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We compute the six-dimensional hexagon integral with three nonadjacent external masses analytically.

After a simple rescaling, it is given by a function of six dual conformally invariant cross ratios. The result

can be expressed as a sum of 24 terms involving only one basic function, which is a simple linear

combination of logarithms, dilogarithms, and trilogarithms of uniform degree three transcendentality. Our

method uses differential equations to determine the symbol of the function, and an algorithm to reconstruct

the latter from its symbol. It is known that six-dimensional hexagon integrals are closely related to

scattering amplitudes inN ¼ 4 super Yang-Mills theory, and we therefore expect our result to be helpful

for understanding the structure of scattering amplitudes in this theory, in particular, at two loops.
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I. INTRODUCTION

Scalar n-point integrals in dimensions D> 4 are inter-
esting objects for a number of reasons. They appear in
the Oð�Þ part of ðD ¼ 4� 2�Þ-dimensional one-loop am-
plitudes [1], which are required for computations at higher-
loop orders.

Quite generally, higher-dimensional scalar integrals
are related to tensor integrals in D ¼ 4 dimensions [2].
In particular, the D ¼ 6 dimensional hexagons are related
to finite tensor integrals [3] that appear in N ¼ 4 super
Yang-Mills (SYM). More precisely, they appear as deriva-
tives of four-dimensional two-loop tensor integrals.
Moreover, applying a further differential operator, the in-
tegrals reduce to four-dimensional one-loop tensor inte-
grals [4]. See Ref. [5] for related work on differential
equations relevant for integrals in N ¼ 4 SYM.

Finite dual conformal invariant functions [6,7] are also
prototypes of functions that can appear in the remainder
function of maximally helicity-violating (MHV) ampli-
tudes and the ratio function of non-MHV amplitudes in
N ¼ 4 SYM [8–10]. Recently, the massless and one-mass
hexagon integrals in D ¼ 6 dimensions were computed in
Refs. [4,11,12]. It was noted that the massless hexagon
integral in D ¼ 6 resembles very closely the analytical

result of the two-loop remainder function for n ¼ 6 points
[13–15]. In this note, we extend the computations of hexa-
gon integrals in D ¼ 6 dimensions to the case of three
nonadjacent external masses.
Our strategy is the following. We derive simple differ-

ential equations that relate the three-mass hexagon to
known pentagon integrals. These differential equations,
together with a boundary condition, completely determine
the answer in principle. We find it convenient to first
compute the symbol [16] of the answer, and then recon-
struct the function from that symbol.

II. INTEGRAL REPRESENTATION AND
DIFFERENTIAL EQUATIONS

We consider the hexagon integral with three massive
corners,

H9 �
Z d6xi

i�3

1

x21ix
2
2ix
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4ix

2
5ix

2
7ix

2
8i

; (1)

where we used dual (or region) coordinates p�
j ¼x�j �x�jþ1

(with indices being defined modulo 9), and x�ij ¼ x�i � x�j .

The on-shell conditions read x212 ¼ 0, x245 ¼ 0 and x278 ¼ 0.
As a scalar integral, H9 is a function of the (nonzero)
external Lorentz invariants x2jk. We work in signature

ð�þþþÞ, so that the Euclidean region has all (nonzero)
x2jk positive.

Dual conformal covariance [6,7] of H9, particularly
under the inversion of all dual coordinates, x� ! x�=x2,
allows us to write
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are invariant under dual conformal transformations.
Furthermore, the one-loop hexagon integral with three
nonadjacent masses is invariant under the action of the
dihedral symmetry group D3 ’ S3, generated by the cyclic
rotation c and the reflection r acting on the dual coordi-
nates via

x�j !c x�jþ3 and x�j !r x�9�j; (4)

where as usual all indices are understood modulo 9. It is
easy to see that under the symmetry the six conformal cross
ratios group into two orbits of three elements,

u1!c u2!c u3!c u1; u4!c u5!c u6!c u4;
u1$r u3; u4$r u5;
u2$r u2; u6$r u6:

(5)

One can easily derive a differential equation for H9 by
noting that

ðx21 � @x2 þ 1Þ 1

x21ix
2
2i

¼ 1

ðx22iÞ2
: (6)

Applying this differential operator to Eq. (1), we find

ðx21 � @x2 þ 1ÞH9 ¼
Z d6xi

i�3

1

ðx22iÞ2x24ix25ix27ix28i
� P8: (7)

The one-loop pentagon integral P8 appearing as an inho-
mogeneous term in this equation is equivalent to a known
four-dimensional pentagon integral [4],1

P8 � 1

x225x
2
27x

2
48

�8ðu3; u4u2; u5Þ: (8)

The latter is given by

�8ðu; v; wÞ ¼ 1

1� u� vþ uvw
½logu logvþ Li2ð1� uÞ

þ Li2ð1� vÞ þ Li2ð1� wÞ � Li2ð1� uwÞ
� Li2ð1� vwÞ�: (9)

We can rewrite Eq. (7) as a differential equation for the
rescaled hexagon integral �9ðu1; . . . ; u6Þ that depends on
cross ratios only,

D1�9ðu1; . . . ; u6Þ ¼ �8ðu3; u4u2; u5Þ; (10)

where

D1 � u1 þ u1u6ðu6 � 1Þ@6 þ ðu4 � 1Þ@4 þ u1ðu1 � 1Þ@1
þ u1ð1� u6Þu3@3; (11)

with @i � @=@ui. By cyclic and reflection symmetry,
we have a total of six differential equations. It turns out
that only five of them are independent. The remaining
freedom can be fixed, e.g., by the boundary condition
H9ðu1; u2; u3; 0; 0; 0Þ ¼ H6ðu1; u2; u3Þ, with H6 given ex-
plicitly in Refs. [4,11]. (Alternatively, one could derive
further differential equations, as in Ref. [4]). Therefore,
the set of equations and the boundary condition completely
determine H9.
In the next section, we will use this set of differential

equations to determine the symbol Sð ~�9Þ, where ~�9 is
obtained from �9 by a simple rescaling, see Eq. (16).

Then, we will reconstruct the function ~�9 (and equiva-
lently H9) from its symbol.
We note that there is a simple line integral representation

of H9 [4], see Fig. 1(a),

H9 ¼
Z 1

0
d�1d�4d�7

1

ðy1 � y4Þ2ðy4 � y7Þ2ðy7 � y1Þ2
;

(12)

where y
�
1 ¼ x

�
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�
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�
4 þ �4x

�
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�
7 ¼

x�7 þ �7x
�
87. The pentagon integral P8 can be expressed

in a similar way, which allows us to write

H9 ¼
Z 1

0
d�1P8ðy1ð�1Þ; x4; x5; x7; x8Þ: (13)

In this form, the differential equation (7) has the interpreta-
tion of localizing one of the line integrals, in this case
y1ð�1Þ ! x2, see Fig. 1(b). It is interesting that similar
integrals where certain propagators are localized at cusp
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FIG. 1. (a) depicts the representation of H9 as a line integral,
see Eqs. (12) and (13). The differential operator in Eq. (7)
localizes the y1 integration to x2, yielding P8ðx2; x4; x5; x7; x8Þ,
see (b).1In Refs. [4,5], the notation ~� was used for �8.
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points have also appeared in computations of two-loop
Wilson loops [17].

From this discussion it is also clear that the integral
reduces further in degree under the action of other differ-
ential operators, until one eventually obtains a rational
function. More explicitly, the operator ðx54 � @x5 þ 1Þ act-
ing on P8 similarly gives a first-order differential equation
relating �8 to a single-log function, namely, a 3-mass box
integral with two doubled propagators,

X7 �
Z d6xi

i�3

1

ðx22iÞ2ðx24iÞ2x27ix28i
� 1

x225x
2
27x

2
58

�7ðu3u5Þ
(14)

where �7ðyÞ ¼ logðyÞ=ðy� 1Þ. Acting further on X7 with
ðx87 � @x8 þ 1Þ gives the 3-mass triangle with three doubled

propagators, which is a constant up to the usual prefactors,
1=ðx225x258x282Þ.
The representation (12) may also be useful for numerical

checks. For future reference, it can be rewritten as

�9ðu1; . . . ; u6Þ ¼
Z 1

0

d�1d�4d�7

ðu2 ��1
��4 þ u4u2�1

��4 þ �4Þðu3 ��4
��7 þ u5u3�4

��7 þ �7Þðu1 ��7
��1 þ u6u1�7

��1 þ �1Þ
; (15)

where ��i � 1� �i.

III. SYMBOLS FROM DIFFERENTIAL
EQUATIONS

We find that the following definition

�9ðu1; . . . ; u6Þ � 1ffiffiffiffiffiffi
�9

p ~�9ðu1; . . . ; u6Þ: (16)

leads to a pure function ~�9ðuiÞ, i.e., a function that can be
written as a linear combination of transcendental functions,
with numerical coefficients only. Here

�9 � ð1� u1 � u2 � u3 þ u4u1u2 þ u5u2u3

þ u6u3u1 � u1u2u3u4u5u6Þ2
� 4u1u2u3ð1� u4Þð1� u5Þð1� u6Þ: (17)

Using this definition, and D1ð1=
ffiffiffiffiffiffi
�9

p Þ ¼ 0, we can rewrite
Eq. (10) as

~D 1
~�9ðu1; . . . ; u6Þ ¼ ~�8ðu3; u4u2; u5Þ; (18)

where

~D 1 � 1ffiffiffiffiffiffi
�9

p ð1� u3 � u2u4 þ u2u3u4u5Þ � ½u1u6ðu6 � 1Þ@6 þ ðu4 � 1Þ@4 þ u1ðu1 � 1Þ@1 þ u1ð1� u6Þu3@3�

¼ 1ffiffiffiffiffiffi
�9

p ð1� u3 � u2u4 þ u2u3u4u5ÞðD1 � u1Þ; (19)

and

~� 8ðu; v; wÞ � ð1� u� vþ uvwÞ�8ðu; v; wÞ: (20)

We find it convenient to convert (18) into a differential
equation for the symbol of ~�9, which reads

~D 1Sð ~�9Þðu1; . . . ; u6Þ ¼ Sð ~�8Þðu3; u4u2; u5Þ: (21)

Here the differentiation of a symbol is defined by

@xða1 � . . . � an�1 � anÞ ¼ @x logðanÞ � a1 � . . . � an�1:

(22)

The following set of variables is useful to describe the
solution,

Wi � gi �
ffiffiffiffiffiffi
�9

p
gi þ

ffiffiffiffiffiffi
�9

p ; i ¼ 1 . . . 6; (23)

where

g1 � 1� u1 � u2 þ u3 þ u1u2u4 � u2u3u5 � 2u3u6

þ u1u3u6 þ 2u2u3u5u6 � u1u2u3u4u5u6;

g4 � 1� u1 � u2 � u3 þ 2u1u2 � u1u2u4 þ u2u3u5

þ u1u3u6 � 2u1u2u3u5u6 þ u1u2u3u4u5u6;

and where g2, g3 ðg5; g6Þ are obtained from g1 (g4) by
cyclic mappings 1 ! 2 ! 3 ! 1; 4 ! 5 ! 6 ! 4. These
variables have a nice behavior under the differential op-
erators, e.g.,
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~D1 logðWiÞ ¼
(�1; if i ¼ 6

0; otherwise
and

~D4 logðWiÞ ¼
8><
>:
1; if i ¼ 1

�1; if i ¼ 2 or 4

0; otherwise

;

(24)

where ~D4 is defined as the image of ~D1 under the reflection
u4 $ u6 and u2 $ u3. Given these variables, we can write
the solution to Eq. (21) as

S ð ~�9Þðu1; . . . ; u6Þ ¼ �Sð ~�8Þðu3; u4u2; u5Þ �W6 þ T;

(25)

where T satisfies ~D1T ¼ 0. Taking into account the differ-
ential equations related to (21) by symmetry further re-
stricts the form of T. The particular solution we obtained
is in general not an integrable symbol. We therefore pro-
ceed and add a particular Th satisfying ~DiTh ¼ 0 (for i ¼
1 . . . 5) to obtain an integrable symbol. Finally, additional
terms satisfying the homogeneous equations ~DiT ¼ 0 are
fixed by demanding that the symbol for ~�6 for the massless
hexagon [4,11] is reproduced when u4 ¼ u5 ¼ u6 ¼ 0.

Following this procedure, we find that the symbol Sð ~�9Þ
can then be written as

S ð ~�9Þ ¼
X6
i¼1

SðfiÞ �Wi; (26)

where fi are the following degree two functions,

f1 � ~�8ðu2; u1u6; u4Þ þ ~�8ðu1; u2u5; u4Þ
þ ~�8ðu2; u3u6; u5Þ � Fðu1; u2; u3; u4; u5; u6Þ;

f4 � � ~�8ðu1; u3u5; u6Þ:
(27)

Here the quantities f2, f3 ðf5; f6Þ are obtained from f1 (f4)
by cyclic mappings 1 ! 2 ! 3 ! 1; 4 ! 5 ! 6 ! 4.
Moreover,

F � 2 ~�8ðu1; u2; u4Þ þ logu1 logu5 þ logu2 logu6

� logu3 logu4: (28)

Note that one can rearrange terms in Eq. (27) because of
the identity,

0 ¼ ~�8ðu3; u2u4; u5Þ þ ~�8ðu1; u3u5; u6Þ
þ ~�8ðu2; u1u6; u4Þ � ~�8ðu3; u1u4; u6Þ
� ~�8ðu1; u2u5; u4Þ � ~�8ðu2; u3u6; u5Þ: (29)

IV. TWISTOR GEOMETRYASSOCIATED
TO ATHREE-MASS HEXAGON

The differential equation technique allowed us to obtain
the symbol of the one-loop three-mass hexagon integral. If
we want to find the analytic expression for the integral, we
need to integrate the symbol to a function. We follow here
the approach of Ref. [18], which, after making a suitable
choice for the functions that should appear in the answer,
allows us to reduce the problem of integrating the symbol
to a problem of linear algebra. The algorithm of Ref. [18],
however, requires the arguments of the symbol to be ra-
tional functions (of some parameters). From Eq. (26) it is
clear that in our case this requirement is not immediately
fulfilled, because the variables Wi are algebraic functions
of the cross ratios ui. In order to bypass this problem, we
have to parametrize the six cross ratios such that �9

becomes a perfect square.
A convenient way to find a parametrization that turns�9

into a perfect square is to write the six cross ratios as ratios
of twistor brackets. Indeed, even though we work inD ¼ 6
dimensions where the link to twistor space is not immedi-
ately obvious, we can nevertheless consider the cross ratios
as being parametrized by cross ratios in twistor space CP3,
because the functional dependence of �9 is only through
the six conformally invariant quantities ui, which do not
make reference to the six-dimensional space. In other
words, we can consider the external momenta to lie in a
four-dimensional subspace, even as we integrate over six
components of loop momentum. Furthermore, in Ref. [15]
it was noted that in terms of momentum twistor variables,
the equivalent of�9 in the massless case becomes a perfect
square. Hence, momentum twistors seem to provide a
natural framework to search for a suitable parametrization.
We therefore briefly review the geometry of a three-mass
hexagon configuration in momentum twistor space.
In order to describe this geometry, we assume that the

dual coordinates xi are elements of four-dimensional
Minkowski space M4. As the dependence of �9 is solely
through cross ratios, we can assume that this condition
is satisfied, as long as the ‘‘projection’’ to the four-
dimensional space leaves the cross ratios invariant. The
twistor correspondence then associates to each point xi in
M4 a projective line Xi in momentum twistor space, and
two points xi and xj in M4 are lightlike separated if and

only if the corresponding lines Xi and Xj intersect. In our

case this implies that the six lines must intersect pairwise
(see Fig. 2). Denoting the intersection points by Z1, Z4 and
Z7, we can define six more twistors by

Xi ¼ Zi ^ Zi�1; i 2 f1; 2; 4; 5; 7; 8g: (30)

Note that the only points in twistor space that have an
intrinsic geometric meaning are Z1, Z4 and Z7, whereas the
other six points are defined through Eq. (30), which is left
invariant by the redefinitions

DEL DUCA et al. PHYSICAL REVIEW D 84, 045017 (2011)

045017-4



Z2 ! Z2 þ �2Z1; Z5 ! Z5 þ �5Z4;

Z8 ! Z8 þ �8Z7; Z9 ! Z9 þ �9Z1;

Z3 ! Z3 þ �3Z4; Z6 ! Z6 þ �6Z7;

(31)

where �i are nonzero complex numbers. These shifts
simply express the fact that we can move the points along
the line without altering the geometric configuration.
Furthermore, the intersection of two lines Xi and Xj can

be expressed through the condition,

hXiXji � hði� 1Þiðj� 1Þji ¼ hZi�1ZiZj�1Zji
¼ �IJKLZ

I
i�1Z

J
i Z

K
j�1Z

L
j ¼ 0: (32)

Using the twistor brackets, the cross ratios ui can be
parametrized as

u1 ¼ hX2X5ihX1X7i
hX1X5ihX2X7i ; u2 ¼ hX5X8ihX4X1i

hX4X8ihX1X5i ;

u3 ¼ hX8X2ihX7X4i
hX2X7ihX4X8i ; u4 ¼ hX2X4ihX1X5i

hX1X4ihX2X5i ;

u5 ¼ hX5X7ihX4X8i
hX4X7ihX5X8i ; u6 ¼ hX8X1ihX7X2i

hX8X2ihX1X7i :

(33)

It is clear that the dihedral symmetry of the integral is
reflected at the level of the twistors by

Zi !c Ziþ3 and Zi !r Z8�i; (34)

where again all indices are understood modulo 9. This
action on the twistors induces an action on the lines Xi

and the planes �Zi ¼ Zi�1 ^ Zi ^ Ziþ1 via

Xi !c Xiþ3 and Xi !r � X9�i;

�Zi !c �Ziþ3 and �Zi !r � �Z8�i:
(35)

We now choose a particular representation for the twist-
ors. Since the points Z1, Z4 and Z7 play a special role, we
choose their homogeneous coordinates as

Z1 ¼
0
1
0
0

2
6664

3
7775; Z4 ¼

0
0
1
0

2
6664

3
7775; Z7 ¼

0
0
0
1

2
6664

3
7775: (36)

As the other six points do not carry any intrinsic geometric
meaning, we prefer not to fix them, but choose their
homogeneous coordinates to be

Zi ¼
1
xi
yi
zi

2
6664

3
7775; for i 2 f2; 3; 5; 6; 8; 9g: (37)

(The xi and yi defined here should not be confused with the
previous definitions, where they were dual coordinates.) In
this parametrization the cross ratios then take the form

u1 ¼ ðy9 � y6Þðz2 � z5Þ
ðy2 � y6Þðz9 � z5Þ ; u2 ¼ ðx5 � x8Þðz3 � z9Þ

ðx3 � x8Þðz5 � z9Þ ;

u3 ¼ ðx6 � x3Þðy8 � y2Þ
ðx8 � x3Þðy6 � y2Þ ; u4 ¼ ðz2 � z3Þðz9 � z5Þ

ðz2 � z5Þðz9 � z3Þ ;

u5 ¼ ðx5 � x6Þðx3 � x8Þ
ðx3 � x6Þðx5 � x8Þ ; u6 ¼ ðy6 � y2Þðy8 � y9Þ

ðy8 � y2Þðy6 � y9Þ :
(38)

Note that the cross ratios only depend on 12 out of the 18
homogeneous coordinates defined in Eq. (37), which is a
consequence of the shift invariance (31). The action of the
dihedral symmetry that permutes the cross ratios is imple-
mented in this parametrization via

xi !c yiþ3 !c ziþ6 !c xi and xi $r z8�i and yi $r y8�i:

(39)

This action seems to be inconsistent with Eq. (34).
However, we have broken the symmetry by freezing Z1,
Z4 and Z7 to constant values, and the symmetry is
now reflected at the level of the cross ratios via Eq. (39).
Finally, we note that �9 becomes a perfect square in these
variables,

�9 ¼ ððx6 � x8Þðy9 � y2Þðz3 � z5Þ þ ðx5 � x3Þðy8 � y6Þðz2 � z9ÞÞ2
ðx3 � x8Þ2ðy6 � y2Þ2ðz9 � z5Þ2

; (40)

and Eq. (40) is manifestly invariant under the transforma-
tions (39). Having obtained a parametrization that makes
�9 into a perfect square, we can write the symbol in a form
in which all the entries are rational functions of the

variables we just defined, and hence the symbol now takes
a form which allows it to be integrated using the algorithm
of Ref. [18]. Furthermore, using this parametrization it is
trivial to check that the symbol of ~�9 obtained in the

FIG. 2. The one-loop three-mass hexagon integral (left), and
its geometric configuration in momentum twistor space CP3

(right). Only the intersection points Z1, Z4 and Z7 have an
intrinsic geometrical meaning, whereas all other twistors can
be moved freely along the lines.
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previous section has the correct dihedral symmetry. In
particular, we find that

c½Sð ~�9Þ� ¼ Sð ~�9Þ and r½Sð ~�9Þ� ¼ �Sð ~�9Þ: (41)

The parametrization (38) also makes it very easy to check
the various soft limits of H9. Indeed, we have

u4 ! 0 , z3 ! z2;

u5 ! 0 , x6 ! x5;

u6 ! 0 , y9 ! y8:

(42)

We checked that in taking these limits Sð ~�9Þ reduces to the
symbols for the massless and one-mass hexagon integrals
[4,11,12].

V. INTEGRATING THE SYMBOL: THE ONE-LOOP
THREE-MASS HEXAGON INTEGRAL

As the parametrization of the cross ratios in terms of
momentum twistors introduced in the previous section
turns �9 into a perfect square, we can now integrate the
symbol using the algorithm of Ref. [18]. However, even
though the parametrization (38) makes all the symmetries
manifest, it uses a redundant set of parameters. We there-
fore choose a minimal set of parameters by breaking the S3
symmetry down to its alternating subgroup A3 ’ Z3 by
fixing six of the 12 parameters,

x6 ¼ y9 ¼ z3 ¼ 0 and x3 ¼ y6 ¼ z9 ¼ 1: (43)

The cross ratios then take the form

u1 ¼ z2 � z5
ð1� y2Þð1� z5Þ ; u2 ¼ x5 � x8

ð1� x8Þð1� z5Þ ;

u3 ¼ y8 � y2
ð1� x8Þð1� y2Þ ; u4 ¼ z2ð1� z5Þ

z2 � z5
;

u5 ¼ x5ð1� x8Þ
x5 � x8

; u6 ¼ y8ð1� y2Þ
y8 � y2

; (44)

and �9 can now be written as

�9 ¼ ðx8y2z5 þ ð1� x5Þð1� y8Þð1� z2ÞÞ2
ð1� x8Þ2ð1� y2Þ2ð1� z5Þ2

: (45)

We note in passing that the Jacobian of the parametrization
(44) is nonzero for generic values of the parameters.

In a nutshell, the algorithm of Ref. [18] proceeds in two
steps:

(1) Given the symbol of ~�9 computed in Section III,
it constructs a set of rational functions
fRiðx5; x8; y2; y8; z2; z5Þg such that, e.g., symbols of
the form SðLinðRiÞÞ span the vector space of which

Sð ~�9Þ is an element.
(2) Once a suitable set of rational functions has been

obtained, it makes an ansatz

~’ ¼ X
i

ciLi3ðRiÞ þ
X
i;j

cijLi2ðRiÞ logRj

þ X
i;j;k

cijk logRi logRj logRk; (46)

where the ci, cij and cijk are rational numbers to be

determined such that

S ð~’Þ ¼ Sð ~�9Þ: (47)

As the objects appearing in this last equation are
tensors (i.e., elements of a vector space), the coef-
ficients ci, cij and cijk can equally well be seen as

coordinates in a vector space, and the problem of
finding the coefficients reduces to a problem of
linear algebra.

We have implemented the algorithm of Ref. [18] into a
MATHEMATICA code, which we have applied to the function
~�9ðx5; x8; y2; y8; z2; z5Þ. The result we obtain takes a strik-
ingly simple form,

�9ðu1; . . . ; u6Þ ¼ 1ffiffiffiffiffiffi
�9

p X4
i¼1

X
g2S3

�ðgÞL3ðxþi;g; x�i;gÞ; (48)

where �ðgÞ denotes the signature of the permutation (þ 1
for f1; c; c2g, �1 for fr; rc; rc2g), and where we defined

L 3ðxþ; x�Þ � 1

18
ð‘1ðxþÞ � ‘1ðx�ÞÞ3 þ L3ðxþ; x�Þ;

(49)

and

L3ðxþ;x�Þ�
X2
k¼0

ð�1Þk
ð2kÞ!! log

kðxþx�Þð‘3�kðxþÞ�‘3�kðx�ÞÞ;

(50)

with

‘nðxÞ � 1

2
ðLinðxÞ � Linð1=xÞÞ: (51)

The arguments appearing in the polylogarithms can be
written in the form x�i;g � gðx�i Þ, for g 2 S3, with

xþ1 � �ð1; 4; 7Þ; xþ2 � �ð2; 5; 7Þ;
xþ3 � �ð2; 4; 8Þ; xþ4 � �ð1; 5; 8Þ;
x�1 � ��ð1; 4; 7Þ; x�2 � ��ð2; 5; 7Þ;
x�3 � ��ð2; 4; 8Þ; x�4 � ��ð1; 5; 8Þ;

(52)

where we defined

�ði; j; kÞ � � h4�7ihXiXkihXj17i
h1�7ihXjXkihXi47i

; (53)

with hi�|i ¼ hiðj� 1Þjðjþ 1Þi. The function �� is related to
� by Poincaré duality,

��ði; j; kÞ � � h�47ihXiXkihXj
�1 \ �7i

h�17ihXjXkihXi
�4 \ �7i : (54)
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The function �9 manifestly has the cyclic symmetry. The
reflection symmetry however needs some explanation, be-

cause ~�9 is odd under reflection. In twistor variables, �9

becomes a perfect square, and so we can remove the square

root and rewrite
ffiffiffiffiffiffi
�9

p
as a rational function of twistor

brackets. This procedure however introduces an ambiguity
for the sign of the square root. In particular, the rational
function we obtained is now odd under the reflection (34),
so that �9 is again even.

We stress that Eq. (48) is only valid in the region where
�9 < 0. In this region, since� and �� are related by Poincaré
duality, the function Eq. (48) is manifestly real, and we
checked numerically that Eq. (48) agrees with the para-
metric integral representation for�9 given in Eq. (15). Note
that, as multiple zeta values are in the kernel of the symbol
map, we could a priori add to Eq. (48) terms proportional
to �2without altering its symbol.2 The numerical agreement
with the integral representation (15) however shows that
such terms are absent in the present case.

VI. CONCLUSION

Using a differential equation method to determine the
symbol of a function, and an algorithm to reconstruct the
function from its symbol, we have computed analytically
the one-loop nonadjacent three-mass hexagon integral in
D ¼ 6 dimensions. Just as for the massless and one-mass
hexagon integrals, the result is given in terms of classical
polylogarithms of uniform transcendental weight three,
which are functions of six dual conformally invariant cross
ratios. Because of the high degree of symmetry of the
integral, the result is extremely compact: it can be ex-
pressed as a sum of 24 terms involving only one basic
function, which is a simple linear combination of loga-
rithms, dilogarithms, and trilogarithms. Given the relation
between one-loop hexagon integrals in D ¼ 6 dimensions
and higher-loop amplitudes in D ¼ 4 dimensions, we ex-
pect that our result will help to understand the structure of
N ¼ 4 SYM amplitudes and Wilson loops, particularly at
two loops.
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APPENDIX A: SPECIAL CASES

For u4 ¼ u5 ¼ u6 ¼ 1, the differential equations sim-
plify considerably. We have

½u1 þ u1ðu1 � 1Þ@1��9ðu1; u2; u3; 1; 1; 1Þ ¼ �8ðu2; u3; 1Þ;
(A1)

where �8ðu; v; 1Þ ¼ logu logv=ðu� 1Þ=ðv� 1Þ, and the
two cyclically related equations. The solution is simply

�9ðu1; u2; u3; 1; 1; 1Þ ¼
Y3
i¼1

logui
ui � 1

: (A2)

The case u5 ¼ u6 ¼ 1 is also very simple,

�9ðu1; u2; u3; u4; 1; 1Þ ¼ logu3
u3 � 1

�8ðu1; u2; u4Þ: (A3)

APPENDIX B: ARGUMENTS IN TERMS
OF SPACE-TIME CROSS RATIOS

In this appendix we present the expressions of the func-
tions xþi defined in Eq. (52) in terms of the space-time
cross ratios ui,

xþ1 ¼ 2u3ð1� u6Þ½1� u3u6 � u2ð1� u3u5u6Þ� � ð1� u3u6Þðg1 �
ffiffiffiffiffiffi
�9

p Þ
2u3ð1� u6Þ½1� u2 � u3ð1� u2u5Þu6� ;

xþ2 ¼ 2u1u3ð1� u6Þ½1� u2u4 � u3ð1� u2u4u5Þ� � ð1� u3Þðg6 �
ffiffiffiffiffiffi
�9

p Þ
2u1ð1� u6Þ½1� u2u4 � u3ð1� u2u4u5Þ� ;

xþ3 ¼ 2u3ð1� u6Þ½ð1� u2u5Þð1� u3u5Þ � u1ð1� u5Þ� � ð1� u3u5Þðg1 �
ffiffiffiffiffiffi
�9

p Þ
2u1u3u5ð1� u6Þ½1� u2u4 � u3ð1� u2u4u5Þ� ;

xþ4 ¼ �u6
2u3ð1� u6Þ½1� u5 � u1ð1� u2u4u5Þð1� u3u5u6Þ� þ ð1� u3u5u6Þðg6 �

ffiffiffiffiffiffi
�9

p Þ
2ð1� u6Þ½1� u2 � u3ð1� u2u5Þu6� :

(B1)

2Note that a constant term proportional to �3 is excluded because of the reality condition on the function.
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The variables x�i are obtained from xþi by replacing
ffiffiffiffiffiffi
�9

p
by � ffiffiffiffiffiffi

�9

p
. Also, in Eq. (48) we define the action of the odd

permutations g to include the replacement
ffiffiffiffiffiffi
�9

p ! � ffiffiffiffiffiffi
�9

p
.

The twistor variables xi, yi and zi rationalize the x
�
i , so that they take the form,

xþ1 ¼ x8
1� y8

; xþ2 ¼ � x8ðy2 � y8Þ
ð1� x8Þð1� y8Þ ;

xþ3 ¼ x8ð1� y2Þ
x5ð1� y8Þ ; xþ4 ¼ x8y8

ð1� y8Þðx5 � x8Þ ;

x�1 ¼ ð1� x5Þ½1� x8ð1� y2Þ � y8 � z2ð1� x8 � y8Þ�
y2½ð1� x5Þð1� y8Þ � z5ð1� x8 � y8Þ� ;

x�2 ¼ �ð1� x5Þðy2 � y8Þ½1� x8ð1� y2Þ � y8 � z2ð1� x8 � y8Þ�
y2ð1� x8Þ½ðz2ð1� x5Þ � z5Þð1� y8Þ þ z5x8ð1� y2Þ� ;

x�3 ¼ ð1� y2Þð1� x5Þ½ðx5ð1� y8Þ � x8Þð1� z2Þ þ x8y2ð1� z5Þ�
y2x5½ðz2ð1� x5Þ � z5Þð1� y8Þ þ z5x8ð1� y2Þ� ;

x�4 ¼ y8ð1� x5Þ½ðx5ð1� y8Þ � x8Þð1� z2Þ þ x8y2ð1� z5Þ�
y2ðx5 � x8Þ½ð1� x5Þð1� y8Þ � z5ð1� x8 � y8Þ� :

(B2)

Note that these expressions correspond to a particular choice for the sign of the square root.
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