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ABSTRACT

In the leading logarithmic approximation, the fragmenta-
tion functions of quarks and gluons are investigated using
Altarelli-Parisi type equations. Using a new method to make
the Mellin transformation, the equation is solved. Analytic
expressions for the fragmentation functions near z = 0 and
z = 1 are also given. Finally, numerical results for the
fragmentation functions DZ, Dz are presented for different

Q.
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INTRODUCTION

Asymptetic freedoml)’z) is a remarkable property of QCD, which has made it
possible to perform perturbative calculations for some experimentally measured
quantities. 1In the parton picture based on QCD, the quark and gluom distribution
functions inside the nucleon have Q° dependences given by quantitative analysesB).
Kogut and Susskind&) give this a physical interpretation. The hadrons are made
up of infinite levels of partons; virtual photon probes of higher Q? have fimer
resolution and have yielded a knowledge of the finer structure in the hadroen.
Altarelli and Parisis) have reformulated the recursion equation of Kogut and
Susskind in the following integro-differemtial equation form which is satisfied

by quark and gluon distribution functions
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where t = ln Q®*/A%; A 1is a scale parameter with A = 0.2-0.5 GeV/c, us(t) is

the running coupling constant and f is the number of flavours.

According to the Kogut and Susskind picture, the fragmentation functionsG)

of the quark and gluon are also expected to have Q? dependence, since the frag-

th

mentation of the N level partons occurs through the partons of the (N—l)th

level and there are different behaviours of the fragmentation functions in diffe-
rent levels. Following Altarelli and Parisi, there are integro—differential
equations for the Q? dependent fragmentation functions Dh_(z,t) and Dg(z,t).

. ., . 7 i8)
Several authors discuss it in this way

9.

, or in field theory , or in model

calculations In this paper we shall use Altarelli-Parisi type equatioms. Par-
ticular attention will be paid to solving the equations, to giving boundary beha-
viour hear z = 0 and 1 and to getting the Q%2 dependence using the method

for the Mellin transformation given in Ref. 10).

ALTARELLI-PARISI EQUATIONS

The integro-differential equations for the Q%? dependent fragmentation func-

tions Dh (z,t), Dh(z,t) are
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where Dg.(z,t), Dg(z,t) are the mean number of hadrons of type h with momentum
i
fraction 2z (with component in the direction of p of magnitude zp) per dz

in a jet initiated by a quark q; {(gluon G) at a scale t, and
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The physical explanation of Eq. (2a) is that the Q2 dependence of fragmenta-
tion function Dﬁi(z,t) is due to two processes: the quark can radiate a gluon
and then fragment; or it can radiate a gluon which fragments into the hadron.

For Eq. (2b), the Q2 dependence of fragmentation function Dg(z,t) is due to
these two processes: the gluon can pair-produce a quark which then fragments; or

it can pair-produce gluons which fragment into the hadrons.

In the usual way, taking the mowent of each side of Eq. (2), we obtain
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where the definition of the moment is
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Yn + 1) =T"{(n + 1)/Tr + 1) 1is the digamma functiom and ¢ is Euler's constant,

e = 0.5772.... Up to a multiplicative factor, the A's are the usual anomalous

dimensions in QCDI). {(We shall neglect mass effects in this paper.)

The solution of Egq. (3) is
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and we have defined
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In order to get the fragmentation functions themselves, we have to make an
inverse Mellin transformation as follows:
¥
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where the contour (y - i®, v + i=) is to the right of all singularities of

Dq_(t)>n, <D2(t)>n in the complex n plane. Formula (7) has another form
i

which we have used in our calculation:
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where F{x,t) 1is the inverse Mellin transformation of Fin,t),
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In our calculation we use two different, but mathematically equivalent, forms
of F(n,t) {see Appendix) which are very useful when studying the behaviour of

the fragmentation functions near z =0 and z =1, respectively.

BEHAVIOUR NEAR THE KINEMATIC BOUNDARY

In this section we shall discuss the behaviour of the fragmentation functions

of quark and gluon near z =1 and z = 0.

Studying the behaviour of a fragmentation function near z = 1 is equivalent
to studying the limit of its Mellin transform for n going to infinity. Therefore,
we make a 1/n expansion of its Mellin transform and calculate the inverse Mellin
transform. Assuming that the behaviours of the fragmentation functioms of the

quark and gluon to hadrons near z = 0 are
h by
3D, (3.6 = & (=3
h b (9a)
b
h
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then the behaviours of zDh_(z,t) and zDg(z,t) near z = 1 are
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For qu_(z,t}, the first term corresponds to the quark radiating a gluon and then
fragmenting into hadrons, while the second term corresponds to the process that
the quark radiates a.gluon which fragments into the hadron. For zbg(z,t), the

first (second) term corresponds to pair production of quarks (gluons) which then
fragment into hadrons.

Studying the behaviour of the fragmentation functiom mear z = 0 is squiva—

lent to studying the behaviour of its Mellin transform near its right-most singu-

larity in the complex n plane.

Assuming the behaviours of fragmentation functions of the quark and gluon

near z =0 for t = to are

3'37;:(}, ) ~ (G
(10a)

h

then the nahaviours of 3 (5,6) and 0h(e,0) mese 50 are
S’Pgttﬁft)w@c;)g",-e f)(%L fl{(’@)
‘o L GAD
5 Di (3 ~ (2¢) e wﬁ&)(%,L ) I( W)
rq B )

In the leading logarithmic approximation we obtain the boundary behaviours near
z=1 and z =0 (9b), (10b}, but in this region, higher order contributions

must be considered. This would be a very complicated calculation.
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NUMERICAL RESULTS

In this section we give numerical results for the fragmentation funections

of the parton into pioms and kaons.

According to the assumptions in Ref. 11), there are two {three) independent

frapmentation functioms for pions (kaons). That is:
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and
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Also, following Field and Feynmanlz) we set Q. = Q and get the following results

for the initial values of the D functions:
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with Q} = & Gev?/c? and A = 0.4 GeV/c.
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Using the assumptions of Ref. 13), the initial values of D. are

¥ = +0-3)
Ng = ;t(i—},r)",s

For small values of 2z, we use the formula (Al) and compute the contributioms

G

(13)

of all the singularities of F(n,t) in the complex n plane: n = 1,0,-1,-2,...
The inverse Mellin transform of 1/(n + p)r is %P 1/T(z)(1n 1/x)* . The com-
puter is used to sum up all these terms. Finally, we obtain zDg_(z,t) and

i

zDg(z,t) for the small =z wusing Egs (Ba) and (8b).

For large values of 2z, we use the formula (A2) and expand the integrand in
a series in 1/n - 1. Noting that the inverse Mellin tramsform of 1/(n - 1)T
is  1/xT(r)(1ln 1/x)r“1, we obtain the inverse Mellin transform of each term of
the series, After integration over v, f(z,t) is ¢btained. Also, ZDE’, zDg

i
are obtained from Egqs (8a) and (8b) for large values of z.

Finally, we check that the two types of calculation give the same results

for =z = 0.6-0.7.

The resulting fragmentation functions are shown in Figs 1-7. For QF =
= 4(GeV/c)?, A = 0.4 GeV/c, s = 0.3, 0.2, 0.1 correspond to Q% = 33.37, 14.56,

7.22 (GeV/e)?, respectively.

From Figs 1 and 2. we see that when =z 1is close to 1, the values of zDI+
are larger than ZDI . This is due to the fact that near z = 1, the observed
hadron contains the initial quark; for a u quark it is easy to get a d quark
from vacuum and form a ﬂ+, whereas it is more difficult to form a T . Similar
situations also happen for zDE+ and zDu .

Compared with parton distribution functions, considerably less is known about
scaling deviations in fragmentation functioms. To my knowledge, this is the first
time that numerical results about the Q2 dependence of light quark and gluon
fragmentation functions in leading logarithmic approximation have been obtained.

8)

Field theoretic arguments and model calculationsg) have shown that D(z,;)
should behave similarly to parton distribution functions, i.e., D should fall
near z = 1 and rise near =z = 0 as Q° grows. From Figs 1-7 we see that this

is the case.
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APPENDIX

There are two different forms of F(n,t). Expression (A1) is useful near

2z =0 and (A2) is useful near z = 1. The results are
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