section is that defor-
mations can be dealt as effective geometric scalar fields.
In Sec.V, the 5D space-time structure and the reduction
to 4D-dynamics is discussed. Such a reduction mecha-
nism gives rise to effective theories of gravity (Extended
Theories of Gravity [46–50]) where higher-order terms in
curvature invariants or nonminimal couplings are natu-
rally achieved. In Sec.VI, we discuss that these effective
theories can be conformally related and the only singu-
lar theory (with null Hessian determinant) is GR. The
straightforward consequence of such a result is that gravi-
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tational massive modes can be always generated. Sec.VII
is devoted to the discussion of the mass generation while,
in Sec.VIII, we derive massless and massive gravitational
modes related to Extended Theories of Gravity. An in-
teresting byproduct is the fact that 6 polarization states
emerge and this result is perfectly in agreement with
the fundamental Riemann theorem stating that in a N -
dimensional space, N(N − 1)/2 gravitational degrees of
freedom are allowed. Sec.IX is devoted to the specific is-
sue that massive gravitons could have observable effects
between GeV-TeV scales and induce a symmetry breaking
through a sort of regularization mechanism. Conclusions
are drawn in Sec.X.

II. THE CONFORMAL-AFFINE STRUCTURE

OF GRAVITATIONAL FIELD

A. Generalities on fiber bundle formalism

In this section, we shall take into account the fiber
bundle formalism of gravitational field showing that it
naturally exhibit a conformal-affine structure. This fea-
ture, in some sense, allow to compare all the theories of
gravity, based on diffeomorphism invariance, under the
same standard.

Before considering in details the conformal-affine struc-
ture of gravitational theories, let us briefly review the
standard bundle approach to gauge theories. First, let
us show that a usual gauge potential Ω is the pullback of
1-form connection ω by the local sections of the bundle.
Then, the transformation laws of the ω and Ω under the
action of the structure group G are deduced.

Modern formulations of gauge field theories are geo-
metrically expressible in the language of principal fiber
bundles. A fiber bundle is a structure 〈P, M , π; F〉 where
P (the total bundle space) and M (the base space) are
smooth manifolds, F is the fiber space and the surjection
π (a canonical projection) is a smooth map of P onto M ,

π : P → M . (1)

The inverse image π−1 is diffeomorphic to F

π−1 (x) ≡ Fx ≈ F, (2)

and it is called the fiber at x ∈ M . The partitioning⋃
x π

−1 (x) = P is referred to as the fibration. Note that
a smooth map is one whose coordinatization is C∞ dif-
ferentiable; a smooth manifold is a space that can be
covered with coordinate patches in such a manner that,
a change from one patch to any overlapping patch is
smooth [105]. Fiber bundles that admit a decomposi-
tion as a direct product, locally looking like P ≈M × F,
are called trivial. Given a set of open coverings {Ui} of
M with x ∈ {Ui} ⊂ M satisfying

⋃
α Uα = M , the dif-

feomorphism map is given by

χi : Ui ×M G→ π−1(Ui) ∈ P, (3)

(×M represents the fiber product of elements defined
over the space M) such that π (χi (x, g)) = x and
χi (x, g) = χi (x, (id)G) g = χi (x) g ∀x ∈ {Ui} and
g ∈ G. Here, (id)G represents the identity element
of the group G. In order to obtain the global bun-
dle structure, the local charts χi must be glued to-
gether continuously. Consider two patches Un and Um

with a non-empty intersection Un ∩ Um 6= ∅. Let ρnm
be the restriction of χ−1

n to π−1(Un ∩ Um) defined by
ρnm : π−1(Un ∩ Um) → (Un ∩ Um) ×M Gn. Similarly let
ρmn : π−1(Um∩Un) → (Um∩Un)×MGm be the restriction
of χ−1

m to π−1(Un ∩ Um). The composite diffeomorphism
Λnm ∈ G

Λmn : (Un ∩ Um)×Gn → (Um ∩ Un)×M Gm, (4)

defined as

Λij (x) ≡ ρji ◦ ρ−1
ij = χi, x ◦ χ−1

j, x : F → F , (5)

constitutes the transition function between bundle charts
ρnm and ρmn (◦ represents the group composition op-
eration) where the diffeomorphism χi, x : F → Fx is
written as χi, x(g) := χi (x, g) and satisfies χj (x, g) =
χi (x, Λij (x) g). The transition functions {Λij} can
be interpreted as passive gauge transformations. They
satisfy some consistency conditions, i.e. the identity
Λii (x), the inverse Λij (x) = Λ−1

ji (x) and the cocycle

Λij (x) Λjk (x) = Λik (x). For trivial bundles, the transi-
tion function reduces to

Λij (x) = g−1
i gj , (6)

where gi : F → F is defined by gi := χ−1
i, x ◦ χ̃i, x, provided

the local trivializations {χi} and {χ̃i} it gives rise to the
same fiber bundle.

A section is defined as a smooth map

s :M → P, (7)

such that s(x) ∈ π−1 (x) = Fx ∀x ∈M and satisfies

π ◦ s = (id)M , (8)

where (id)M is the identity element of M . It assigns to
each point x ∈ M a point in the fiber over x. Trivial
bundles admit global sections.

A bundle is a principal fiber bundle 〈P, P/G, G, π〉
provided that the Lie group G acts freely (i.e. if pg = p
then g = (id)G) on P to the right Rgp = pg, p ∈ P, pre-
serves fibers on P (Rg : P → P), and finally is transitive
on fibers. Furthermore, there must exist local trivializa-
tions compatible with the G action. Hence, π−1(Ui) is
homeomorphic to Ui ×M G and the fibers of P are dif-
feomorphic to G. The trivialization or inverse diffeomor-
phism map is given by

χ−1
i : π−1(Ui) → Ui ×M G (9)

such that χ−1(p) = (π(p), φ(p)) ∈ Ui ×M G, p ∈
π−1(Ui) ⊂ P, where we see from the above definition
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that φ is a local mapping of π−1(Ui) into G satisfying
φ(Lgp) = φ(p)g for any p ∈ π−1(U) and any g ∈ G. Let
us observe that the elements of P which are projected
onto the same x ∈ {Ui} are transformed into one another
by the elements of G. In other words, the fibers of P are
the orbits of G and at the same time, they are the set of
elements which are projected onto the same x ∈ U ⊂M .
This observation motivates calling the action of the group
vertical and the base manifold horizontal. The diffeomor-
phism map χi is called the local gauge since χ−1

i maps
π−1(Ui) onto the direct (Cartesian) product Ui ×M G.
The action Lg of the structure group G on P defines an
isomorphism of the Lie algebra g of G onto the Lie alge-
bra of vertical vector fields on P, tangent to the fiber at
each p ∈ P called fundamental vector fields

λg : Tp (P) → Tgp(P) = Tπ(p) (P) , (10)

where Tp (P) is the space of tangents at p, i.e. Tp (P) ∈
T (P). The map λ is a linear isomorphism for every
p ∈ P and is invariant with respect to the action of G,
that is, λg : (λg∗Tp (P)) → Tgp (P), where λg∗ is the
differential push forward map induced by λg defined by
λg∗ : Tp (P) → Tgp (P).

Since the principal bundle P (M , G) is a differentiable
manifold, we can define tangent T (P) and cotangent
T ∗ (P) bundles. The tangent space Tp (P) defined at each
point p ∈ P may be decomposed into a vertical Vp (P) and
horizontal Hp (P) subspace as Tp (P) := Vp (P) ⊕ Hp (P)
(where ⊕ represents the direct sum). The space Vp (P)
is a subspace of Tp (P) consisting of all tangent vectors
to the fiber passing through p ∈ P, and Hp (P) is the
subspace complementary to Vp (P) at p. The vertical sub-
space Vp (P) := {X ∈ T (P) |π (X) ∈ Ui ⊂M} is uniquely
determined by the structure of P, whereas the horizontal
subspace Hp (P) cannot be uniquely specified. This re-
sult is very important because it makes possible to fix the
Cauchy conditions on the dynamics. Thus we require the
following condition: when p transforms as p → p′ = pg,
Hp (P) transforms as [53],

Rg∗Hp (P) → Hp′ (P) = RgHp (P) = Hpg (P) . (11)

Let the local coordinates of P (M , G) be p = (x, g) where
x ∈ M and g ∈ G. Let GA denote the generators of the
Lie algebra g corresponding to group G satisfying the
commutators [GA, GB] = f C

AB GC , where f C
AB are the

structure constants of G. Let Ω be a connection form
defined by ΩA := ΩA

i dx
i ∈ g. Let ω be a connection

1-form defined by

ω := g̃−1π∗
PMΩg̃ + g̃−1dg̃ , (12)

(∗ represents the differential pullback map) belonging to
g ⊗ T ∗

p (P) where T ∗
p (P) is the dual space to Tp (P). In

such a case, the differential pullback map, applied to a
test function φ and p-forms α and β, satisfies f∗φ =
φ ◦ f , (g ◦ f)∗ = f∗g∗ and f∗ (α ∧ β) = f∗α ∧ f∗β. If
G is represented by a d-dimensional d × d matrix, then

GA = [Gαβ ], g̃ =
[
g̃αβ
]
, where α, β = 1, 2, 3,...d. Thus,

ω assumes the form

ω β
α =

(
g̃−1

)
αγ
dg̃γβ +

(
g̃−1

)
ργ
π∗
PMΩρ

σiG
γ
α g̃

σβ ⊗ dxi.

(13)
If M is n-dimensional, the tangent space Tp (P) is

(n+ d)-dimensional. Since the vertical subspace Vp (P)
is tangential to the fiber G, it is d-dimensional. Accord-
ingly, Hp (P) is n-dimensional. The basis of Vp (P) can

be taken to be ∂αβ := ∂
∂gαβ . Now, let the basis of Hp (P)

be denoted by

Ei := ∂i + Γαβ
i ∂αβ , i = 1, 2, 3, ..n and α, β = 1, 2, 3, ..d

(14)
where ∂i =

∂
∂xi . The connection 1-form ω projects Tp (P)

onto Vp (P). In order for X ∈ Tp (P) to belong to Hp (P),
it has to be X ∈ Hp (P), ωp (X) = 〈ω (p) |X〉 = 0. In
other words,

Hp (P) := {X ∈ Tp (P) |ωp (X) = 0} , (15)

from which Ωαβ
i can be determined. The inner prod-

uct appearing in ωp (X) = 〈ω (p) |X〉 = 0 is a map
〈·|·〉 : T ∗

p (P) × Tp (P) → R defined by 〈W |V 〉 =

WµV
ν
〈
dxµ| ∂

∂xν

〉
= WµV

νδµν , where the 1-form W and

vector V are given by W = Wµdx
µ and V = V µ ∂

∂xν .

Observe also that,
〈
dgαβ |∂ρσ

〉
= δαρ δ

β
σ .

We parameterize an arbitrary group element g̃λ as

g̃ (λ) = eλ
A
GA = eλ·G, A = 1,..dim (g). The right ac-

tion Rg̃(λ) = Rexp(λ·G) on p ∈ P, i.e. Rexp(λ·G)p =
p exp (λ ·G), defines a curve through p in P. Define a
vector G# ∈ Tp (P) by [53]

G#f (p) :=
d

dt
f (p exp (λ ·G)) |λ=0 , (16)

where f : P → R is an arbitrary smooth function. Since
the vector G# is tangent to P at p, G# ∈ Vp (P), the
components of the vector G# are the fundamental vector
fields at p which constitute V (P). We have to stress that
the components of G# may also be viewed as a basis
element of the Lie algebra g. Given G# ∈ Vp (P), G ∈ g,

ωp

(
G#
)
=
〈
ω (p) |G#

〉
= g̃−1dg̃

(
G#
)
+ g̃−1π∗

PMΩg̃
(
G#
)

= g̃−1
p g̃p

d

dλ
(exp (λ ·G)) |λ=0, (17)

where use was made of πPM∗G
# = 0. Hence, ωp

(
G#
)
=

G. An arbitrary vector X ∈ Hp (P) may be expanded
in a basis spanning Hp (P) as X := βiEi. By direct
computation, one can show

〈
ω β
α |X

〉
=
(
g̃−1

)
αγ
βiΓγβ

i +

+
(
g̃−1

)
αγ
π∗
PMΩρ

σiβ
iGγ

ρ g̃
σβ = 0, ∀βi (18)

Equation (18) yields

(
g̃−1

)
αγ

Γγβ
i +

(
g̃−1

)
αγ
π∗
PMΩρ

σiG
γ
ρ g̃

σβ = 0, (19)
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from which we obtain

Γγβ
i = −π∗

PMΩρ
σiG

γ
ρ g̃

σβ . (20)

In this manner, the horizontal component is completely
determined. An arbitrary tangent vector X ∈ Tp (P) de-
fined at p ∈ P takes the form

X = Aαβ∂αβ +Bi
(
∂i − π∗

PMΩρ
σiG

α
ρ g̃

σβ∂αβ
)
, (21)

where Aαβ and Bi are constants. The vec-
tor field X is comprised of horizontal XH :=
Bi
(
∂i − π∗

PMΩρ
σiG

α
ρ g̃

σβ∂αβ
)
∈ H (P) and vertical XV :=

Aαβ∂αβ ∈ V (P) components.
Let X ∈ Tp (P) and g ∈ G, then

R∗
gω (X) = ω (Rg∗X) =

= g̃−1
pg Ω (Rg∗X) g̃pg + g̃−1

pg dg̃pg (Rg∗X) ,

(22)

Observing that g̃pg = g̃pg and g̃−1
gp = g−1g̃−1

p

the first term on the RHS of (22) reduces to
g̃−1
pg Ω (Rg∗X) g̃pg = g−1g̃−1

p Ω (Rg∗X) g̃pg while the sec-

ond term gives g̃−1
pg dg̃pg (Rg∗X) = g−1g̃−1

p d (Rg∗X) g̃pg.
We therefore conclude

R∗
gωλ = adg−1ωλ, (23)

where the adjoint map ad is defined by

adgY := Lg∗ ◦Rg−1∗ ◦ Y = gY g−1,

adg−1Y := g−1Y g. (24)

The potential ΩA can be obtained from ω as ΩA =
s∗ω. To demonstrate this, let Y ∈ Tp (M) and g̃ be
specified by the inverse diffeomorphism or trivialization
map (9) with χ−1

λ (p) = (x, g̃λ) for p (x) = sλ (x) · g̃λ. We
find s∗iω (Y ) = g̃−1Ω (π∗si∗Y ) g̃ + g̃−1dg̃ (si∗Y ), where
we have used si∗Y ∈ Tsi (P), π∗si∗ = (id)Tp(M) and g̃ =

(id)G at si implying g̃−1dg̃ (si∗Y ) = 0 [53]. Hence,

s∗i ω (Y ) = Ω (Y ) . (25)

To determine the gauge transformation of the connec-
tion 1-form ω, we use the fact that Rg̃∗X = Xg̃ for
X ∈ Tp (M) and the transition functions g̃nm ∈ G de-
fined between neighboring bundle charts (6). By direct
computation we get

cj∗X =
d

dt
cj (λ (t)) |t=0 =

d

dt
[ci (λ (t)) · g̃ij ] |t=0

= Rg̃ij∗c
∗
i (X) +

(
g̃−1
ji (x) dg̃ij (X)

)#
, (26)

where λ (t) is a curve in M with boundary values λ (0) =
m and d

dtλ (t) |t=0 = X . Thus, we obtain the useful result

c∗X = Rg̃∗ (c∗X) +
(
g̃−1dg̃ (X)

)#
. (27)

Applying ω to Eq.(27), we get

ω (c∗X) = c∗ω (X) = adg̃−1c∗ω (X) + g̃−1dg̃ (X) , ∀X .
(28)

Hence, the gauge transformation of the local gauge po-
tential Ω reads,

Ω → Ω′ = adg̃−1 (d+Ω) = g̃−1 (d+ Ω) g̃. (29)

Since Ω = c∗ω we obtain, from Eq.(29), the gauge trans-
formation law of ω

ω → ω′ = g̃−1 (d+ ω) g̃. (30)

We have now all the ingredients to investigate the bundle
structure of the gravitation field.

B. The Bundle Structure for Gravitation

Let us recall the definition of gauge transformations in
the context of ordinary fiber bundles. Given a principal
fiber bundle P(M , G; π) with base spaceM and standard
G-diffeomorphic fiber, gauge transformations are charac-
terized by bundle isomorphisms λ : P → P exhausting all
diffeomorphisms λM on M [54]. This mapping is called
an automorphism of P provided it is equivariant with re-
spect to the action of G. This amounts to restrict the
action λ of G along local fibers leaving the base space
unaffected. Indeed, with regard to gauge theories of in-
ternal symmetry groups, a gauge transformation is a fiber
preserving bundle automorphism, i.e. diffeomorphisms λ
with λM = (id)M . The automorphisms λ form a group
called the automorphism group AutP of P. The gauge
transformations form a subgroup of AutP called the gauge
group G (AutP) (or G in short) of P.

The map λ is required to satisfy two conditions, namely
its commutability with the right action of G [the equiv-
ariance condition λ (Rg(p)) = λ (pg) = λ (p) g]

λ ◦Rg(p) = Rg(p) ◦ λ, p ∈ P, g ∈ G (31)

according to which fibers are mapped into fibers, and the
verticality condition

π ◦ λ (u) = π (u) , (32)

where u and λ (u) belong to the same fiber. The last
condition ensures that no diffeomorphisms λM :M → M
given by

λM ◦ π (u) = π ◦ λ (u) , (33)

be allowed on the base space M . In a gauge description
of gravitation, one is interested in gauging external trans-
formation groups. This means that the group action on
space-time coordinates cannot be neglected. The spaces
of internal fiber and external base must be interlocked in
the sense that transformations in one space must induce
corresponding transformations in the other. The usual
definition of a gauge transformation, i.e. as a displace-
ment along local fibers not affecting the base space, must
be generalized to reflect this interlocking. One possible
way of framing this interlocking is to employ a nonlin-
ear realization of the gauge group G, provided a closed
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subgroup H ⊂ G exists. The interlocking requirement
is then transformed into the interplay between groups G
and one of its closed subgroups H .

Let us denote by G a Lie group with elements {g}. Let
H be a closed subgroup of G specified by

H := {h ∈ G|Π(Rhg) = π (g) , ∀g ∈ G} , (34)

with elements {h} and known linear representations
ρ (h). Here Π is a projection map and Rh is the right
group action. Let M be a differentiable manifold with
points {x} to which G and H may be referred, i.e.

g = g(x) and h = h(x). Being that G and H are Lie
groups, they are also manifolds. The right action of
H on G induces a complete partition of G into mutu-
ally disjoint orbits gH . Since g = g(x), all elements
of gH = {gh1, gh2, gh3, · · · , ghn} are defined over the
same x. Thus, each orbit gH constitutes an equivalence
class of point x, with equivalence relation g ≡ g′ where
g′ = Rhg = gh.

By projecting each equivalence class onto a single el-
ement of the quotient space M := G/H , the group G
becomes organized as a fiber bundle in the sense that
G =

⋃
i {giH}. In this manner the manifold G is viewed

as a fiber bundle G (M, H ; Π) with H-diffeomorphic
fibers Π−1 (ξ) : G → M = gH and base space M.
A composite principal fiber bundle P(M , G; π) is one
whose G-diffeomorphic fibers possess the fibered struc-
ture G (M, H ; Π) ≃ M× H described above. The bun-
dle P is then locally isomorphic to M×G (M, H). More-
over, since an element g ∈ G is locally homeomorphic to
M×H the elements of P are - by transitivity - also locally
homeomorphic to M ×M×H ≃ Σ×H where (locally)
Σ ≃ M × M. Thus, an alternative view of P(M , G;
π) is provided by the P-associated H-bundle P(Σ, H ; π̃)
[37]. The total space P may be regarded as G (M, H ; Π)-
bundles over the base spaceM or equivalently asH-fibers
attached to the manifold Σ ≃M ×M.

The nonlinear realization (NLR) technique [21, 22]
provides a way to determine the transformation prop-
erties of fields defined on the quotient space G/H . The
NLR of Diff(4, R) becomes tractable due to a theorem by
Ogievetsky. According to this theorem [24], the algebra
of the infinite dimensional group Diff(4, R) can be taken
as the closure of the finite dimensional algebras of SO(4,
2) and A(4, R). Remind that the Lorentz group gener-
ates transformations that preserve the quadratic form on
Minkowski space-time built from the metric tensor, while
the special conformal group generates infinitesimal angle-
preserving transformations on Minkowski space-time.

The affine group is a generalization of the Poincaré
group where the Lorentz group is replaced by the group of
general linear transformations. As such, the affine group
generates translations, Lorentz transformations, volume
preserving shear and volume changing dilation transfor-
mations. As a consequence, the NLR of Diff(4, R) /SO(3,
1) can be constructed by taking a simultaneous realiza-
tion of the conformal group SO(4, 2) and the affine group
A(4, R) := R

4
⋊ GL(4, R) on the coset spaces A(4,

R)/SO(3, 1) and SO(4, 2)/SO(3, 1). One possible in-
terpretation of this theorem is that the conformal-affine
group CA (defined below) may be the largest subgroup
of Diff(4, R), whose transformations may be put into the
form of a generalized coordinate transformation. We re-
mark that a NLR can be made linear by embedding the
representation in a sufficiently higher dimensional space.
Alternatively, a linear group realization becomes nonlin-
ear when subject to constraints. One type of relevant
constraints may be those responsible for symmetry re-
duction from Diff(4, R) to SO(3, 1) for instance.

We take the group CA(3, 1) as the basic symmetry
group G. The CA group consists of the groups SO(4,
2) and A(4, R). In particular, CA is proportional to the
union SO(4, 2) ∪ A(4, R). We know however that the
affine and special conformal groups have several group
generators in common. These common generators reside
in the intersection SO(4, 2)∩A(4, R) of the two groups,
within which there are two copies of Π := D × P (3, 1),
where D is the group of scale transformations (dilations)
and P (3, 1) := T (3, 1)⋊SO(3, 1) is the Poincaré group.

Finally we define the CA group as the union of the
affine and conformal groups minus one copy of the over-
lap Π, i.e. CA(3, 1) := SO(4, 2) ∪ A(4, R) − Π.
Being defined in this way we recognize that CA(3, 1)
is a 24 parameter Lie group representing the action of
Lorentz transformations (6), translations (4), special con-
formal transformations (4), space-time shears (9) and
scale transformations (1). All these transformations can
be adopted to define any conformally-affine theory of
gravity.

In this paper, we obtain the NLR of CA(3, 1) modulo
SO(3, 1) as 4D realizations starting from 5D-manifold [3].
This procedure has been recently adopted also in holo-
graphic approaches to Quantum Chromodynamics [91].

III. THE GROUP STRUCTURE IN 5D AND

4D-SPACES

In this section, we will discuss the group structure
of a 5D-Riemannian manifold (in particular the Lorentz
group) and its reduction to 4D-manifold. Such an ap-
proach gives a useful tool to deal with the realization
of effective theories of gravity in 4D and the problem of
mass generation. Let us start with the necessary defini-
tion of the Minkowski space-time R4 endowed with the
metric

(X,X)4 = (x0)2 −−→
X · −→X , (35)

where X = (x0,
−→
X ) is a four-vector, x0 is the time

coordinate and
−→
X is an ordinary vector in R3. The

Lorentz transformations are those linear transformations
of Minkowski-type space that leave (X,X)4, the scalar
product of four-vectors, invariant:

X −→ X ′ = ΛX , (36)
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being (ΛX,ΛX) = (X,X). If g is the Minkowski metric
with signature (+ − −−), Λ is a Lorentz transforma-
tion when ΛtgΛ = g. The set of such transformations is
the orthogonal group O(4), namely O(1, 3) considering
the time-like and space-like components, group charac-
terized, as well known, by the properties that detΛ = ±1
and the number of generators is 6. The coset decompo-
sition of such a group is

O(1, 3) = ISO(1, 3)∪ΛPSO(1, 3)∪ΛTSO(1, 3)∪ΛPT (1, 3) ,
(37)

where ISO(1, 3) is the proper orthochronus Lorentz group
with detΛ = 1, whose elements preserve parity (spatial
orientation) and the direction of time; ΛPSO(1, 3) is the
group of spatial inversion (parity inversion); ΛTSO(1, 3)
are the time reversal transformations and ΛPT (1, 3) are
the total space-time inversion, where we have taken into
account all the components without arbitrarily discard-
ing any part of them. The covering group of SO(1, 3)
is the simply connected complex group SL(2, C) whose
physical meaning is that particles (or in general fields)
transform according to its representations.

Now we want to extend this scheme to a 5D-space
(which we, initially, consider a flat manifold), where we
do not define a priori a signature for the metric and
which, after a 4D-reduction procedure, must be capable
of reproducing all the features of Lorentz group. For the
sake of generality, we do not specify the signature and
the number of dimensions. Below we will assume N = 5.

Let M(p,q) = RN be a manifold where p, q ≥ 0 are
integers and such that p + q = N with the flat metric
dS2 = (p,q)ηABdx

AdxB and A,B = 0, 1, 2, ..., N − 1. A
general signature is

(p,q)η =
(
(p,q)ηAB

)
= diag ( 1, 1, .., 1︸ ︷︷ ︸

p

; −1,−1, ..,−1︸ ︷︷ ︸
q

) ,

(38)
where p are the time-like directions and q are the space-
like directions. As particular cases, we have

EN = M(0,N) = Euclidean space,

MN = M(1,N−1) = N -dimensional Minkowski space.

It is important to stress that the other flat (pseudo)-
Riemannian spaces have more than one equivalent (inde-
pendent) time-like directions and hence have no distinc-
tion between future and past time-like directions as they
have in Minkowski space. This fact means that the space-
like pseudo-spheres are connected hypersurfaces, rather
than having two disjoint components as in Minkowski
space. The metric can be written as

dS2 =




p∑

A,B=0

δABdx
AdxB


−




N−1∑

A,B=p+1

δABdx
AdxB


 ,

(39)
where time-like and space-like components are clearly
separated. Some considerations are necessary at this
point. The metric (39) is invariant under rotations of

the time-like directions among themselves (except for EN

and MN which are degenerate particular cases, since in
the first case there are no time arrows and in the second
case, only one time arrow exists by definition) and of the
space-like directions among themselves. The remaining
independent pseudo-rotations are all boosts each involv-
ing a time-like and a space-like direction. The physical
meaning of such a result is that close time-like paths are
an usual feature in pseudo-Riemannian manifolds, more-
over a definite time arrow distinguishing the past from
the future is only a particular characteristic of Minkowski
spaces where Lorentz transformations work.

Let us now take into account the possible linear
transformations on this M(p,q)-manifold. A pseudo-
orthogonal group O(p, q) can be defined on this pseudo-
Riemannian manifold. This group consists of all the lin-
ear transformations XA → ΛA

BX
B such that the metric

(39) is invariant, i.e.

dS2 −→ ηABΛ
A
CΛ

B
Ddx

CdxD = ηCDdx
CdxD , (40)

more precisely we can say that

O(p, q) ≡
{
(ΛA

B) ∈ GL(N,R) | ηABΛ
A
CΛ

B
D = ηCD

}
,

(41)
where GL(N,R) are non-singular matrices in N dimen-
sions. Note that

det (ηAB)
[
det (ΛA

B)
]2

= det (ηAB) −→ det (ΛA
B) = ±1 ,

(42)
where the determinant is +1 for rotations SO(p, q) and
−1 for inversions, inversions which do not constitute a
sub-group (the product of two inversions gives a rota-
tion). In the first case, we have

SO(p, q) ≡
{
(ΛA

B) ∈ O(p, q) | det (ΛA
B) = 1

}
, (43)

which is a special pseudo-orthogonal group. An impor-
tant feature of such a group is that it consists of two dis-
connected pieces when both p and q are odd (see [55] for
the general demonstration). Special examples of SO(p, q)
are

SO(0, N) ≡ SO(N,R)

for p = 0 special orthogonal group,

SO(1, N − 1)

for p = 1 Lorentz or De Sitter group.

The group SO(p, q) can be decomposed as follows

SO(p, q) =




p×p︷ ︸︸ ︷
SO(p,R) |

p×q︷ ︸︸ ︷
boosts

|
− − −− | − −−−

boosts︸ ︷︷ ︸
q×p

| SO(q,R)︸ ︷︷ ︸
q×q




, (44)

where SO(p,R) are (p× p) square matrices which rotate
the time-like directions among themselves, SO(q,R) are



9

(q× q) square matrices which rotate the space-like direc-
tions among themselves, and the boosts are, in general,
(p× q) or (q×p) rectangular matrices which rotate time-
like and space-like directions.

The number of generators of the SO(p, q) group, i.e.

the number of independent elements or the dimension of
the group, can be easily calculated being, in general,

dimSO(N) =
N(N − 1)

2
.

An important remark is in order at this point. It is well-
known, since an old result by Riemann [56], that a N-
dimensional metric has s = N(N − 1)/2 degrees of free-
dom, that is, it is locally equivalent to give s independent
functions. This feature is related to the choice of local
charts but it is also related to the number of degrees of
freedom of gravitational field. As we will discuss below,
this is a key ingredient of our discussion. In our case, we
have

dimSO(p, q) = dimSO(p,R) + dimSO(q,R) + p · q .
(45)

The result is

N(N − 1)

2
=
p(p− 1)

2
+
q(q − 1)

2
+ p · q , (46)

where p · q is the number of independent pairs of one
space-like and one time-like direction. For N = 5, we
have 10 independent elements.

Clearly the rotations SO(p,R)⊗SO(q,R) form a sub-
group of SO(p, q) but the boosts do not; boosts along
different directions combine to give a boost plus a rota-
tion.

Let us now add the N translations X̃A → XA + aA

to the pseudo-orthogonal group O(p, q), consisting of ro-
tations and inversions. This fact yields the full group
of motions of M(p,q), which can be classified in the most
general inhomogeneous pseudo-orthogonal group IO(p, q).
Not taking into account the inversions, a remarkable sub-
group is ISO(p, q), the inhomogeneous special pseudo-
orthogonal group, of dimension

r =
N(N − 1)

2
+N =

N(N + 1)

2
, (47)

which gives r = 15 for N = 5. More generally, these
groups can be realized as matrix groups in N +1 dimen-
sions by adding a trivial row and a nontrivial column to
O(p, q), i.e.

IO(p, q) =




| a0

O(p, q) | ·
| ·
| aN−1

−−−− | − − −−
0 · · · 0 | 1



. (48)

This fact is extremely interesting for our purposes since,
adding up a dimension to the manifold in which we define
dynamics allows to remove the singularities. As special
cases, we have

• IO(0, N) = IO(N,R) =

Euclidean group in N dimensions,

• IO(1, N − 1) =

Poincaré group in N dimensions,

or inhomogeneous Lorentz group.

The pseudo-spheres at the origin of M(p,q) satisfy the
fundamental relation

ηABx
AxB = constant . (49)

Connected components of pseudo-sphere are (N − 1)-
dimensional hypersurfaces on which acts a N(N − 1)/2–
dimensional group, under which all points are equivalent.
Such spaces are all of constant curvature and of different
signatures (which are determined by considering coordi-
nate directions at their intersection with the Cartesian
axes; property which is important for the following pro-
jection process).

This general discussion can be specialized to the 5D-
case. First of all, we assume that a 5D-vector field defines
a metric whose signature is given by

(X,X)5 = (x0)2 −−→
X · −→X + ε(x4)

2 , (50)

where ε = ±1, so that, using the traditional terms, the
fifth dimension can be time-like or space-like. Moreover,
as we shall see below, it is the 4D-dynamics which dis-
criminates, by a bijective correspondence, the signature
giving rise to particle-like solutions (ε = −1) or to wave-
like solutions (ε = +1). When N = 5, we can obtain
pseudo-spheres of Lorentz signature and thus 4D-space-
times of constant curvature (as Friedmann-Robertson-
Walker ones). There are only two independent different
signatures for N = 5. They are (p, q) = (1, 4), corre-
sponding to the case ε = −1 and (p, q) = (2, 3), corre-
sponding to ε = +1. The 5D-manifolds are M(1,4) = R5

and M(2,3) = R5, respectively, where R5 is the 5D-space.
As it is well-known, the former case is called the De
Sitter space, while the latter is the Anti-De Sitter one.
The fact that the standard signature of the universe is
(+ − −−) can be derived from an equivalent process
starting from M(1,4) or M(2,3). The discrimination is
dynamically achieved, as we shall see below, when parti-
cle masses, after the embedding, spring out. Due to this
fact, we are going to deal with the degrees of freedom
of the space-time and of the particles under the same
standard so that a straightforward decomposition of our
5D-group can be

G5 ⊃ IO(3, 1)⊗ SU(3)⊗ SU(2)⊗ U(1) , (51)
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and then if G5 = SL(5), this is the minimal group, with
N2− 1 = 24 parameters which is capable of including all
the standard fundamental interactions and the 10 gener-
ators of inhomogeneous Lorentz group. In particular, it
can include the inhomogeneous pseudo-orthogonal group
IO(5) (in the two modalities IO(1, 4) or IO(2, 3)), which
is a sub-group of SL(5), comprehensive of all space-time
rotations, inversions and translations in 5D. It is clear
that 4D pseudo-Riemannian manifolds M(1,3) can be ob-
tained from both M(1,4) or M(2,3). This reduction pro-
cedure, as we will show below, is a dynamical process
depending on the splitting of the 5D-field equations.

An important consideration is necessary at this point.
After the reduction to 4D-physics, a given theory of grav-
ity is described by the conformal-affine group of diffeo-
morphisms GL(4) which is characterized by 4 × 4 = 16
generators. A straightforward splitting of such a group
is

GL(4)︸ ︷︷ ︸
4× 4︸ ︷︷ ︸

⊃ SU(3)︸ ︷︷ ︸
32 − 1︸ ︷︷ ︸

⊗SU(2)︸ ︷︷ ︸
22 − 1︸ ︷︷ ︸

⊗U(1)︸ ︷︷ ︸
1︸︷︷︸

⊗GL(2)︸ ︷︷ ︸
2× 2︸ ︷︷ ︸

(52)

where the number of generators is indicated for any
subgroup. The physical meaning of SU(3), SU(2) and
U(1) is clear while GL(2) represents a group of diffeo-
morphisms with 4 generators. The further generators
of gravitational field can be recovered in the framework
of Extended Theories of Gravity [49, 50] as we will see
below. The experimental consequences of these further
gravitational modes could be extremely interesting for
the physics at LHC.

IV. SPACE-TIME DEFORMATIONS AND THE

GL(4)-GROUP

Another ingredient for our considerations is repre-
sented by the space-time deformations that are elements
of the GL(4)-group. Let us take into account a metric g

on a space-time manifold M. Such a metric is assumed
to be an exact solution of the gravitational field equa-
tions. From the discussion in Sec. III, we can decompose
it by a co-tetrad field ωA(x)

g = ηABω
AωB. (53)

Let us define now a new tetrad field ω̃ = ΦA
C(x)ω

C , with
ΦA

C(x) a matrix of scalar fields. Finally we introduce a

space-time M̃ with the metric g̃ defined in the following
way

g̃ = ηABΦ
A
CΦ

B
D ω

CωD = γCD(x)ωCωD, (54)

where also γCD(x) is a matrix of fields which are scalars
with respect to the coordinate transformations.

If ΦA
C(x) is a Lorentz matrix in any point of M, then

g̃ ≡ g (55)

otherwise we say that g̃ is a deformation of g and M̃
is a deformed M. If all the functions of ΦA

C(x) are
continuous, then there is a one - to - one correspondence

between the points of M and the points of M̃. If ξ is a

Killing vector for g on M, the corresponding vector ξ̃ on

M̃ could not necessarily be a Killing vector.
A particular subset of these deformation matrices is

given by

ΦA
C(x) = Ω(x) δAC . (56)

which define conformal transformations of the metric,

g̃ = Ω2(x)g . (57)

In this sense, the deformations defined by Eq. (54) can
be regarded as a generalization of the conformal trans-
formations which we will discuss below.

We call the matrices ΦA
C(x) first deformation matri-

ces, while we can refer to

γCD(x) = ηABΦ
A
C(x)Φ

B
D(x). (58)

as the second deformation matrices, which, as seen above,
are also matrices of scalar fields. They generalize the
Minkowski matrix ηAB with constant elements in the
definition of the metric. A further restriction on the
matrices ΦA

C comes from the above mentioned theorem
proved by Riemann by which an N -dimensional metric
has N(N − 1)/2 degrees of freedom (see [58] for details).

With this definitions in mind, let us consider the main
properties of deforming matrices. Let us take into ac-
count a four dimensional space-time with Lorentzian sig-
nature. A family of matrices ΦA

C(x) such that

ΦA
C(x) ∈ GL(4)∀x, (59)

are defined on such a space-time. These functions are not
necessarily continuous and can connect space-times with
different topologies. A singular scalar field introduces a

deformed manifold M̃ with a space-time singularity.
As it is well known, the Lorentz matrices ΛA

C leave
the Minkowski metric invariant and then

g = ηEFΛ
E
AΛ

F
BΦ

A
CΦ

B
D ω

CωD = ηABΦ
A
CΦ

B
D ω

CωD.
(60)

It follows that ΦA
C give rise to right cosets of the

Lorentz group, i.e. they are the elements of the quo-
tient group GL(4,R)/SO(3, 1). On the other hand, a
right-multiplication of ΦA

C by a Lorentz matrix induces
a different deformation matrix.

The inverse deformed metric is

g̃αβ = ηCDΦ−1A
CΦ

−1B
De

α
Ae

β
B (61)

where Φ−1A
CΦ

C
B = ΦA

CΦ
−1C

B = δAB .
Let us decompose now the matrix ΦAB = ηAC ΦC

B in
its symmetric and antisymmetric parts

ΦAB = Φ(AB) +Φ[AB] = Ω ηAB +ΘAB + φAB (62)
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where Ω = ΦA
A, ΘAB is the traceless symmetric part

and φAB is the skew symmetric part of the first defor-
mation matrix respectively. Then standard conformal
transformations are nothing else but deformations with
ΘAB = φAB = 0 [57].

Finding the inverse matrix Φ−1A
C in terms of Ω, ΘAB

and φAB is not immediate, but as above, it can be split
in the three terms

Φ−1A
C = αδAC +ΨA

C +ΣA
C (63)

where α, ΨA
C and ΣA

C are respectively the trace, the
traceless symmetric part and the antisymmetric part of
the inverse deformation matrix. The second deformation
matrix, from the above decomposition, takes the form

γAB = ηCD(Ω δCA+ΘC
A+φ

C
A)(Ω δ

D
B+ΘD

B+φ
D
B) (64)

and then

γAB = Ω2 ηAB + 2ΩΘAB + ηCD ΘC
A ΘD

B +

+ηCD (ΘC
A φ

D
B + φCAΘD

B) + ηCD φ
C
A φ

D
B.

(65)

In general, the deformed metric can be split as

g̃αβ = Ω2gαβ + γαβ (66)

where

γαβ =
(
2ΩΘAB + ηCD ΘC

A ΘD
B + ηCD (ΘC

A φ
D
B+

+φCA ΘD
B) + ηCD φ

C
A φ

D
B

)
ωA
αω

B
β (67)

In particular, if ΘAB = 0, the deformed metric simplifies
to

g̃αβ = Ω2gαβ + ηCD φ
C
A φ

D
Bω

A
αω

B
β (68)

and, if Ω = 1, the deformation of a metric consists in
adding to the background metric a tensor γαβ. We have
to remember that all these quantities are not independent
as, by the theorem mentioned in [58], they have to form
at most six independent functions in a four dimensional
space-time. Similarly the controvariant deformed metric
can be always decomposed in the following way

g̃αβ = α2gαβ + λαβ (69)

Let us find the relation between γαβ and λαβ . By using

g̃αβ g̃βγ = δγα, we obtain

α2Ω2δγα + α2γγα +Ω2λγα + γαβλ
βγ = δγα (70)

if the deformations are conformal transformations, we
have α = Ω−1, so assuming such a condition, one ob-
tain the following matrix equation

α2γγα +Ω2λγα + γαβλ
βγ = 0 , (71)

and

(δβα +Ω−2γβα)λ
γ
β = −Ω−4γγα (72)

and finally

λγβ = −Ω−4(δ +Ω−2γ)−1α
βγ

γ
α (73)

where (δ +Ω−2γ)−1 is the inverse tensor of (δβα+Ω−2γβα).
To each matrix ΦA

B, we can associate a (1,1)-tensor
φαβ defined by

φαβ = ΦA
Bω

B
β e

α
A (74)

such that

g̃αβ = gγδφ
γ
αφ

δ
β . (75)

Vice-versa from a (1,1)-tensor φαβ , we can define a ma-
trix of scalar fields as

φAB = φαβω
A
α e

β
B. (76)

In summary, space-time deformations are endowed with
the conformal-affine structure of GL(N) groups (in par-
ticular GL(4)) and, passing from a given metric to an-
other, gives rise to induced scalar fields that, as we shall
show below, can be generated by a dimensional reduc-
tion mechanism. As we shall show below, this feature
can be considered as a sort of gravitational Higgs-like
mechanism capable of inducing symmetry breakings.

V. THE 5D-SPACE AND THE REDUCTION TO

4D-DYNAMICS

A. The 5D-formalism

In this section, we are going to define the curvature
invariants, the field equations and the conservation laws
in the 5D-space. In general, we ask for a space which is
a smooth manifold, singularity free and, first of all, de-
fined in such a way that conservation laws on it are valid.
Technically given, a 2-rank tensor of the form TAB, the
relation ∇AT

A
B = 0 must be always valid and never sin-

gular in the sense that it is preserved by diffeomorphisms
in any coordinate frame. The 5D-Riemann tensor is

RD
ABC = ∂BΓ

D
AC − ∂CΓ

D
AB +ΓD

EBΓ
E
AC − ΓD

ECΓ
E
AB . (77)

The number of independent components of such a tensor,
after the full derivation and thanks to the Petrov classifi-

cation [59], is
1

12
N2(N2 − 1) = 50. The Ricci tensor and

scalar are derived from the contractions

RAB = RC
ACB ,

(5)R = RA
A . (78)

The field equations can be derived from the 5D–Hilbert–
Einstein action
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(5)A = − 1

16π (5)G

∫
d5x
√
−g(5)

[
(5)R

]
, (79)

where, using the standard notation, (5)G is the 5D-
gravitational coupling constant and g(5) is the determi-
nant of the 5D-metric. The variational principle

δ

∫
d5x
√

−g(5)
[
(5)R

]
= 0 , (80)

gives the 5D-field equations which are

GAB = RAB − 1

2
gAB

(5)R = 0 , (81)

so that at least the Ricci-flat space is always a solution.
Let us define now the 5D-stress-energy tensor:

TAB = ∇AΦ∇BΦ− 1

2
gAB∇CΦ∇CΦ , (82)

where only the kinetic terms are present. As standard,
such a tensor can be derived from a variational principle

TAB =
2√
−g(5)

δ
(√

−g(5)LΦ

)

δgAB
, (83)

where LΦ is a Lagrangian density connected with the
scalar field Φ whose physical meaning will be clear be-
low. Because of the definition of 5D space itself [42], it
is important to stress now that no self-interaction poten-
tial V (Φ) has been taken into account so that TAB is a
completely symmetric object and Φ is, by definition, a
cyclic variable. This fact guarantees that Noether the-
orem holds for TAB and a conservation law intrinsically
exists. With these considerations in mind, the field equa-
tions can now assume the form

RAB = χ

(
TAB − 1

2
gABT

)
, (84)

where T is the trace of TAB and χ = 8π (5)G, being
~ = c = 1. The form (84) of field equations is useful in
order to put in evidence the role of the scalar field Φ, if
we are not simply assuming Ricci-flat 5D-spaces. As we
said, TAB is a symmetric tensor for which the relation

T[A,B] = TAB − TBA = 0 , (85)

holds. Due to the choice of the metric and to the symmet-
ric nature of the stress-energy tensor TAB and of the Ein-
stein field equations GAB , the contracted Bianchi identi-
ties

∇AT
A
B = 0 , ∇AG

A
B = 0 , (86)

hold. Developing the stress-energy tensor, we have

∇AT
A
B = ∇A

(
∂BΦ∂

AΦ− 1

2
δAB∂CΦ∂

CΦ

)
=

= (∇AΦB)Φ
A +ΦB

(
∇AΦ

A
)
−

+
1

2
(∇BΦC)Φ

C − 1

2
ΦC

(
∇BΦ

C
)
=

= (∇AΦB)Φ
A +ΦB

(
∇AΦ

A
)
− ΦC

(
∇BΦ

C
)

. (87)

Since our 5D-space is a Riemannian manifold, it is

∇AΦB = ∇BΦA , (88)

and then

ΦA (∇AΦB)− ΦC

(
∇BΦ

C
)
=

= ΦA (∇BΦA)− ΦC

(
∇BΦ

C
)
= 0 . (89)

In this case, partial and covariant derivatives coincide for
the scalar field Φ. Finally

∇AT
A
B = ΦB

(5)
�Φ , (90)

where (5)
� is the 5D d’Alembert operator defined as

∇AΦ
A ≡ gABΦ,A;B ≡ (5)

�Φ. The general result is that
the conservation of the stress-energy tensor TAB (i.e. the
contracted Bianchi identities) implies the Klein-Gordon
equation which assigns the dynamics of Φ, that is

∇AT
B
A = 0 ⇐⇒ (5)

�Φ = 0 , (91)

assuming ΦB 6= 0 since we are dealing with a non-trivial
physical field. Let us note again the absence of self-
interaction (i.e. potential) terms. As we shall see below,
the relation (91), being a field equation, gives a physical
meaning to the fifth dimension.

The reduction to the 4D-dynamics can accomplished
by taking into account the Campbell theorem [60]. This
theorem states that it is always possible to consider a 4D
Riemannian manifold, defined by the line element ds2 =
gαβdx

αdxβ , in a 5D one with dS2 = gABdx
AdxB.

We have gAB = gAB(x
α, x4) with x4 the yet unspec-

ified extra coordinate. As we discussed above, gAB is
covariant under the group of 5D coordinate transforma-
tions xA → xA(xB), but not under the (restricted) group
of 4D transformations xα → xα(xβ). This fact has, as a
relevant consequence, that the choice of 5D coordinates
results as the gauge necessary to specify the 4D physics
also in its non-standard aspects. Vice-versa, in specify-
ing the 4D physics, the bijective embedding process in
5D gives physical meaning to the fifth coordinate x4. In
other words, the fifth coordinate, in 4D can assume the
physical meaning of the mass.
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B. The reduction to 4D

Let us replace the variational principle (80) with

δ

∫
d(5)x

√
−g(5)

[
(5)R+ λ(g44 − εΦ2)

]
= 0 , (92)

where λ is a Lagrange multiplier, Φ a scalar field and
ε = ±1. This approach is completely general and used in
theoretical physics when we want to put in evidence some
specific feature [103]. In this case, we need it in order to
derive the physical gauge for the 5D–metric. We can
write down the metric as

dS2 = gABdx
AdxB = gαβdx

αdxβ + g44(dx
4)2

= gαβdx
αdxβ + εΦ2(dx4)2 , (93)

from which we obtain directly particle-like solutions (ε =
−1) or wave-like solutions (ε = +1) in the 4D-reduction
procedure. The standard signature of 4D-component of
the metric is (+ − −−) and α, β = 0, 1, 2, 3. Further-
more, the 5D-metric can be written in a Kaluza–Klein
fashion as the matrix

gAB =

(
gαβ 0
0 εΦ2

)
, (94)

and the 5D-curvature Ricci tensor is

(5)Rαβ = Rαβ − Φ,α;β

Φ
+

ε

2Φ2

(
Φ,4gαβ,4

Φ
− gαβ,44+

+gλµgαλ,4gβµ,4 −
gµνgµν,4gαβ,4

2

)
, (95)

where Rαβ is the 4D-Ricci tensor. The expressions for
(5)R44 and (5)R4α can be analogously derived. After the
projection from 5D to 4D, gαβ , derived from gAB, no
longer explicitly depends on x4, so, from Eq.(95), a useful
expression for the Ricci scalar can be derived:

(5)R = R− 1

Φ
�Φ , (96)

where the dependence on ε is explicitly disappeared and
� is the 4D-d’Alembert operator which gives �Φ ≡
gµνΦ,µ;ν . The action in Eq.(92) can be recast in a 4D-
reduced Brans-Dicke action of the form

A = − 1

16πGN

∫
d4x

√−g [ΦR+ LΦ] , (97)

where the Newton constant is given by

GN =
(5)G

2πl
(98)

with l a characteristic length in 5D which can be related
to a suitable Compton length. Defining a generic function
of a 4D-scalar field φ as

− Φ

16πGN
= F (φ) , (99)

we get, in 4D, a general action in which gravity is non-
minimally coupled to a scalar field, that is

A =

∫

M

d4x
√−g

[
F (φ)R +

1

2
gµνφ;µφ;ν − V (φ)

]
+

+

∫

∂M

d3x
√
−bK , (100)

where the form and the role of V (φ) are still general. The
second integral is a boundary term where K ≡ hijKij

is the trace of the extrinsic curvature tensor Kij of the
hypersurface ∂M which is embedded in the 4D-manifold
M; b is the metric determinant of the 3D-manifold.

The Einstein field equations can be derived by varying
with respect to the 4D-metric gµν

Gµν = Rµν − 1

2
gµνR = T̃µν , (101)

where

T̃µν =
1

F (φ)

{
−1

2
φ;µφ;ν +

1

4
gµνφ;αφ

;α+

−1

2
gµνV (φ)− gµν�F (φ) + F (φ);µν

}
(102)

is the effective stress–energy tensor containing the non-
minimal coupling contributions, the kinetic terms and
the potential of the scalar field φ. In the case in which
F (φ) is a constant F0 (in our units, F0 = −1/(16πGN)),
we get the stress–energy tensor of a scalar field minimally
coupled to gravity, that is

Tµν = φ;µφ;ν − 1

2
gµνφ;αφ

;α + gµνV (φ) . (103)

By varying with respect to φ, we get the 4D-Klein–
Gordon equation

�φ−RF ′(φ) + V ′(φ) = 0, (104)

where F ′(φ) = dF (φ)/dφ and V ′(φ) = dV (φ)/dφ. It is
possible to show that Eq.(104) is nothing else but the
contracted Bianchi identity. This feature shows that the
effective stress–energy tensor at right hand side of (101)
is a zero–divergence tensor and this fact is fully compati-
ble with Einstein theory of gravity also if we started from
a 5D-space. Specifically, the reduction procedure, which
we have used, preserves the standard features of GR since
we are in the realm of the conformal-affine structure dis-
cussed above.

In order to physically identify the fifth dimension, let
us recast the above Klein-Gordon equation (104) as

(
� +m2

eff

)
φ = 0 , (105)

where

m2
eff = [V ′(φ) −RF ′(φ)]φ−1 , (106)

is the effective mass, i.e. a function of φ, where
self-gravity contributions, RF ′(φ), and scalar field self-
interactions, V ′(φ), are taken into account. In any quan-
tum field theory formulated on curved space-times, these
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contributions, at one-loop level, have the same "weight"
[104]. We want to show that a "natural" way to generate
particle masses can be achieved starting from a 5D pic-
ture. In other words, the concept of mass can be derived
from a geometric viewpoint.

VI. EXTENDED THEORIES OF GRAVITY

A. Effective gravity in 4D

The above scalar-tensor action for gravitational field
is a particular case of a general class of effective theories
in four dimensions which can be achieved by the reduc-
tion procedure. In general, starting from any higher-
dimensional theory, we can derive the class of effective
actions [49, 50]

A =

∫
d4x

√−g
[
F (R,�R,�2R, ..�kR, φ)+

−ε
2
gµνφ;µφ;ν + Lm

]
, (107)

where F is a generic function of curvature invariants2

and scalar field φ. It is interesting to point out that
this theory looks similar to non-local gravities of general
sort introduced in [51] and [52]. The term Lm, as above,
is the minimally coupled ordinary matter contribution.
We shall use physical units 8πG = c = ~ = 1; ε is a
constant which specifies the theory. Actually its values
can be ε = ±1, 0 fixing the nature and the dynamics of
the scalar field which can be a standard scalar field, a
phantom field or a field without dynamics [63, 64] .

In the metric approach, the field equations are ob-
tained by varying (107) with respect to gµν . We get

Gµν =
1

G

[
T µν +

1

2
gµν(F − GR) + (gµλgνσ−

+gµνgλσ)G;λσ +
1

2

k∑

i=1

i∑

j=1

(gµνgλσ+

+gµλgνσ)(�j−i);σ

(
�

i−j ∂F

∂�iR

)

;λ

−

gµνgλσ
(
(�j−1R);σ�

i−j ∂F

∂�iR

)

;λ

]
, (108)

where Gµν is the above Einstein tensor and

G ≡
n∑

j=0

�
j

(
∂F

∂�jR

)
(109)

is a scalar function which determines the coupling.

2 Other curvature invariants like RµνR
µν , RµναβR

µναβ ,

CµναβC
µναβ are also possible, as we will show below.

The differential Eqs.(108) are of order (2k + 4). The
stress-energy tensor is due to the kinetic part of the scalar
field and to the ordinary matter:

Tµν = Tm
µν +

ε

2
[φ;µφ;ν − 1

2
φ;αφ;α] . (110)

The (possible) contribution of a potential V (φ) is con-
tained in the definition of F . From now on, we shall
indicate by a capital F a Lagrangian density containing
also the contribution of a potential V (φ) and by F (φ),
f(R), or f(R,�R) a function of such fields without po-
tential.

By varying with respect to the scalar field φ, we obtain
the Klein-Gordon equation

ε�φ = −∂F
∂φ

. (111)

The simplest class of (107) theories extending GR is
achieved assuming

F = f(R) , ε = 0 , (112)

in the action (107); f(R) is an arbitrary (analytic) func-
tion of the Ricci curvature scalar R. The standard
Hilbert-Einstein action is recovered for f(R) = R. Vary-
ing with respect to gαβ, we get the field equations

f ′(R)Rαβ − 1

2
f(R)gαβ = f ′(R);

µν

(gαµgβν − gαβgµν) ,

(113)
which are fourth-order equations due to the term
f ′(R);µν ; the prime indicates the derivative with respect
to R. Eq.(113) is also the equation for Tµν = 0 when the
matter term is absent.

By a suitable manipulation, the above equation can be
rewritten as:

Gαβ =
1

f ′(R)

{
1

2
gαβ [f(R)−Rf ′(R)] + f ′(R);αβ−

+gαβ�f
′(R)} +

Tm
αβ

f ′(R)
= T curv

αβ +
Tm
αβ

f ′(R)
,

(114)

where T curv
αβ is an effective stress-energy tensor con-

structed by the extra curvature terms and standard mat-
ter contribution has been also considered. In the case
of GR, T curv

αβ identically vanishes while the standard,
minimal coupling is recovered for the matter contribu-
tion. The peculiar behavior of GR, that is f(R) = R,
is due to the particular form of the Lagrangian itself
which, even though it is a second order Lagrangian, can
be non-covariantly rewritten as the sum of a first order
Lagrangian plus a pure divergence term. The Hilbert-
Einstein Lagrangian can be recast as follows:

LHE =
√−g

[
pαβ(Γρ

ασΓ
σ
ρβ − Γρ

ρσΓ
σ
αβ) +

+∇σ(p
αβuσαβ)

]
, (115)
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where:

pαβ =
√−ggαβ =

∂LHE

∂Rαβ
, (116)

Γ is the Levi-Civita connection of g and uσαβ is a quantity

constructed from the variation of Γ [59]. Since uσαβ is not
a tensor, the above expression is not covariant; however a
standard procedure has been studied to recast covariance
in the first order theories [65]. This clearly shows that the
field equations should consequently be second order and
the Hilbert-Einstein Lagrangian is thus degenerate. In
other words, we can say that the only degenerate theory
of gravity (with respect to the class of f(R)-gravity) is
GR being its Hessian determinant null.

From the action (107), it is possible to obtain the case
discussed in the previous section by choosing

F = F (φ)R − V (φ) , ε = −1 , (117)

and then

A =

∫
d4x

√−g
[
F (φ)R +

1

2
gµνφ;µφ;ν − V (φ)

]
.

(118)
Several other interesting cases can be obtained by suit-
able choices of the function F . However, all these models
can be related by conformal-affine transformations.

B. Conformal Transformations

It is possible to show that any higher-order or scalar-
tensor theory, in absence of ordinary matter, e.g. a per-
fect fluid, is conformally equivalent to an Einstein the-
ory plus minimally coupled scalar fields (see [49, 50] for
details). If standard matter is present, conformal trans-
formations allow to transfer non-minimal coupling to the
matter component [66]. The conformal transformation
on the metric gµν is

g̃µν = e2ωgµν , (119)

where e2ω is the conformal factor. Under this transfor-
mation, the Lagrangian in (118) becomes

√−g
(
FR+

1

2
gµνφ;µφ;ν − V

)
=
√
−g̃e−2ω

(
FR̃−

+6F�g̃ω − 6Fω;αω
;α +

1

2
g̃µνφ;µφ;ν − e−2ωV

)
,

(120)

in which R̃ and �g̃ are the Ricci scalar and the
d’Alembert operator relative to the metric g̃. Requiring
the theory in the metric g̃µν to appear as a standard Ein-
stein theory [107], the conformal factor has to be related
to F , that is

e2ω = −2F. (121)

where F must be negative in order to restore physical
coupling in our adopted signature. Using this relation
and introducing a new scalar field φ̃ and a new potential
Ṽ , defined respectively by

φ̃;α =

√
3F 2

φ − F

2F 2
φ;α, Ṽ (φ̃(φ)) =

V (φ)

4F 2(φ)
, (122)

the Lagrangian (120) becomes

√−g
(
FR+

1

2
gµνφ;µφ;ν − V

)
=

=
√
−g̃
(
−1

2
R̃+

1

2
φ̃;αφ̃

;α − Ṽ

)
,

which is the standard Hilbert-Einstein Lagrangian plus
the Lagrangian of a minimally coupled scalar field φ̃.
Therefore, every non-minimally coupled scalar-tensor
theory, in absence of ordinary matter, e.g. perfect fluid,
is conformally equivalent to an Einstein theory, being the
conformal transformation and the potential suitably de-
fined by (121) and (122). The converse is also true: for
a given F (φ), such that 3F 2

φ − F > 0, we can transform
a standard Einstein theory into a non-minimally coupled
scalar-tensor theory. This means that, in principle, if we
are able to solve the field equations in the framework of
the Einstein theory in presence of a scalar field with a
given potential, we should be able to get the solutions
for the scalar-tensor theories, assigned by the coupling
F (φ), via the conformal transformation (121) with the
constraints given by (122). Following the standard ter-
minology, the “Einstein frame” is the framework of the
Einstein theory with the minimal coupling and the “Jor-
dan frame” is the framework of the non-minimally cou-
pled theory [66].

Performing the conformal transformation (119) in the
case of f(R)-gravity, the field equations (114) become:

G̃αβ =
1

f ′(R)

{
1

2
gαβ [f(R)−Rf ′(R)] + f ′(R);αβ−

+gαβ�f
′(R)}+ 2 (ω;α;β + gαβ�ω − ω;αω;β+

+
1

2
gαβω;γω

;γ

)
.

(123)

The conformal factor is

ω =
1

2
ln |f ′(R)| , (124)

which has to be substituted into (114). Rescaling ω in
such a way that

kφ = ω , (125)

and k =
√
1/6, we obtain the Lagrangian equivalence

√−gf(R) =
√
−g̃
(
−1

2
R̃ +

1

2
φ;αφ

;α − Ṽ

)
, (126)
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and the Einstein equations in standard form

G̃αβ = φ;αφ;β − 1

2
g̃αβφ;γφ

;γ + g̃αβV (φ) , (127)

with the potential

V (φ) =
e−4kφ

2

[
P(φ)−N

(
e2kφ

)
e2kφ

]
=

=
1

2

f(R)−Rf ′(R)

f ′(R)2
. (128)

Here N is the inverse function of P ′(φ) and P(φ) =∫
exp(2kφ)dN . However, the problem is completely

solved if P ′(φ) can be analytically inverted. In sum-
mary, a fourth-order theory is conformally equivalent to
the standard second-order Einstein theory plus a scalar
field.

This procedure can be always extended to more gen-
eral theories. If the theory is assumed to be higher than
fourth order, we may have Lagrangian densities of the
form,

L = L(R,�R, ...�kR) . (129)

As we have seen, any � operator introduces two further
terms of derivation into the field equations. For example
a theory like

L = R�R , (130)

is a sixth-order theory and the above approach can be
pursued by considering a conformal factor of the form

ω =
1

2
ln

∣∣∣∣
∂L
∂R

+�
∂L
∂�R

∣∣∣∣ . (131)

In general, increasing two orders of derivation in the
field equations (i.e. for every term �R), corresponds
to adding a scalar field in the conformally transformed
frame. A sixth-order theory can be reduced to an Ein-
stein theory plus two minimally coupled scalar fields;
a 2n-order theory can be, in principle, reduced to an
Einstein theory plus (n − 1)-scalar fields. On the other
hand, these considerations can be directly generalized to
higher-order-scalar-tensor theories in any number of di-
mensions. Due to the conformal transformations (and
the conformal–affine invariance), the physical informa-
tion remains the same. This means that any two fur-
ther degrees of freedom can be recast as a scalar field (of
gravitational origin) whose dynamics is given by an effec-
tive Klein-Gordon equation. We want to show that such
further gravitational degrees of freedom can play a fun-
damental role inducing spontaneous symmetry breaking
and then generating the mass of observed particles.

VII. THE GENERATION OF MASSES

A. Particle masses as eigenstates from 5D

The above considerations allow a straightforward
mechanism for the generation of masses that can be re-
lated to the projection from 5D to 4D-manifolds. Let us

start with a toy model that can immediately illustrate the
mechanism. In a flat 5D-space-time, the 5D d’Alembert
operator can be split, following the metric definition (93)
for particle-like solutions, as:

(5)
� = �− ∂4

2 , (132)

selecting the value ε = −1 in the metric. Introducing the
scalar field Φ, generated by the projection through the
Lagrange multiplier in the action (80), we have

(5)
�Φ =

[
�− ∂4

2
]
Φ = 0 , (133)

and then

�Φ = ∂4
2Φ . (134)

The problem is solvable by separation of variables since
the metric matrix (94 ) is diagonal in the fifth component.
We split the scalar field Φ into two functions

Φ = φ(t, ~x)ψ(x4) , (135)

where the field φ depends on the ordinary space-time
coordinates, while χ is a function of the fifth coordinate
x4. Inserting (135) into Eq.(134), we get

�φ

φ
=

1

ψ

[
d2ψ

dx24

]
= −k2n , (136)

where kn must be a constant for consistency. From
Eq.(136), we obtain the two equations of motion

(
�+ k2n

)
φ = 0 , (137)

and

d2ψ

dx24
+ k2nψ = 0 . (138)

Eq.(137) is the evolution equation for the further grav-
itational degrees of freedom that we will discuss below.
Eq.(138) describes a harmonic oscillator whose general
solution is

ψ(x4) = c1e
−iknx4 + c2e

iknx4 . (139)

The constant kn has the physical dimension of the inverse
of a length and, assigning boundary conditions, we can
derive the eigenvalue relation

kn =
2π

l
n , (140)

where n is an integer and l a length which we have previ-
ously defined in Eq.(98). As a result, in standard units,
we recover the Compton length

λn =
~

2πmnc
=

1

kn
, (141)
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which assigns the mass of a particle. It has to be stressed
that, the eigenvalues of Eq.(138) are the masses of par-
ticles which are generated by the reduction process from
5D to 4D. On the other hand, different values of n fix
the families of particles, while, for any given value of n,
the parameters c1,2 distinguish a particle and an antipar-
ticle within a family. This toy model can be refined by
considering other quantum numbers of particles. For the
moment, we are interested only in the problem of mass
generation.

B. 4D-dynamics of the scalar field Φ

Dynamics of 4D-component of the induced scalar field
Φ, see Eq.(135), can be related to the space-time defor-
mations discussed above. In this way, the role of GL(4)-
group of diffeomorphism will result of fundamental im-
portance. Let us start our consideration by showing how
particles can acquire mass by deformations and let us re-
late the procedure with the above reduction mechanism.
As standard, a particle with zero mass is characterized
by the invariant relation

ηαβpαpβ = 0 , (142)

in the Minkowski space. Deforming the space-time and
considering the above operators, one has

ηABΦC
AΦ

D
Be

α
Ce

β
Dpαpβ = gαβpαpβ = 0 , (143)

so we have defined two frames, one, the Minkowski space-
time, defined by the metric ηαβ and the other defined by
the metric gαβ , generated by the projection from 5D. The
two frames are related by the matrices of deformation
functions ΦC

A(x). In both frames the massless particle
follow a null path, but we observe that using the decom-
position (69) the particle does not appear massless with
respect to the first frame. As matter of fact, Eq. (143)
becomes

Ω−2ηαβpαpβ + χαβpαpβ = 0 , (144)

so that

ηαβpαpβ = −Ω2χαβpαpβ 6= 0. (145)

and now in the first frame we are able to define a rest
reference system for the particle.

For a massless particle it is not possible to define a rest
reference system since considering the invariant relation,

g00p20 + 2g0ip0pi + gijpipj = 0 , (146)

and defining as rest frame the system in which pj = 0,
the solution exists only for p0 = 0 i.e. only the triv-
ial solution pα = 0 satisfies the “ rest reference frame”
condition.

On the other hand, if we consider massive particle,
then

g00p20 + 2g0ip0pi + gijpipj = m2 , (147)

the rest frame is characterized by the conditions pj =
0 and consequently g00p20 = m2. This means that the
(squared) mass is proportional to the (squared) energy
and the solution is no more trivial.

To overcome this problem, let us fix the deformation
such that

− Ω2χαβpαpβ = m2 , (148)

m being the mass "attribute" to the particle.
In the second frame we have

p20 − ~p 2 +Ω2χ00p20 + 2χ0ip0pi + χijpipj = 0 , (149)

if ~p = 0 then

p20(1 + Ω2χ00) = 1 , (150)

which implies, besides the trivial solution, also the con-
dition Ω2χ00 = −1 which, together with Eq. (148), gives

p20 = m2, (151)

the rest system condition in the first frame.
It is also possible to show that there is an equivalence

between deforming a metric and giving mass to a massless
particle. As we have shown, we have described the space-
time deformation by using matrices of scalar fields. The
same problem can be addressed in terms of space-time
tensors

ηABΦ
A
CΦ

B
De

C
µ e

D
ν = gαβΦ

α
µΦ

β
ν = g̃µν , (152)

where we have used the tetrad

eµA e
B
µ = δBA . (153)

It should be observed that the Φα
µ do not represent coor-

dinates transformations as far as they cannot be reduced
to Jacobian matrices. This means that Φα

µ have a fun-
damental physical meaning. Starting from g̃ we observe
that if gµν p

µ pν = 0 then g̃µν p
µ pν 6= 0 when g̃ is a gen-

eral deformation that can be related to the conformal
transformations of g. Eq. (152) tells us that, equiva-
lently, we can read the deformation as a transformation
of the 4-momentum of the particle

g̃µν p
µ pν = gαβΦ

α
µΦ

β
νp

µ pν ≡ gαβ p̃
α p̃β , (154)

in such a way there exists deformations of space-time
which give mass to massless particles. In other words,
deformations, that are elements of the conformally-
invariant GL(4)-group can be related, in principle, to the
generation of the masses of particles.

C. A Lagrangian Approach for mass generation

from deformations

So far we have considered the geometrical definition
of mass from the point of view of relativistic mechanics.
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Now we would like to extend this result to classical field
theory with the aim to extend it to quantum field theory.

Let us consider a scalar free massless particle. It can
be described by the Lagrangian

L =
1

2

√−ggµν(∂µφ)(∂νφ) =

=
1

2

√−g (ηµν + χµν) (∂µφ)(∂νφ). (155)

It is well-known that the free propagator has a pole in
p2 = 0. In order to introduce a mass term in the La-
grangian and in the field equations, we have to eliminate
a divergence from it, that is considering

∂µ
[
∂ν

√−g χµνφ2
]
= ∂µ∂ν

(√−g χµν
)
φ2 +

+4 ∂ν
(√−g χµν

)
φ∂µ φ+ 2

√−g χµν∂µφ ∂νφ+

+2
√−g χµνφ ∂µ∂νφ , (156)

the Lagrangian takes the form

L̃ =
1

2

√−g (ηµν) (∂µφ)(∂νφ)−
1

4
∂µ∂ν

(√−g χµν
)
φ2 −

+ ∂ν
(√−g χµν

)
φ (∂µ φ)−

1

2

√−g χµνφ ∂µ∂νφ.

(157)

In this way a “mass” term m2 = 1
2∂µ∂ν (

√−g χµν) can
be defined in a new Lagrangian. On the other hand,
considering an action

A =

∫ √−gL̃ . (158)

and a variational principle

δA
δφ

= 0 , (159)

implies the equation

∂L̃
∂φ

− ∂α
∂L̃

∂(∂αφ)
+ ∂α∂β

∂L̃
∂(∂α∂βφ)

= 0 , (160)

which gives

∂µ
(√−ggµν∂νφ

)
= 0 , (161)

or

�φ = ηµν∂µ∂νφ+Ω2χµν∂µ∂νφ = 0 . (162)

It is well-known that this equation cannot give, in gen-
eral, a potential or a mass term, except when we take as
a solution a plane wave φ = exp ikµx

µ. In this case the
χ part of the equation can be interpreted as a mass term
according to

χµν∂µ∂νφ = −Ω2χµνkµkν exp ikµx
µ = m2φ . (163)

This equation can be compared with Eq. (148), previ-
ously derived for a relativistic particle. We can extend

this result to each function which can be expressed by a
Fourier transform,

φ(x) =

∫
exp(ikµx

µ)f̃(k)d4k , (164)

where the space-time dependent mass term is defined by
the equation

m2(x) = −
∫
χµνkµkν exp(ikµx

µ)f̃(k)d4k. (165)

With these restrictions, the Klein-Gordon equation for a
massless particle in the g-frame is seen in the η-frame as
a massive particle as soon as the plane wave solutions are
considered. This result makes more sense when the mass
is interpreted as a quantum effect.

In the case a curved space-time, the above arguments
can be implemented by the substitutions of operators

η → g

∂ → ∇ .

It is important to note that the scalar field equation is
not conformally invariant. In order to have a conformally
invariant scalar field equation, it is necessary to intro-
duce, in the Lagrangian density a non-minimal coupling
between geometry and field. A possible choice is

L =
1

2

√−ggµν(∂µφ)(∂νφ)− ξR(x)φ2 , (166)

that perfectly fits requirements of action (107) with suit-
able choices . By varying with respect to φ, the Klein-
Gordon equation

�φ+ ξRφ = 0 , (167)

is recovered. Minimal coupling is obtained for ξ = 0.
Conformal coupling is recovered for

ξ =
1

4
[(N − 2) (N − 1)] , (168)

in an N dimensional space-time [104]. By analogy with
the previous considerations, a deformation with constant
curvature R = m2 gives a mass term in the original
frame. However, we need also to interpret the other terms
appearing in the new frame. Expanding Eq. (167),

ηµν∂µ∂νφ+χµν∂µ∂νφ+(ηµν + χµν) Γλ
µν∂λφ+ ξRφ = 0 ,

(169)
we need that the connection is compatible with the metric
tensor (ηµν + χµν), that is

∇ (ηµν + χµν) = 0. (170)

In order to have a deformation defining a mass m2 = R
in the original frame, two conditions must be satisfied,

R = R0 > 0 (171)
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where R0 is a constant and

χµν∂µ∂νφ+ (ηµν + χµν) Γλ
µν∂λφ = 0 , (172)

which is a restriction on the deformation tensor χµν . This
condition allows to determine the mass by a conformal
transformation. In fact, in the new frame, the equation
is

gαβ∇α∂βφ+ ξRφ = 0 , (173)

which, in the case of a conformal transformation

gαβ = Ω2ηαβ , (174)

becomes

Ω−2ηαβ
(
∂α∂βφ+ 2Ω−1∂γΩ∂γφ

)
−6ξηαβΩ−3∂α∂βΩ = 0 .

(175)
It is equivalent to a massive scalar field equation (in the
first frame), if the condition

2Ω−1∂γΩ∂γφ− 6ξηαβΩ−1∂α∂βΩ = m2 , (176)

holds. Since Eq. (175) is linear in φ, we can define φ =
eiλαxα

. Eq. (176) becomes

2Ω−1∂γΩλγ − 6ξηαβΩ−1∂α∂βΩ = m2 , (177)

then a solution is Ω = eikαxα

and the mass depends on
the combination

m2 = 6ξηαβkαkβ − 2ηαβkαλβ . (178)

In this example, the deformation is a specific complex
function, but we can extend this result to any function
by taking

Ω(x) =

∫
Ω̃(k)eikxd4k , (179)

and also non-constant masses can be is obtained being

m2 =

∫
Ω̃(k)(6ξηαβkαkβ − 2ηαβkαλβ)e

ikxd4k∫
Ω̃(k)eikxd4k

. (180)

These results mean that a geometrical definition of mass
is always possible. It can be induced by the conformal
transformation Ω which is a restriction of the deforma-
tions group GL(4). Summarizing we have shown that:

• the fifth dimension of a reduction mechanism from
5D to 4D-manifolds can be interpreted as a mass
generator:

• the further degrees of freedom coming out from
Extended Theories of Gravity (i.e. extensions of
GR) have a physical meaning and cannot be sim-
ply gauged away;

• as soon as particles acquire masses, GL(4) can in-
duce symmetry breakings giving rise to the ob-
served interactions.

In the next section, we will discuss and classify the fur-
ther degrees of freedom related to the Extended Gravity.
The aim is to show how they could be related to a sort
of Higgs-like mechanism.

VIII. THE CLASSIFICATION OF

GRAVITATIONAL MODES IN EXTENDED

GRAVITY

A. Massive and massless modes of gravitational

field

The above considerations demonstrate that any reduc-
tion scheme from 5D to 4D induces effective theories
of gravity where further gravitational modes have to be
taken into account. In this view, GR is an exception in-
cluding only massless tensor modes. Furthermore, GR
is a degenerate theory where Hessian determinant is null
preventing any quantization approach. With this situa-
tion is mind, it is natural to take into account further
gravitational modes, emerging from Extended Gravity,
that are usually discarded. Such modes could have in-
teresting effects at ultra-violet and infra-red scales and
could play an important role both in the Standard Model
of particles and in gravitational radiation [72]. In partic-
ular, they could be connected to the symmetry break-
ing in the high energy limit (and investigated at LHC)
and have a signature in the cosmological stochastic back-
ground of gravitational waves [109]. We want to show
that such statements are very general and only GR shows
two polarization modes (being a degenerate, constrained
theory). As we are going to demonstrate, a generic Ex-
tended Theory of Gravity, constructed with a function
of curvature invariants, shows six gravitational polariza-
tions consistently with the Riemann theorem [56].

Assuming any curvature invariant other than the Ricci
scalar 3 a generic 4D-effective action for the gravitational
interaction is

A =

∫
d4x

√−gf(R,P,Q) (181)

where

P ≡ RαβR
αβ

Q ≡ RαβγδR
αβγδ (182)

Varying with respect to the metric one gets the field equa-
tions:

FGµν =
1

2
gµν (f −R F )− (gµν�−∇µ∇ν)F

−2
(
fPR

α
µRαν + fQ RαβγµR

αβγ
ν

)

−gµν∇α∇β(fPR
αβ)−�(fPRµν)

+2∇α∇β

(
fP Rα

(µδ
beta ν) + 2fQ Rα β

(µν)

)

(183)

3 We restrict to fourth-order theories which give the main con-

tributions in a renormalization process, but we can extended

the following considerations to any higher-order theory involving

generic powers of the �-operator.
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where we have set

F ≡ ∂f

∂R
, fP ≡ ∂f

∂P
, fQ ≡ ∂f

∂Q
(184)

and, as above, � = gαβ∇α∇β is the d’Alembert operator.
The notation T(µν) =

1
2 (Tµν + Tνµ) denotes symmetriza-

tion with respect to the indices (µ, ν).
Taking the trace of Eq. (183), we find:

�

(
F +

fP
3
R

)
=

1

3

[
2f −RF − 2∇a∇b((fP + 2fQ)R

αβ)+

−2(fPP + fQQ)] (185)

Expanding the third term on the r.h.s. of (185) and using

the Bianchi identity Gαβ
;β = 0, we get:

�

(
F +

2

3
(fP + fQ)R

)
=

1

3
×

[2f −RF − 2Rαβ∇α∇β(fP + 2fQ)−R�(fP + 2fQ)

−2(fPP + fQQ)] (186)

If we define

φ ≡ F +
2

3
(fP + fQ)R (187)

and
dV

dφ
≡ r.h.s. of (186)

then we get a Klein-Gordon equation for the scalar field
φ:

�φ =
dV

dφ
. (188)

Considering the discussion in previous section, it is clear
that the scalar field φ, defined in 4D, assumes the role
of a field induced by the further degrees of freedom of
Extended Gravity. Obviously, φ is identically zero in
GR.

In order to classify the gravitational modes that can
be obtained from this approach, we need to linearize
around the Minkowski background. As discussed above,
this means to take into account deformations. According
to the above results, we assume

gµν = ηµν + hµν

φ = φ0 + δφ (189)

Then, from Eq. (187), we get

δφ = δF +
2

3
(δfP + δfQ)R0 +

2

3
(fP0 + fQ0)δR (190)

where R0 ≡ R(ηµν) = 0 and similarly fP0 = ∂f
∂P |ηµν

which is either constant or zero. Note that the index 0
indicates evaluation with respect to the Minkowski met-
ric, that means no deformation. δR denotes the first

order perturbation on the Ricci scalar which, along with
the perturbed parts of the Riemann and Ricci tensors,
are given by:

δRµνρσ =
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ)

δRµν =
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν

)

δR = ∂µ∂νh
µν −�h

where h = ηµνhµν . The first term of Eq. (190) is

δF =
∂F

∂R
|0 δR+

∂F

∂P
|0 δP +

∂F

∂Q
|0 δQ (191)

However, since δP and δQ are second order, we get δF ≃
F,R0 δR and

δΦ =

(
F,R0 +

2

3
(fP0 + fQ0)

)
δR (192)

Finally, from Eq. (186) we get the Klein-Gordon equa-
tion for the scalar perturbation δφ

�δφ =
1

3

F0

F,R0 +
2
3 (fP0 + fQ0)

δφ−

2

3
δRαβ∂α∂β(fP0 + 2fQ0)−

1

3
δR�(fP0 + 2fQ0)

= m2
sδφ

(193)

The last two terms in the first line are actually zero since
the terms fP0, fQ0 are constants and we have defined the

scalar mass as m2
s ≡ 1

3
F0

F,R0+
2

3
(fP0+fQ0)

.

Perturbing the field equations (183) we get:

F0(δRµν − 1

2
ηµνδR) =

−(ηµν�− ∂µ∂ν)(δφ− 2

3
(fP0 + fQ0)δR)

−ηµν∂α∂β(fP0δR
αβ)−�(fP0δRµν)

+2∂α∂β(fP0 δR
α
(µδ

β
ν) + 2fQ0 δR

α β
(µν) )

(194)

It is convenient to work in Fourier space where the follow-
ing substitutions have to be operated: ∂γhµν → ikγhµν
and �hµν → −k2hµν . The above equation becomes

F0(δRµν − 1

2
ηµνδR) =

(ηµνk
2 − kµkν)(δφ− 2

3
(fP0 + fQ0)δR)

+ηµνkαkβ(fP0δR
αβ) + k2(fP0δRµν)

−2kakb(fP0 δR
a
(µδ

b
ν))− 4kαkβ(fQ0 δR

α β
(µν) )

(195)
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We can rewrite the metric perturbation as

hµν = h̄µν − h̄

2
ηµν + ηµνhf (196)

and impose the standard gauge conditions ∂µh̄
µν = 0

and h̄ = 0. The first of these conditions implies that
kµh̄

µν = 0 while the second gives

hµν = h̄µν + ηµνhf

h = 4hf (197)

Inserting into the perturbed curvature quantities, we get

δRµν =
1

2

(
2kµkνhf + k2ηµνhf + k2h̄µν

)

δR = 3k2hf

kαkβ δR
α β
(µν) = −1

2

(
(k4ηµν − k2kµkν)hf + k4h̄µν

)

kαkβ δR
α
(µδ

β
ν) =

3

2
k2kµkνhf

(198)

Substituting Eqs. (196)-(198) into (195) and after some
algebra we get:

1

2

(
k2 − k4

fP0 + 4fQ0

F0

)
h̄µν =

(ηµνk
2 − kµkν)

δφ

F0
+ (ηµνk

2 − kµkν)hf

(199)

Defining hf ≡ − δφ
F0

we find the equation for the pertur-
bations:

(
k2 +

k4

m2
spin2

)
h̄µν = 0 (200)

where m2
spin2 ≡ − F0

fP0+4fQ0

. From Eq. (193) we get:

�hf = m2
shf (201)

From Eq. (200) it is easy to see that we have a mod-
ified dispersion relation which corresponds to a mass-
less spin-2 field (k2 = 0) and a massive spin-2 field
k2 = F0

1

2
fP0+2fQ0

≡ −m2
spin2. To see this better this point,

let us note that the propagator for h̄µν can be rewritten
as

G(k) ∝ 1

k2
− 1

k2 +m2
spin2

(202)

Clearly the second term has the opposite sign, which in-
dicates the presence of a ghost energy mode (see also
[67–69]).

As a "sanity check", we can see that for the Gauss-
Bonnet term LGB = Q− 4P +R2 we have fP0 = −4 and
fQ0 = 1. Then, Eq. (200) simplifies to k2h̄µν = 0 and, in
this case, we have no negative energy modes as expected.

The solutions of Eqs. (200) and (201) can be written
in terms of plane waves

h̄µν = Aµν(
−→p ) · exp(ikαxα) + cc (203)

hf = a(−→p ) · exp(iqαxα) + cc (204)

where

kα ≡ (ωmspin2
,−→p ) ωmspin2

=
√
m2

spin2 + p2

qα ≡ (ωms
,−→p ) ωms

=
√
m2

s + p2.

(205)

and where mspin2 is zero (non-zero) in the case of mass-
less (massive) spin-2 mode and the polarization tensors
Aµν(

−→p ) can be found in Ref. [70] (see equations (21)-
(23)). Eqs. (200) and (203), contain the equation and
the solution for the standard gravitational waves of GR
[71] plus massive spin 2 terms. Eqs. (201) and (204) are
respectively the equation and the solution for the massive
scalar mode (see also [72]).

The fact that the dispersion law for the modes of the
massive field hf is not linear has to be emphasized. The
velocity of every “ordinary” (arising from GR) mode h̄µν
is the light speed c, but the dispersion law (the second of
Eq. (205)) for the modes of hf is that of a massive field
which can be seen as a wave-packet. Also, the group-
velocity of a wave-packet of hf , centered in −→p , is

−→vG =
−→p
ω
, (206)

which is exactly the velocity of a massive particle with
mass m and momentum −→p . From the second of Eqs.
(205) and Eq. (206) it is straightforward to obtain:

vG =

√
ω2 −m2

ω
. (207)

This means that the speed of the wave-packet is

m =
√
(1− v2G)ω. (208)

Summarizing these results, we can say that considering
Extended Theories of Gravity (which we have generi-
cally assumed as analytic functions of curvature invari-
ants) more gravitational modes than the standard mass-
less ones of GR have to be taken into account. These
further modes can be derived from metric deformations
and characterized as propagating particles.

B. Polarization states

As we have seen, there are solutions of Eq. (200) de-
pending on the value of k2. We have k2 = 0 modes
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that corresponds to a massless spin-2 field with two in-
dependent polarizations (the standard polarization states
of GR). If k2 6= 0, we have massive spin-2 ghost modes
and there are five independent polarization tensors. The
number of polarizations can be easily achieved by the for-
mula of spin degeneration d = (2s + 1) [70]. A further
scalar mode comes out from Eq.(201). Due to the above
formula for spin degeneration, it gives one polarization
state.

Let us first consider the case where the spin-2 field
is massless. Assuming −→p in the z direction, a gauge
in which only A11, A22, and A12 = A21 are different
from zero can be chosen. The condition h̄ = 0 gives
A11 = −A22. In this frame, we may take the bases of
polarizations defined as4

e(+)
µν =

1√
2




1 0 0
0 −1 0
0 0 0


 , e(×)

µν =
1√
2




0 1 0
1 0 0
0 0 0




e(s)µν =
1√
2




0 0 0
0 0 0
0 0 1


 (209)

Inserting these equations in Eq. (196), it results

hµν(t, z) = A+(t− z)e(+)
µν +A×(t− z)e(×)

µν

+ hs(t− vGz)e
s
µν (210)

The terms A+(t−z)e(+)
µν +A×(t−z)e(×)

µν describe the two
standard polarizations of gravitational waves which arise
from GR, while the term hs(t − vGz)ηµν is the massive
field arising from a generic Extended Theory of Gravity
where further degrees of freedom can be represented by
a scalar field.

When the spin-2 field is massive, we have six polariza-
tion (five due to the spin 2 and one due to the spin 0).
Possible bases of polarizations are

e(+)
µν =

1√
2




1 0 0
0 −1 0
0 0 0


 , e(×)

µν =
1√
2




0 1 0
1 0 0
0 0 0




e(B)
µν =

1√
2




0 0 1
0 0 0
1 0 0


 , e(C)

µν =
1√
2




0 0 0
0 0 1
0 1 0




e(D)
µν =

√
2

3




1
2 0 0
0 1

2 0
0 0 −1


 , e(s)µν =

1√
2




0 0 0
0 0 0
0 0 1


 .

4 The polarizations are defined in the 3-space, not in a space-time.

Each polarization mode is orthogonal to one another and is nor-

malized eµνe
µν

= 2δ. Note that other modes are not traceless,

in contrast to the ordinary plus and cross polarization modes in

GR.
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Figure 1. The possible polarization modes of gravitons. The
picture shows the displacement that each mode induces on
a sphere of test particles. The mode propagates out of the
plane in (a), (b), (c), and it propagates in the plane in (d),
(e) and (f). In (a) and (b) we have respectively the plus mode
and cross mode, in (c) the scalar mode, in (d), (e) and (f) the
extra D, B and C modes induced by massive spin-2 gravitons.
This behavior could be, in principle, observed also for a beam
of particles undergoing this interaction at suitable scales.

The total amplitude can be written in terms of the 6
polarization states as

hµν(t, z) = A+(t− vGs2
z)e(+)

µν +A×(t− vGs2
z)e(×)

µν

+BB(t− vGs2
z)e(B)

µν + CC(t− vGs2
z)e(C)

µν

+DD(t− vGs2
z)e(D)

µν + hs(t− vGz)e
s
µν.

(211)

where vGs2
is the group velocity of the massive spin-2

field and is given, as above, by

vGs2
=

√
ω2 −m2

s2

ω
. (212)

The first two polarizations are the same as in the mass-
less case, inducing tidal deformations on the x-y plane.
In Fig.1, we illustrate how each polarization could affect
test masses arranged along a circle.

C. The interpretation of gravitational ghost modes

The presence of negative energy modes could seem a
pathology from a purely quantum-mechanical point of
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view. However, there are several interpretations that
have to be taken into account for such phenomena. A
ghost mode can be viewed as either a particle state of
positive energy and negative probability density, or a pos-
itive probability density state with a negative energy. In
the first case, allowing the presence of such a particle will
quickly induce violation of unitarity. The negative en-
ergy scenario leads to a theory where there is no energy
minimum and the system thus becomes unstable with
growing amplitudes. The vacuum can decay into pairs of
ordinary and ghost gravitons leading to an instability. In
other words, such a dynamics induces a symmetry break-
ing and this fact can be directly related to the fact that
GL(4) is a non-unitary group. In order to regularize the
theory, dynamical ghost modes can be cancelled out tak-
ing into account yet higher derivative terms. This leads
to a higher order effective action as the one in Eq.(107)
which, in principle, is an infinite order effective action 5.

One way out of such problems is to ask for a very weak
coupling of the ghost with the other particles in the the-
ory. In this case, the decay rate of the vacuum becomes
comparable to the inverse of a suitable length scale6. If
such a scale is extremely large, the present vacuum state
will appear to be sufficiently stable. This option is viable
when ghost states, due to a different interaction length,
couple differently than the ordinary massless gravitons
with the other forms of matter.

Another interpretation is to assume that this picture
does not hold up to arbitrarily high energies but, at some
cutoff scaleMcutoff , the theory modifies appropriately to
ensure a ghost-free behavior and a stable ground state.
This could happen, for example, if the Lorentz invariance
is violated at a certain Mcutoff , thereby restricting any
potentially harmful decay rates. This possibility could be
extremely interesting for the investigations at LHC, being
a sort of gravitationally induced Higgs-like mechanism
[73, 74]. .

However, we have to point out that Extended Theories
of Gravity could not hold up to arbitrary high energies.
Such models are plagued, at fundamental quantum level,
by the same problems as ordinary GR, but Extended
Theories of Gravity are renormalizable at one loop-level
[104] . They are not proper candidates for a full quantum
gravity theory (in canonical sense) but the corresponding
ghost particle interpretation (virtual massive modes) is a
useful approach to address, at lower energies than Planck
scales, shortcomings of Standard Model.

At semi-classical level, the perturbation hµν (deforma-
tion) is a tensor representing the “stretching” of space-
time away from flatness. A ghost mode then makes sense
as just another way of propagating this perturbation of
the space-time geometry, one which carries the opposite

5 In this case, we should consider higher order powers in the �-

operator.
6 The largest length is the Hubble scale. This gives rise to the

weakest physical coupling.

sign in the propagator than an ordinary massive graviton
would.

Viewed in this way, the presence of the massive ghost
graviton will induce the same effects as an ordinary mas-
sive graviton transmitting the perturbation, but with the
opposite sign in the displacement. Tidal stretching from
a polarized wave on the polarization plane will be turned
into shrinking and vice-versa. This signal will, at the end,
be a superposition of the displacements coming from the
ordinary massless spin-2 graviton and the massive ghost.
Since these modes induce two competing effects, this fact
would lead to a less pronounced signal than the one we
would expect if the ghost mode was absent, setting in
this way less severe constraints on the theory. On the
other hand, treating ghost modes as small perturbations
could be not sensible. As stated above, the dynamical
ghost modes could be cancelled by other higher deriva-
tive terms. In that case, nonetheless, it might still make
sense to analyze the impact on propagation owing to vir-
tual massive mode effects (Yukawa terms) on the massless
modes. However, the presence of the new modes will also
affect the total energy density carried by the graviton and
could induce new effects at ultraviolet scales, as we will
discuss below. To conclude, effects and symmetry break-
ing discussed here could give rise to relevant signatures in
colliding beams of particles (e.g. hadrons) at TeV scales.

IX. MASSIVE GRAVITATIONAL STATES AND

THE INDUCED SYMMETRY BREAKING

A. A gravitational cut-off at TeV scales

The above results could be interesting to investigate
quantum gravity effects and symmetry breaking in the
range between GeV and TeV scales. Such scales are actu-
ally investigated by the experiments at LHC. It is impor-
tant to stress that any ultra-violet model of gravity (e.g.
at TeV scales) have to explain also the observed weakness
of gravitational effects at largest (infra-red) scales. This
means that massless (or quasi-massless) modes have to
be considered in any case.

The above 5D-action (79) is an example of higher di-
mensional action where the effective gravitational energy
scale (Planck scale) can be "rescaled" according to Eqs.
(98) and (99). In terms of mass, being M2

p = c~
GN

the
constraint coming from the ultra-violet limit of the the-
ory (1019 GeV) , we can set M2

p = MD−2
♯ VD−4, where

VD−4 is the "volume" coming from the extra dimension.
It is easy to see that VD−4, in the 5D case, is related to
the fifth component of Φ, that is ψ(x4) in Eq.(135). M♯ is
the above discussed cut-off mass that becomes relevant as
soon as the Lorentz invariance is violated. Such a scale,
in the context discussed here could be of the order TeV.

As we have shown in Sec. IV, it is quite natural to
obtain effective theories containing scalar fields of gravi-
tational origin. In this sense, M♯ is the result of dimen-
sional reduction. To be more explicit, the 4D dynamics is
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led by the effective potential V (φ) and the non-minimal
coupling F (φ). Such functions could be experimentally
tested since related to massive states. In particular, the
effective Extended Gravity, produced by the reduction
mechanism from 5D to 4D, can be chosen as

A =

∫
d4x

√−g
[
− φ2

2
R +

1

2
gµν∂µφ∂νφ− V

]
(213)

plus contributions of ordinary matter terms. The poten-
tial for φ can be assumed as

V (φ) =
M2

♯

2
φ2 +

λ

4
φ4 , (214)

where a massive term and the self-interaction term are
present. This is the standard choice of quantum field
theory which perfectly fits with the arguments of dimen-
sional reduction. Let us recall again that the scalar field
φ is not put by hand into dynamics but it is given by the
extra degrees of freedom of gravitational field generated
by the reduction process in 4D. It is easy to derive the
vacuum expectation value of φ, being

M2
♯ = 2λM2

p , (215)

which is a fundamental scale of the theory.
Some considerations are in order at this point. Such a

scale has to be confronted with Higgs vacuum expecta-
tion value which is 246 GeV and then with the hierarchy

problem. If M♯ is larger than Higgs mass, the problem
is obviously circumvented. It is important to recall that
hierarchy problem occurs when couplings and masses of
effective theories are very different than the parameters
measured by experiments. This happen since measured
parameters are related to the fundamental parameters by
renormalization and fine cancellations between the fun-
damental quantities and the quantum corrections are nec-
essary. The hierarchy problem is essentially a fine-tuning
problem.

In particle physics, the question is why the weak force
is stronger and stronger than gravity. Both of these forces
involve constants of nature, Fermi’s constant for the weak
force and Newton’s constant for gravity. From the Stan-
dard Model, it appears that Fermi’s constant is unnat-
urally large and should be closer to Newton’s constant,
unless there is a fine cancellation between the bare value
of Fermi’s constant and the quantum corrections to it.

More technically, the question is why the Higgs boson
is so much lighter than the Planck mass (or the grand
unification energy). In fact, researchers are searching for
Higgs masses ranging from 115 up to 350 GeV with differ-
ent selected decay channels from bb̄ to tt̄ (see for example
[112] and refereces therein). One would expect that the
large quantum contributions to the square of the Higgs
boson mass would inevitably make the mass huge, com-
parable to the scale at which new physics appears, unless
there is an incredible fine-tuning cancellation between the
quadratic radiative corrections and the bare mass. With
this state of art, the problem cannot be formulated in

the context of the Standard Model where the Higgs mass
cannot be calculated. In a sense, the problem is solvable
if, in a given effective theory of particles, where the Higgs
boson mass is calculable, there are no fine-tunings. If one
accepts the big-desert assumption and the existence of a
hierarchy problem, some new mechanism (at Higgs scale)
becomes necessary to avoid fine-tunings.

The model which we are discussing contains a "run-
ning" scale that could avoid to set precisely the Higgs
scale. If the mass of the field φ is in TeV region, there
is no hierarchy problem being φ a gravitational scale. In
this case, the Standard Model holds up plus an extended
gravitational sector derived from the fifth dimension.

In other words, the Planck scale can be dynamically
derived from the vacuum expectation value of φ. In some
sense, our model, in its low energy realization, works
like the model proposed by Antoniadis et al [76]. The
Planck scale can be recovered, as soon as the coupling
λ is of the order 10−31. Action (213) (and the other
Extended Gravity Theories discussed above) as effective
models valid up to a cutoff scale of a few M♯ ∼ TeV (see
also [110, 115, 116]). The tiny value of λ, coming from the
extra dimension, is in agreement with the above consider-
ations allowing the presence of physical (quasi-) massless
gravitons with very large interaction lengths.

As in [76], gravity is weak although the gravitational
scale is low. Also the string theory limit corresponds to a
large scalar field vacuum expectation value at TeV. It is
important to stress that, by a conformal transformation
from the Jordan frame to the Einstein frame, the Planck
scale is decoupled from the vacuum expectation of the
scalar field φ. However the scalar field redefinition has
to preserve the vacuum of the theory. Besides, the gauge
couplings and masses depend on the vacuum expectation
value of φ and are dynamically determined. This means
that Standard Model and Einstein Gravity (in the above
conformal-affine sense) could be recovered without the hi-

erarchy problem. As discussed in [111], it is possible to
show that the operators generated by the self-interaction
of the scalar field are of the form

1

MN−4
♯

λ
N
2 φN (216)

and they are always suppressed by the small parameter
λ and do not destabilize the potential of the theory. This
result holds also for perturbative corrections coming from
quantum gravity.

Considering again the problem of mass generation, one
can assume that particles of Standard Model have sizes
related to the cut off, that is M−1

♯ , and their collisions

could lead to the formation of bound states as in [76, 114].
Potentially, such a phenomenon could mimic the decay
of semi-classical quantum black holes and, at lower en-
ergies, it could be useful to investigate substructures of
Standard Model. This means that we should expect some
strong scattering effects in the TeV region involving the
coupling of φ to the Standard Model fields. The "sig-
nature" of this phenomenon could lead to polarization
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effects of the particle beam as discussed in the previ-
ous section. Furthermore the strong dynamics derived
from the phenomenon could resemble compositeness as
discussed in [79]. Furthermore, bounds on the produc-
tion of mini-black holes can be derived from astroparticle
physics [80–84]. In [81] a bound on the cross-section is

σνN→BH+X <
0.5

TeV2 . (217)

Assuming, in our case, the cross-section σ = M−2
♯ , we

get a bound of TeV-order. If the fundamental scale of
our theory is of this order, strong scattering processes at
LHC would have the cross-section

σ(pp→grav.ghosts+X) ∼ 1× 107fb (218)

and would dominate the cross-sections expected from the
Standard Model. In this case, the Higgs boson could not
be detected and no hierarchy problem would be present.

B. Gravitational and electroweak interactions

The Higgs mechanism is an approach that allows: i)
to generate the masses of electroweak gauge bosons; ii)
to preserve the perturbative unitarity of the S-matrix;
iii) to preserve the renormalizability of the theory. The
masses of the electroweak bosons can be written in a
gauge invariant form using either the non-linear sigma
model [22] or a gauge invariant formulation of the elec-
troweak bosons. However if there is no propagating Higgs
boson, quantum field amplitudes describing modes of the
electroweak bosons grow too fast violating the unitar-
ity around TeV scales [85–88]. There are several ways
in which unitarity could be restored but the Standard
Model without a Higgs boson is non-renormalizable at
perturbative level.

A possibility is that the weak interactions become
strongly coupled at TeV scales and then the related gauge
theory becomes unitary at non-perturbative level. An-
other possibility for models without a Higgs boson con-
sists in introducing weakly coupled new particles to delay
the unitarity problem into the multi TeV regime where
the UV limit of the Standard Model is expected to be-
come relevant. Dvali et al. [89] proposed that, as black
holes in gravitational scattering, classical objects could
form in the scattering of longitudinal W-bosons leading
to unitary scattering amplitude.

These ideas are very intriguing and show several fea-
tures of electroweak interactions. First of all, the Higgs
mechanism is strictly necessary to generate masses for
the electroweak bosons. Beside, some mechanisms can
be unitary but not renormalizable or vice-versa. In sum-
mary, the paradigm is that three different criteria should
be fulfilled: i) a gauge invariant generation of masses of
electroweak bosons, ii) perturbative unitarity; iii) renor-
malizability of the theory.

Here we have proposed an alternative approach, based
on Extended Theories of Gravity deduced from a 5D-
manifold where the Standard Model is fully recovered

enlarging the gravitational sector but avoiding the Higgs
boson and the hierarchy problem.

It is important to point out that, in both the non-
linear sigma model and in gauge invariant formulation
of Standard Model, it is possible to define an action in
terms of an expansion in the scale of the electroweak
interactions v. The action can be written as

A = ASMw/oHiggs +

∫
d4x

∑

i

Ci

vN
O4+N

i , (219)

where O4+N
i are operators compatible with the symme-

tries of the model. The electroweak bosons are gauge
invariant fields defined by

W i
µ =

i

2g
Tr Ω†

↔

Dµ Ωτ i , (220)

with Dµ = ∂µ − igBµ(x) and

Ω =
1√
φ†φ

(
φ∗2 φ1
−φ∗1 φ2

)
, (221)

where

φ =

(
φ1
φ2

)
. (222)

is a SU(2)L doublet scalar field which is considered to
be a dressing field and does not need to propagate. The
same approach can be applied to fermions [90, 92, 93].

The analogy between the effective action for the elec-
troweak interactions (219) and that of Extended Gravity
is striking. Considering only the leading terms, the above
theory can be written as a Taylor series of the form

f(R) ≃ Λ + f ′
0R +

1

2!
f ′′
0R

2 +
1

3!
f ′′′
0 R

3 + ..... (223)

where the coefficients are the derivatives of f(R) calcu-
lated at a certain value of R. Clearly, as shown in previ-
ous sections„ the extra gravitational degrees of freedom
can be suitably transformed in a scalar field φ which al-
lows to avoid the hierarchy problem. Both electroweak
theory and Extended Gravity have a dimensional energy
scale which defines the strength of the interactions. The
Planck mass sets the strength of gravitational interac-
tions while the weak scale λ determines the range and
the strength of the electroweak interactions. As shown
in the previous subsection, these scales can be compared
at TeV energies.

In other words, the electroweak bosons are not gauge
bosons in standard sense but they can be "derived" from
the above further gravitational degrees of freedom. The
local SU(2)L gauge symmetry is imposed at the level of
the quantum fields. However there is a residual global
SU(2) symmetry, i.e. the custodial symmetry. In the
case of gravitational theories formulated as the GL(4)-
group of diffeomorphisms, tetrads are an unavoidable fea-
ture necessary to construct the theory. They are gauge
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fields which transform under the local Lorentz transfor-
mations SO(3, 1) and under general coordinate transfor-
mations, the metric gµν = eaµe

b
νηab which is the field

that is being quantized, transforms under general coordi-
nate transformations which is the equivalent of the global
SU(2) symmetry for the weak interactions (in our case
the residual GL(2) ⊃ SU(2)) . Such an analogy be-
tween the tetrad fields and the Higgs field is extremely
relevant. As shown above for deformations, we can say
that the Higgs field has the same role of the tetrads for
the electroweak interactions while the electroweak bosons
have the same role of the metric. Dynamics is given by
deformations.

A gravitational action like (223) is, in principle, non-
perturbatively renormalizable if, as shown by Weinberg,
there is a non-trivial fixed point which makes the gravity
asymptotically free [108]. This scenario implies that only
a finite number of the Wilson coefficients in the effective
action would need to be measured and the theory would
thus be predictive and probed at LHC.

Measuring the strength of the electroweak interactions
in the electroweak W-boson scattering could easily re-
veal a non-trivial running of the electroweak scale v. If an
electroweak fixed point exists, an increase in the strength
of the electroweak interactions could be found, as in the
strongly interacting W-bosons scenario, before the elec-
troweak interactions become very weak and eventually
irrelevant in the fixed point regime. In analogy to the
non-perturbative running of the non-perturbative Planck
mass, it is possible to introduce an effective weak scale

v2eff = v2
(
1 +

ω

8π

µ2

v2

)
, (224)

where µ is an arbitrary mass scale, ω a non-perturbative
parameter which determines the running of the effective
weak scale and v is the weak scale measured at low ener-
gies. If ω is positive, the electroweak interactions would
become weaker with increasing center of mass energy.
This asymptotically free weak interaction would be renor-
malizable at the non-perturbative level without having a
propagating Higgs boson again in analogy to Extended
Gravity.

The asymptotically free weak interaction scenario
could also solve the unitarity problem of the standard
model without a Higgs boson. In the standard model
without a Higgs boson, there are five amplitudes con-
tributing at tree-level to the scattering of two longitu-
dinally polarized electroweak W-bosons. Summing these
five amplitudes, one finds at order s/M2

W

A(W+
L +W−

L →W+
L +W−

L ) =
s

v2eff

(
1

2
+

1

2
cos θ

)
,

(225)

where s is the center of mass energy squared and θ is
the scattering angle. Clearly if veff grows fast enough
with energy, the ultra-violet behaviour of these ampli-
tudes can be compensated and the summed amplitude

can remain below the unitary bound. A similar proposal
has been made to solve problems with unitarity in extra-
dimensional models [94].

It is important to stress that our approach does not re-
quire new physics but to take only into account the whole
budget of gravitational degrees of freedom. The monitor-
ing of the strength of the electroweak interactions in the
W-bosons scattering at LHC could establish the existence
of a fixed-point in the weak interactions. Using the one-
loop renormalization group of the weak scale could help
in formalizing this picture [95]. To be more precise, let
us consider the scale of electroweak interactions

v(µ) = v0

(
µ

µ0

) γ

16π2

, (226)

where

γ =
9

4

(
1

5
g21 + g22

)
− Y2(S) (227)

and

Y2(S) = Tr(3Y†
uYu + 3Y†

dYd + Y†
eYe) , (228)

where Yi are the respective Yukawa matrices. If the
theory is in the perturbative regime e.g. at mW , the
Yukawa coupling of the top dominates since at this scale
g1 = 0.31 and g2 = 0.65 and γ is negative. In this case,
the scale of the weak interactions become smaller. If the
weak interactions become strongly coupled at TeV region,
g2 becomes large and γ is expected to become positive.
We obtain the expected running and the weak scale be-
comes larger. This is not possible in the framework of
a perturbative approach. This result could represent a
"signature" for the approach presented here. However,
we stress once again that there are indications of a non-
trivial fixed point for the non-linear sigma model using
exact renormalization group techniques [96, 97]. In con-
clusion, the unitarity problem of the weak interactions
could be fixed by a non-trivial fixed point in the renor-
malization group of the weak scale. A similar mechanism
could also fix the unitarity problem for fermions masses
[98–102] if their masses are not generated by the stan-
dard Higgs mechanism but in the same way considered
here (let us remind that also SU(3) could be generated by
the splitting of GL(4)-group). In the case of electroweak
interactions this approach could be soon checked at LHC
but good indications are also available for QCD [113].

X. DISCUSSION AND CONCLUSIONS

The goal of this work is to give a unification scheme
of fundamental interactions based on a well defined non-
perturbative dynamics, the non-introduction of ad hoc
hypotheses and the consideration of the minimal neces-
sary number of free parameters and dimensions.

As general preliminaries, we have discussed the
conformal-affine structure of fiber bundles showing that,
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in principle, different Extended Theories of Gravity can
be conformally related each other. After, we have dis-
cussed the group structure in 5D and in 4D-spaces show-
ing how the group of diffeomorphisms GL(4) works from
a reduction procedure from 5D to 4D. Such a group can
be suitably split generating the fundamental groups of
physical interactions. In this respect, the group splitting
is

GL(4)︸ ︷︷ ︸
4× 4︸ ︷︷ ︸

diffeom.

⊃ SU(3)︸ ︷︷ ︸
32 − 1︸ ︷︷ ︸
gluons

⊗ SU(2)︸ ︷︷ ︸
22 − 1︸ ︷︷ ︸

vec. bosons

⊗ U(1)︸ ︷︷ ︸
1︸︷︷︸

photon

⊗ GL(2)︸ ︷︷ ︸
2× 2︸ ︷︷ ︸

gravitons

(229)
with further gravitational degrees of freedom.

After we have shown that the space-time deformations
in 4D have a conformal structure and the GL(4)-algebra.

Starting with these mathematical tools, we proposed a
unification scheme based on the assumption that a 5D-
space can be defined where conservation laws are always
and absolutely conserved. Such a General Conservation
Principle [42] holds since we ask for the validity of the
5D-Bianchi identities which must be always non-singular
and invariant for every diffeomorphism. The 5D-space is
a smooth, connected and compact manifold where we can
derive field equations, geodesic equations and a globally
defined Lorentz structure. The standard physics emerges
as soon as we reduce from 5D to 4D-space recovering the
GL(4)-group of diffeomorphisms. By a reduction proce-
dure one is capable of generating the masses of particles
and their organization in families. The byproduct is an
effective theory of gravity in 4D where further gravita-
tional degrees of freedom naturally emerge, induced by
the fifth dimension. By this dynamics, we do not re-
cover the Standard GR but Extended Theories of Gravity
where non-minimal coupling, scalar field self-interaction
potentials and higher-order curvature terms have to be
considered. These theories can be confronted and related,
as we have seen, by conformal transformations.

The main feature is that higher-order terms or induced
scalar fields enlarge the gravitational sector giving rise
to massless, massive spin-2 gravitons and massive spin-0
gravitons. Such gravitational modes results in 6 polar-
izations, according to the prescription of the Riemann
theorem stating that in a given N -dimensional space,
N(N − 1)/2 degrees of freedom are possible. The mas-
sive spin-2 gravitational states are ghost particles. Their
role result relevant as soon as we can define a cut-off
mass at TeV scale (the vacuum state of the scalar field)
that allows both to circumvent the hierarchy problem
and the detection of the Higgs boson. In such a case, the
Standard Model of particles should be confirmed with-
out recurring to perturbative, renormalizable schemes in-
volving new particles. The weakness of self-interaction
coupling would guarantee the fact that gravity could be
compared, at TeV scale, with electroweak interaction.

However, some crucial points have to be considered in
order to improve of the proposed approach. The main

goal of our scenario is that the Standard Model of par-
ticles could be generated by the effective gravitational
interactions coming from higher dimensions. In partic-
ular the gauge symmetries and mass generations could
be achieved starting from conservation laws in 5D. It is
important to stress that the Standard Model does not
mean only the gauge interaction but also quarks and lep-
tons with their mass matrices that have to be exactly
addressed. In particular, the fermion sector has to be
recovered.

It is well-known that the standard gauge interactions
contains the chiral gauge interactions, which, in our pic-
ture, have to be generated from the gravitational interac-
tions otherwise there is no possibility to distinguish be-
tween the left-handed and the right-handed particles. In
particular, the SU(2) part of the standard gauge interac-
tions, generated from GL(4), has to be chiral and, con-
sequently, fermions acquire a chiral representation. To
this end, torsion fields have to be incorporated for the
following reasons. As discussed in [12, 13], the Cartan
torsion tensor plays the role of spin source in the grav-
itational field equations where the affine connection is
not simply Levi-Civita. Furthermore, as demonstrated
in [106, 117–119], torsion plays an important role in Ex-
tended Theories of Gravity since brings further gravita-
tional degrees of freedom responsible of chiral interac-
tions. In other words, torsion is not only the source of
spin but, thanks to the non-trivial structure of connec-
tions Γα

βγ , can give rise to chiral interactions of geomet-

ric origin [120]. This means that the SU(2)L and SU(3)
could be related to a gravitationally induced symmetry
breaking process where torsion plays a fundamental role.
Due to these facts, the present approach has to be gener-
alized including torsion fields. Phenomenological studies
considering torsion and fermion interactions are already
reported in [121].

Furthermore, as shown in [120], space-like, time-like
and null torsion tensors, generated by non-trivial com-
binations of vector and bi-vector fields, can be classified
and represented by matrices which could explain mass
matrices of fermions and the hierarchy in the generation
of quarks. This approach agrees with other approaches
where the effects of gluonic condensates in holographic
QCD can be encoded in suitable deformations of 5D met-
rics (see e.g. [91]).

A detailed study in this sense will be the argument of
forthcoming studies.

The validity of the presented scheme could be reason-
ably checked at LHC in short time, due to the increas-
ing luminosities of the set up. In fact, the LHC exper-
iments (in particular ATLAS and CMS) are indicating,
very preliminary, the presence of resonances and conden-
sate states that confirm the Standard Model but, up to
now, cannot be considered as evidences for the Higgs bo-
son [113]. Similar very preliminar results, but with larger
integrated luminosity, are reported also by the CDF col-
laboration at Fermi Lab [122]. The interpretation of such
data could be that the gravitational ghosts (discussed
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here) would induce the formation of resonances and con-
densates without the presence of any Higgs field as dis-
cussed in the previous sections.

A final remark deserves the treatment of ghost states
that we have introduced here. According to the Becchi-
Rouet-Stora (BRS) formulation of gauge theories, nega-
tive norm states or ghosts are allowed to propagate and
are eliminated by applying a particular condition (BRS-
condition) onto the state vectors [123]. The approach
can be expressed in terms of path integrals. As conse-
quence, the vacuum is the ground state and ghosts do
not generate the negative energy states without conflict-
ing with the Copenhagen Interpretation of Quantum Me-
chanics. In our case, we are in a more general context.
Our gravitational ghosts are related to non-local effects
connected to the fact that GL(4) is a non-unitary group
where some sub-groups can be unitary. Such ghosts are

related to the gravitationally-induced symmetry breaking
process and to the further degrees of freedom emerging in
the Extended Theories of Gravity. In other words, they
are not the ghosts of the standard BRS mechanism but
further gravitational modes related to non-locality. In
a very general sense, we are compatible with the Many
Worlds Interpretation of Quantum Mechanics [124] since
any projection from the 5D manifold realizes a different
universe and then a different effective theory of gravity.
This point will be discussed in details in further works.
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