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The mechanism by which supersymmetry (SUSY} can possibly be broken dynamically
is still not clearly understoodl). Yet such an understanding is of doubtless

importance for building realistic models based on supersymmetry.

In order to expose some of the distinctive properties of SUSY, while making
as much use as possible of the recently acquired understanding of non-Abelian
gauge theories without fundamental scalars, we have looked at the pure N =1
supersymmetric Yang-Mills theoryz) with an SU(NC) gauge group. This theory
ig thus a one flavour (Nf = 1) gauge theory with Majorana (Weyl) fermions in
the adjoint representation {rather than Dirac fermions in the fundamental repre-

sentation as would be the case for QCD). The Lagrangian is

o a T - b
OZ = - z-;- Ff"v F/.-t\’ + T;:-A ﬁaLA + gauge fixing + ghost terms

+ auxiliary fields (L
- 2
{a = 1,2,...,NC 1)

with repeated indices summed over. The metric used is Ny = diag(l,-1l,-1,-1).
a . . .

In Eg. (1) X is the spincr field and Fiv, D  are the usual Yang-Mills field
strength and covariant derivative respectively. This theory is supersymmetric

for any Nc’ hence it enjoys a SUSY 1/NC expansion. The topological classifi-
cation of the diagrams contributing to order (l/NC)n is the same as that of

QCD disgrams in the limit N_ » @ with Np/N fixed

, i.6., boson and fermion
loops count alike (supersymmetry) and a graph with genus h (h 'handles") is of
crder (1/NC)2h relative to the leading (h = 0) diagrams. In spite of this,

assuming colour confinement, the leading term of the expansion is closer te¢ that

of QCD in the limit NC > o0, Nf/Nc + G 4), in that it describes colourless nar-
row bound states whose residual n bedy interactions go to zero at Ni-n. These

"hadrons" are coherent states made out of an indefinite number of constituent
"quarks" and "gluons". "Mesons" and "baryons" contain an even or odd number of
quarks respectively and coexist as Nc + o, unlike in QCD where only the mesons
survive in the limit., Finally, this thecry is asymptotically free and its coupling
¢ get transmuted into the usual scale parameter A in terms of which "hadronic"

masses are all of 0{1).

At the classical level this theory is scale and chiral invariant. These
two symmetries are broken at the guantum level by the anomalies of the energy
momentum tensor and of the axial current respectively

- 4 ) a a
Op (% O} = Oppe = G B3 B

a XMa, ~aq Q



where {(g) 1is the usual renormalization group R function, Similar equations
(but with different coefficients) hold for QCD, In particular note that the

axial current defined here does not satisfy the Adler-Bardeen no-renormalization
theoremS). What distinguishes this thecry from QCD is the existence of a conserved

SUSY current Sﬁ which has a vy -trace anomaly:

a

. ) -2
b ¥ S=¥0 S = s LGN,

6)

It has been shown ' that both the current J , g and Su and their anomalies

us uv
BUJS' euu, YUSU belong to supermultiplet structures, Recent explicit calcula-
tions by Jones and Leveille?)

appear to indicate that this is indeed the case up
to fourth order in the gauge coupling. The supermultiplet structure determines
the coefficients in Egs. {2) and (3) uniquely. It is clear therefore that the
axial current which resides in the =ame supermultiplet with the energy momentum
tensor cannot satisfy the Adler-Bardeen theorem. In tg? QCD case, it has been

possible to construct large NC effective Lagrangians which incorporate pro-
perly the axial anomaly and the effect of topological charge, and offer a simple
picture for the resolution of the U(l) problem, The multiplet structure of
the anomalies will be our basis for extending that construction %o the SUSY case,
Before going into that we would like, however, to make some general considera-

ticns.

There are two interesting lowest dimension gauge invariant order parameters
in this thecry, FivFiv and Xaxa. If the first gets a vacuum expectation value
SUSY is broken. This comes from the fact thatg}

§ T (¥, C-?d}: Opp = {QZ'?ZFZI'}: (4)

An expectation value of the right~hand side of Eg. (4) would imply that Qu deces
not annihilate the vacuum (alternatively, the vacuum energy <OIGE[O> is non-

10)

zero)., It has been suggested that the expectation value of the renormalized
operator in the SUSY thecry pcssesses positivity properties such that, for ex-

ample

<F;:z)o ) <F22>o >/ O (5)



Combining this equation with Lorentz invariance of the vacuum:

a_.a 4
< F/-“” FS"'>o = (?ff‘S or - lf,ur l[v_g ) <-,-§'-)a )

one concludes that <F2>0 = 0. This conclusion is, in cur opinicn, unwarranted.

Indeed, by explicit calculation of the anticommutator in Eq. (4) one finds:

O s

a,a ‘—a a
(4-N) CHESES+ 5N BA)
The first term in Eq. (4) is the conventional cne while the seccnd, also present
in non-SUSY theoriesll) with a different numerical coefficient, is a rather trivial
operator because of the squation of motion. The coefficient 3/8 appearing im
Eg. (7) is just what is needed in order to achieve the exact cancellation of
gluonic and fermionic loops (at the one loop level) needed to leave the vacuum
energy at zero, This is consistent with the fact that in deriving Eq. (7) we have
eliminated the auxiliary field D through its equation of motion D = 0, In
any case, the above argument shows that the operator appearing con the left~hand
side of Eg. (2) is not just F2, a fermionic free term having been subtracted.
This spoils the positivity arguments given above and leaves the question of whether

<F?> = 0 or not, a dynamical cne,

Let us now discuss the expectation value of <hh>. The question of whether
<%3> £ 0 breaks SUSY is a more subtle one since we have to use the anticommutator

of Qa with a gauge dependent quantity in order to obtain <AA>», 1l.e.,
-— ! -
= g < LQ, (M) ®)

[In Eq. (8) we have used the fact that Lorentz symmetry is not broken, hence only
scalar operators can have a non-zero vacuum expectation value.] We shall see

explicitly how SUSY is preserved even 1f <AA> £ C.

On the other hand, the guestion of whether <Ax> # 0 represents in some
sense a spontaneous symmetry breaking deserves more discussion, due to the ex-
plicit breaking by the anomaly. In QCD the anomaly can be switched off by going
to the limit Nf/NC + 0 and in this case the possibility of a spontanecus breaking
of the U(l) symmetry is a meaningful one. Unfortunately, in the present SUSY

case, no parameter can be adjusted to switch off the anomaly while preserving
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SUsy [in the present SUSY theory Nf = 1 and the anomaly is larger than in QCD
by a factor O(NC)]. Yet the dizgrams contributing to the large Nc limit of
the three axial-current amplitude can be classified according to whether the
three currents are attached to the same fermion loop or not. It is the first
type of diagrams which in the QCD case survives in the large Nc limit and
which is responsible for spontaneous chiral symmetry breaking while the other
ones, being related to the anomaly, provide a mass for the would-be Goldstone
boson (the n'). In the SUSY case both sets of diagrams should be considered
similtaneously. However, by analogy, we still expect the first type to induce
a spontanecus breaking with a Goldstone boson while the others provide the mass
shift through explicit breaking. To substantiate the same conclusion one can
regard the supersymmetric case as the Nf > 1 limit of a more general theory
with Nf flavours of Majorana fermions in the adjoint representation, This
theory is not supersymmetric (if No Z 1) but has instead a U(Nf) chiral sym-
metry broken to SU(Nf) by the strong anomaly. In this case, taking also

y We can easily show that a Coleman-Wittenle)

13)

type of result follows,
One expects SU(Nf} to be broken to O(Nf)

N = o
c
using 't Heoft anomaly equations

with
CEIERY FRTI

Notice that only the diagrams of the first type discussed above contribute to
the SU(Nf
Eq. (9). TUnless something discontinuous happens as we come down to N_ = 1,

f
we expect the same diagrams to give <% £ 0 in the SUSY case as well,

) anomalies and are responsible for the vacuum expectation value of

Another argument for spontaneous breaking of chiral symmetry uses the
fermion lcop expansion (a non-supersymmetric expansion in powers of Nf).
Assuming, as in QCD, that the quarkless theory hzs non-tprivial 8 dependence,

one findslé)

that this can be cancelled in the full theory with massless fermions
only if a Goldstone pole appears at the one~fermion loop level [which gets a mass
O(/N;) after resumming all fermion loops]. The above arguments make it plausible
that one of our low-lying degrees of freedom should be the would-be Goldstone

boson of chiral symmetry.

We are now ready to turn to the effective Lagrangian approach which has
proved to be so useful in QCD. The two bosonic gauge invariant composite fields
used there were FF and M. It is very natural here to add to them the other

members of the anomaly supermultipletlS).

The resulting effective theory will
then be of the Wess-Zumine type with the components of the supermultiplet given

by the compesite fields
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¢: CXRhL ) ¢*= C :\.LAR
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M +‘FF) N Mf-—--%(F"-c'Ff)

C
L (F

where terms that vanish upon use o{ the equations of motion have been omitted
and C = Ef:]_)_ = - E%ﬂi
_ 2(] 2T

W=z (1-8:)A; ;R.-.-‘.fi(/na;.),\

in our SU(NC) theory, Alternatively, one can use the definite parity combina-
tions a = Cii, b = ciiys , X, cF?, —cFF. The fields in Eg. (10} can be com-

bined to form the chiral multiplet (in two component notation).
S(xe)= ¢ +20X-0"M-((67.0)%¢
C ot m Y I a5 (11)
-ie'(8FX)-£06° 0P

In the QCD effective Lagrangian there were three crucial terms; the kinefic term
for ¢, a guadratic term in FF and a coupling of FF to logd to give the
correct anomaly. The standard kinetic term one uses in supersymmetric theories,
i.e., (S*S)D (in standard notation) would give a kinetic term for both ¢ and
y as well as a quadratic term in the auxiliary field FF. However, because in
our case ¢ 1s a composite field, it does not carry the canonical dimension

of a fundamental scalar field (the same applies also to Yx). To ensure scale

invariance of the kinetic terms one modifies the kinetic Lagrangian by taking
Y.
Ln= 2 (5*S),
kim e D (12)

with a a dimensionless constant. Writing this down in components one can see

that L contains automatically a term

1 (¢*¢)—2’/3MM+= k'" (¢*¢)-2/3—’-[(CF2)1+ (CFE)l]
% 4 (13)
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which hence effectively includes the needed quadratic term in (FF), Notice

that in QCD we could regard (FE) as an auxiliary field only in the low energy,
NC + % 1limit in which the Lagrangian is a%t most guadratic in FE and derivative
could be neglected. In this SUSY theory FF and Fz, being auxiliary fields,
can appear at most quadratically and have no kinetic terms, so they can always be
eliminated. We have now to add a term which produces the three ancmalies of

Egs. (2) and (3). Mimicking the QCD case we can do that by adding to L, . an

kin
F term

L —-(S'(Oa S) + h.c. (14)

amom

This is the only pessible structure that is scale invariant up to an anomaly.

Indeed, under a chiral transformation
3¢ -2
sx,0)— > P 5(x 0e IF) as)

(recalling that A has chirality 3/2) Hence

(S)F" S‘" xd'o0 S, @)-—» go("xal 'Stx ')
-55&&
o'=0e |
S(Sﬂoa S//u})F th.c. = 3('/3 S"lyx JIG'S(X; @")-{-A_c_ (16)

3ip (d'(-m+MH)=-3pCFF

"

Under a scale transformation

- J
S{X0)— cBJS (XCB; @e /") (an

30 that

S) =z (d%d'o Sixe)— (Lo’ Stre)
’ 5 .
6'::- Qe /2 X=Xe
5(5,?03 5;;.;)+Ac=-35 g,lxaf g’ (sx0) +h c)
=-3) g,l”x(mm) 3¥c F*

Finally we have checked that the y*S anomaly is alse fulfilled by performing
9),15)

(18)

the explicit infinitesimal superconformal transformation



$(S), =
g(sfoa s, the =

(19)

6c§X

sese are indeed the correct transformation properties following Eqs. {(2) and (3).

aving checked that the effective Lagrangian

Lo =3 (5 *$) 0+ [cs&a%{-S)Fm]

has the correct transformation properties, we can turn to the analysis of its

consequences. This is done most easily by writing down Leff in Eq. (20) in
The auxiliary fields turn out to be given by:

(M+M}--CF y
!2(2&7((_1,, 7(L WR) .((qp ¢) J%G(U)E

{21)

components.

-CFF
ol g_’“ - ?"%«) -k (#8) oy ()]

. (20} takes the form

i

—((M-M")

In terms of ¢ and X alone the effectlve Lagrangian Eg

L=z ) (%9700 + TN

:p:;}f:ﬂf@

(22)

-t

[

5
+§(x‘y“ﬂ>3<‘%+*ﬂ-"fq )
t 2

25X )( ’DrW

Equation (22) is quadratic in the fermionic fields.
(12), while a four fermi interaction X XR will be

of a factorized D term, Eq.
at most present in the general case )

This arises from our choice
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Notice that the non-polyncmial form of Eq. (14) reflects itself in Eq. (22) as
non-polynomial terms in ¢, ¢¥ but not in X, X. 1In particular, the scalar
petential takes the form

V = & (OO Loy s log P

(23)

with minima at <¢> = <¢*> = 0 or <¢> = <¢*> = u®. By rescaling the ¢ and X
fields in Eq. {22) (§ = 3/a6™3, R = (/3/00™23X)  so that the Kinetic terms
take the conventicnal form, one can see that only the <¢> = n® solution makes
sense in agreement with our expectation. In particular, the scale of the "non-

renormalizable” terms is given by yu.

Expanding the effective Lagrangian around its minimum we find that ¢ des-
¢ribes a scalar and a pseudoscalar massive boson and X a massive (Majorana)
fermion, As expected from the fact that V = ¢ at the minimum, these particles

have the same mass:
- - A
Mg =My = 30(/‘4 (24)

and form a Wess-Zumino scalar multiplet, Hence, in spite of <h> £ 0, 3UsY
is not broken (in particular, <F2?> = ). The would-be pseudoscalar Goldstone
%
has received a mass from the anomaly (as the n' in QCD )) but, because of SUSY,

has dragged along a scalar and & fermion.

The fact that <¢> # 0 does not imply supersymmetry breaking is intimately
related to the fact that &) is the lowest component of the chiral multiplet 3
[Eq. (11)] whose components are gauge invariant composite operators. The lowest
component can never be obtained as a commutator of the supersymmetry charge with
some other components. Thus the usual Goldstone Lype argument cannct be applied
here. Only when the F term of the supermultiplet (the auxiliary field) gets
non-zero vacuum expectation value, can one conclude that supersymmetry is broken.
At first sight it seems that by adding linear F terms we can achieve a situa-
tion where the auxiliary field gets non-zero vacuum expectation value and super-
symmetry is broken, This, however, is not the case, since in our effective
Lagrangian, Eq. (l4), such an F term can be swallowed by a redefinition of ue
This is Just a specific manifestation of the well-known fact that the most general
Wess-Zumino type model does not include a linear term in the chiral multiplet.
Such a term can always be eliminated by a supersymmetry transformation which shifts

the chiral multiplet by an appropriate constantlE).

*
)Indeed one can also show here that a Witten type formulaIQ) holds, relating
the mass of the pseudoscalar boson to the coefficient of (FF)2 and to the
expectation value FTT of the properiy normalized scalar field.
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One cculd be worried about the consistency of our result with the large NC
behaviour of masses and couplings. This is easily fixed by noticing that with

fquarks" in the adjoint representation one should have
3 e 1:
/4=<¢)N<>‘)\)NNC (25)

and that the correct N, dependence of the ¢, xy kinetic terms demands

-2/3 -2/3

an N . Writing then ® = Ngns and a = yN one finds mg = my = YA/3,

<$> n, NA and the couplings of the rescaled fields g§X¢ = 1/N, giXX¢*¢ =~ L/N%A%,
etc., in complete agreement with large Nc counting.

Finally, let us remark that, while the structure of the F term in our
effective Lagrangian Eq. (20) is uniquely determined, this is not the case for
the kinetic D term, We can write other scale invariant terms. Such terms will
pe of the form (5%3)7(s% + s%%) with 6p + 3q = 2. We have looked at these

terms and they do not seem to qualitatively change our conclusions,

To summarize, we have argued that the pure N = 1 supersymmetric Yang-Mills
theory leads to a spectrum of massive multiplets of composite hadrons (of which
ours is expected to be the lowest one for small values of o) which become weakly
interacting in the large NC limit. Perhaps disappointingly, SUSY is not broken*)
since only the lowest member of a scalar multiplet has developed a vacuum expec-
tation value (Ar). A similar result was obtained in the two~dimensional SUSY,
cpP 17

mocdel at large n . A similar scenario was advocated fer some four-
dimensional models including matter multipletsla). What remains to be seen is

whether other SUSY gauge theories (such as adding matter multiplets to the N =1
theory or going to extended SUSYs} can lead to a different and phenomenologically

more interesting behaviour.
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)This result is in agreement with those following from the index analysis of
witten [Ref. 1)7.
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