PHYSICAL REVIEW LETTERS

Volume 43

19 NOVEMBER 1979

NUMBER 21

Production of High-Mass Muon Pairs in π^- Be Collisions at 150 and 175 GeV/c

R. Barate,^(a) P. Bareyre, P. Bonamy, P. Borgeaud, M. David, J. Ernwein,^(b) F. X. Gentit,
 G. Laurens, Y. Lemoigne, A. Roussarie,^(c) G. Villet, and S. Zaninotti
 Centre d'Etudes Nucléaires, Saclay, Gif-sur-Yvette, France

and

P. Astbury, A. Duane, G. J. King, B. C. Nandi, D. P. Owen,^(b) D. Pittuck, D. M. Websdale, M. C. S. Williams,^(c) and A. Wylie^(a) Imperial College, London, England

and

J. G. McEwen Southampton University, Southampton, England

and

M. A. Abolins,^(b) B. Brabson, R. Crittenden, R. Heinz, J. Krider, T. Marshall, and T. Palfrey^(d) Indiana University, Bloomington, Indiana 47405 (Received 27 August 1979)

> This paper presents production and decay characteristics of 500 high-mass, highresolution $\mu^+\mu^-$ pairs produced in π^- Be collisions at 150 and 175 GeV/c. The data do not agree with a simple Drell-Yan production mechanism, but indicate that higher-order quantum-chromodynamic corrections must be included.

The production of high-mass $\mu^+\mu^-$ pairs in hadron-hadron collisions is expected to occur by quark-antiquark annihilation into a timelike virtual photon. The simple Drell-Yan model¹ for this process ignores higher-order quantumchromodynamic (QCD) effects, such as gluon emission from a quark. We have observed 500 muon-pair events in π^- Be interactions at 150 and 175 GeV/c at the CERN Super Proton Synchrotron (SPS). Part of our 150-GeV/c data have already been presented.² Our data exhibit many general characteristics of the Drell-Yan model. We show new evidence which strongly suggests that higher-order QCD effects are present in the production process.

Our apparatus consists of a Be target, a largeaperture magnetic spectrometer followed by a multicelled Cherenkov counter, and a 2380-g/cm² iron muon filter. Eleven multiwire proportional chambers with a total of 40 000 wires, inside the magnet and upstream and downstream of the Cherenkov counter, measured charged-hadron and -lepton trajectories. Various scintillation counters and hodoscopes were used to trigger on highmass $\mu^+\mu^-$ pairs. Details of our equipment and trigger scheme have been presented elsewhere.³ The J/ψ and ψ' mass peaks³ verify our excellent mass resolution of $\Delta M/M = 0.015$.

© 1979 The American Physical Society

Figure 1 shows our $\mu^+\mu^-$ mass spectra, in the form $M^3 d\sigma/dM$ versus $\tau = M^2/s$, for 150 and 175 GeV/c. The data have been corrected for the acceptance of our apparatus. Background can come from uncorrelated (nonprompt) muons, such as when one or both muons originate from a hadron decay and/or from the beam halo. This was studied by triggering our apparatus on likesign muons. The like-sign muon data were enhanced by taking like-sign muons from different events in this data sample. We found that our lowest-mass data points (the mass interval from 3.8 to 4.3 GeV/ c^2) had a background of 17%. For each mass interval the background subtraction was less than the statistical error. The data were normalized by comparing the yield with the ψ yield.⁴ We estimate our overall normalization error to be $\pm 20\%$. Also shown in Fig. 1 are data from other experiments on $\mu^+\mu^-$ production by π^{-} mesons, at⁵ 225 GeV/c and at 200 and 280 $GeV/c.^{6}$

The Drell-Yan mechanism predicts that $M^{3}d\sigma/dM$ should scale in the variable M^{2}/s . This is also true if first-order QCD corrections are included.⁷ Figure 1 shows that the 150-, 175-, 200-, and 280-GeV/c data do scale. The 225-GeV/c data do not.⁸

In Fig. 2 we show x_F and p_T distributions and

decay angular distributions in the Gottfried-Jackson frame. We have combined our data at 150 GeV/c (60% of sample) and at 175 GeV/c (40% of sample). The smooth curves are fits to the data. For the x_F distribution [Fig. 2(a)] we fit with the form

$$d\sigma/dx_F = A[1 - |x_F - B|]^c.$$

We find $A=0.43\pm0.03$ nb, $B=0.14\pm0.02$, and $C=2.1\pm0.03$; the χ^2 was 4 for eight degrees of freedom. The nonzero value of *B* suggests that quarks in the pion have greater average momentum than those in the nucleon. When the quarks annihilate, $x_F = x_1 - x_2$, where x_1 and x_2 are the pion and nucleon quark momentum fractions. $\langle x_1 \rangle - \langle x_2 \rangle$ is expected to be about 0.11 for valence quarks,⁹ while we find $\langle x_F \rangle = B = 0.14\pm0.02$. The dashed curve is from a Drell-Yan fit to the data, described below. The P_T distribution [Fig. 2(b)] is fitted with

$$\frac{1}{p_T} \frac{d\sigma}{dp_T} = D \left[1 + \left(\frac{p_T}{E} \right)^2 \right]^F,$$

with $D = 0.49 \pm 0.05$ nb/GeV/c)², $E = 1.7 \pm 0.05$ GeV/c, and $F = -3.2 \pm 1.3$. $\chi^2 = 9$ for ten degrees of freedom. We find $\langle p_T \rangle = 1.04$ GeV/c. The simple Drell-Yan model cannot explain¹⁰ this

FIG. 1. $M^3 d\sigma/dM$, where σ refers to cross section per nucleon as explained in Ref. 4, is plotted against the scaling variable $\tau = M^2/s$. The 225-GeV/c data are from Ref. 5; the 200- and 280-GeV/c data are from Ref. 6. Data points labeled Υ come from the region of the upsilon.

FIG. 2. (a) $d\sigma/dx_F \operatorname{vs} x_F$. (b) $(1/p_T)(d\sigma/dp_T) \operatorname{vs} p_T$. (c) $d\sigma/d\cos\theta_{GI} \operatorname{vs} \cos\theta_{GI}$; θ_{GI} is the Gottfried-Jackson angle. For all parts of Fig. 2, the curves are fits to the data and are described in the text.

large $\langle p_T \rangle$. In Fig. 2(c) we show a fit to

$$\frac{d\sigma}{d\cos\theta_{\rm GJ}} = G(1+\lambda\cos^2\theta_{\rm GJ}),$$

where θ_{GI} is the Gottfried-Jackson angle. We

FIG. 3. The smooth curve and data points represent fits to the pion structure function with use of our data. The dashed curve is from a similar analysis at 225 GeV/c (see Ref. 13). The dotted curve is the proton structure function $g^{N}(x)$.

find $G = 0.25 \pm 0.02$ nb, $\lambda = 0.52 \pm 0.46$, and $\chi^2 = 4$ for six degrees of freedom.¹¹ The Drell-Yan prediction is $\lambda = 1$, and QCD corrections¹⁰ tend to reduce λ .

The Drell-Yan cross section with colored quarks is

$$\frac{d^2\sigma}{dM\,dx_F} = \frac{8\pi\,\alpha^2}{9M^3} (x_F^2 + 4M^2/s)^{-1/2} f^{\pi}(x_1) g^{N}(x_2),$$

where $f^{\pi}(x_1) = x_1 \bar{u}^{\pi}(x_1)$ and $g^N(x_2) = (\frac{4}{9}) x_2 u^N(x_2)$ + $(\frac{1}{9}) x_2 \bar{d}^N(x_2)$. Here, $\bar{u}^{\pi}(x_1)$ is the distribution function of \bar{u} quarks in the π^- and $u^N(x_2)$ and $\bar{d}^N(x_2)$ are the nucleon u- and \bar{d} -quark distribution functions, respectively. The nucleon structure $g^N(x_2)$ can be deduced with lepton probes. We use the nucleon structure function from the analysis of Buras and Gaemers,¹² and derive $f^{\pi}(x_1)$ from our data.

We determine $f^{\pi}(x_1)$ by fitting our data in $x_F - M$ space in the region $-0.1 \le x_F \le 0.8$ and $3.8 \le M$ $\leq 7.8 \text{ GeV}/c^2$. Our mass resolution allows us to fit down to 3.8 GeV/ c^2 and still avoid contamination from the ψ' . The results to the fit¹³ are shown in Figs. 2(a) (dashed curve) and 3. The smooth curve in Fig. 3 is a fit with the form $f^{\pi}(x_1) = ax_1^{1/2}(1-x_1)^b$. We find $a = 2.43 \pm 0.30$ and $b = 1.57 \pm 0.18$, with $\chi^2 = 77$ for 53 degrees of freedom. The data points in Fig. 3 arise from a fit in which $f^{\pi}(x_1)$ is allowed to assume different values in each 0.1 bin in x_1 . These data points show that the kinematic domain of our experiment is such that we are not sensitive to the region x_1 \lesssim 0.2. Thus, we are not probing the pion seaquark distribution. Also shown on Fig. 3 (dashed curve) is the result from a similar analysis done on data from $\pi^{-}N$ interactions at 225 GeV/c.¹⁴

The dotted line in Fig. 3 is the function $g^{N}(x_{2})$, which we used for x_{2} in the range 0.05 to 0.42.

Our pion structure function implies that approximately 40-50% of the π^- momentum comes from the \bar{u} valence quark. Also, $\int_0^1 f^{\pi}(x_1) x_1^{-1} dx_1 = 2.8$. These values are both about 2.5 times higher than expected.⁹ Thus, in contrast with the 225-GeV/c results,¹⁴ our data are in disagreement with the simple Drell-Yan model. The data at 200 and 280 GeV/c also give cross sections⁶ which correspond to large values of $f^{\pi}(x_1)$ under the quarks were colorless, our $f^{\pi}(x_1)$ would be reduced by a factor of 3. However, if higher-order effects¹⁵ can increase the cross section by 100%, it seems more natural to attribute our result to QCD corrections to the Drell-Yan mechanism.

^(a)Present address: CERN, Geneva, Switzerland. ^(b)Present address: Michigan State University, East

Lansing, Mich. 48823. ^(C)Present address: Stanford Linear Accelerator Center, Stanford, Cal. 94305.

^(d)Present address: Purdue University, West Lafayette, Ind. 47907.

¹S. D. Drell and T.-M. Yan, Phys. Rev. Lett. <u>25</u>, 316 (1970), and Ann. Phys. (N. Y.) 66, 578 (1971).

²M. A. Abolins *et al.*, Saclay Report No. D. Ph. P. E. 78-05, and a communication at the Nineteenth International Conference on High-Energy Physics, Tokyo, August 1978 (unpublished).

³M. Abolins *et al.*, Phys. Lett. <u>82</u>B, 145 (1979).

⁴We measured the ψ cross section per nucleon to be 95 nb at 150 GeV/c. From this and ψ yields from other experiments, we deduced a total cross section of 110 nb per nucleon for ψ production at 175 GeV/c. Cross sections per nucleon were determined with the assumption that the quarks and gluons in the nucleus act incoherently. Therefore, we divided the ⁹Be cross sections by 9. ⁵K. J. Anderson *et al.*, Phys. Rev. Lett. 42, 944 (1979);

G. E. Hogan *et al.*, Phys. Rev. Lett. <u>42</u>, 948 (1979).

⁶J. Badier *et al.*, in Proceedings of the European Physical Society International Conference on High-Energy Physics, Geneva, 1979 (to be published) CERN Reports No. CERN/EP 79-67 and No. 79-68.

⁷C. T. Sachrajda, Phys. Lett. <u>73B</u>, 185 (1978).

⁸The *A* dependence used by Anderson *et al.*, (Ref. 5) to get cross sections per nucleon was A^{α} , and with $\alpha = 1.12 \pm 0.05$. This rather large value of α may be partly responsible for the apparent lack of scaling of the 225-GeV/c data.

⁹R. D. Field and R. P. Feynman, Phys. Rev. D <u>15</u>, 2590 (1977).

¹⁰E. Berger, SLAC Report No. SLAC-PUB-2314, 1979 (unpublished).

¹¹We find that λ is not significantly different if the Collins-Soper angle is used. [See J. Collins and D. Soper, Phys. Rev. D 16, 2219 (1977).]

¹²A. J. Buras and K. J. F. Gaemers, Nucl. Phys. <u>B132</u>, 249 (1978). Averaging over the neutrons and protons in our ⁹Be target we find

$$g^{N}(x) = 0.877x^{0.594}(1-x)^{3.08} - 0.455x^{0.706}(1-x)^{3.84}$$
$$+ 0.567x^{0.706}(1-x)^{3.84} + 0.201(1-x)^{14.4}.$$

The first two terms arise from proton valence u quarks, the third term from neutron valence u quarks, and the fourth term from u and \overline{d} sea quarks. We used a fixed Q^2 of (4.65 GeV)².

¹³These results have been presented in preliminary form; M. Abolins *et al.*, in Proceedings of the European Physical Society International Conference on High-Energy Physics, Geneva, 1979 (to be published).

¹⁴C. B. Newman *et al.*, Phys. Rev. Lett. <u>42</u>, 951 (1979).
¹⁵G. Altarelli, R. Ellis, and G. Martinelli, Massachusetts Institute of Technology Report No. CTP No. 776, 1979 (to be published); G. Altarelli, G. Parisi, and R. Petronzio, Phys. Lett. <u>76B</u>, 351, 356 (1978).