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Abstract: As a first step towards inflation in genuinely F-theoretic setups, we propose a

scenario where the inflaton is the relative position of two 7-branes on holomorphic 4-cycles.

Non-supersymmetric gauge flux induces an attractive inter-brane potential. The latter is

sufficiently flat in the supergravity regime of large volume moduli. Thus, in contrast to

brane-antibrane inflation, fluxbrane inflation does not require warping. We calculate the

inflaton potential both in the supergravity approximation and via an open-string one-

loop computation on toroidal backgrounds. This leads us to propose a generalisation to

genuine Calabi-Yau manifolds. We also comment on competing F -term effects. The end

of inflation is marked by the condensation of tachyonic recombination fields between the

7-branes, triggering the formation of a bound state described as a stable extension along

the 7-brane divisor. Hence our model fits in the framework of hybrid D-term inflation.

We work out the main phenomenological properties of our D-term inflaton potential. In

particular, our scenario of D7/D7 inflation avoids the familiar observational constraints

associated with cosmic strings.
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1 Introduction

In its pursuit of a unified picture of particle physics and cosmology, string phenomenology

has found a particularly fruitful arena in the framework of Type II compactifications with

branes. On the one hand, the open string sector can in principle encompass the essential

features of the Standard Model. On the other hand, a quantitative treatment of cosmology

is within reach thanks to an improved understanding of moduli stabilisation. The latter is,

for instance, a prerequisite for a reliable computation of the dynamics of candidate inflaton

fields.

In particular, Type IIB Calabi-Yau orientifolds with branes and fluxes and their strong

coupling version of F/M-theory on Calabi-Yau fourfolds are a corner in the string landscape

where important progress in both directions - particle physics and scalar field dynamics -
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has been made. For example, on the gauge theory side it has recently been appreciated

that F-theory [1] is a promising framework for constructing realistic GUT string vacua

[2, 3] (see [4, 5] for recent reviews). At the same time a combination of G4 fluxes and

non-perturbative effects can in principle achieve moduli stabilisation within the framework

of conformal Calabi-Yau and in particular Kähler compactifications. This is essential for

concrete model building and hands-on applications since our understanding of non-Kähler

geometries is at present still limited.

Compared to the recent developments in particle physics model building, there is far

less progress concerning the implementation of inflation in F-theory, preferably in the same

class of models with already attractive particle phenomenology. One possibility would

be to pursue the embedding of existing inflationary scenarios such as D3/(anti)D3 or

D3/D7-brane inflation into F-theory models. On the other hand, genuine and possibly

non-perturbative F-theoretic effects are expected, in particular, in the 7-brane sector. An

obvious first step in this direction is to study inflationary D7-brane dynamics. In this spirit,

the present paper embarks on the analysis of perturbative D7/D7 inflation in Type IIB

orientifolds. This turns out to be in itself an extremely interesting setting with attractive

phenomenological features.

As a motivation for our scenario of fluxbrane inflation, we recall that the appealing

idea of brane-antibrane inflation [6] faces a well-known phenomenological problem: Given

the limited range available for brane positions inside the compact geometry, the brane-

antibrane potential is not sufficiently flat [7]. Several approaches to circumvent this problem

have been suggested. They include replacing the brane-antibrane pair by a pair of branes

at a relative angle [8], by a D7-brane with flux together with a D3-brane [9], and exploiting

warped geometries [10]. A closely related idea is that of Wilson line inflation [11] (also

known in a field-theoretic context [12, 13]).

In the present paper, we assume that inflation is driven by the relative motion of

two spacetime-filling 7-branes. The inflationary potential results from a SUSY-breaking

gauge flux on a 2-cycle shared by these two branes. The dominant part of this potential is a

constant ∼ |F|2, where F is the 2-form flux on the branes.1 Reheating occurs when the two

branes nearly coincide so that a tachyon develops and a bound state forms. This is clearly

consistent with a leading-order analysis of D-term hybrid inflation [14, 15], which indeed

turns out to be the correct 4d supergravity description.2 A brane-to-brane force, i.e. a non-

constant contribution to the energy, arises as a Coleman-Weinberg-type loop correction to

the D-term potential. We derive this effect both from a string-loop calculation and in 10d

supergravity. In the latter approach, it can be seen as a classical force between a flux F/2
on one of the branes and the opposite flux −F/2 on its partner. In contrast to the |F|2
scaling of the constant term, this Coulomb-like force scales as |F|4. We will give an intuitive

1Here |F|2 = FMNFPQgMP gNQ and we assume the use of coordinates which make gMN locally ap-

proximately Euclidean. Since F is integrally quantised,
∫
F = p ∈ Z, this implies |F|2 ∼ p2/R4, with R a

generic Calabi-Yau radius in units of `s.
2 Note that F -terms induced by background or gauge fluxes can stabilise the 7-brane modulus at a

higher scale; only those 7-branes can lead to inflation for which this F -term effect is absent or sufficiently

small due to a suitable choice of fluxes. This constraint will be analysed further in the corpus of this paper.
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argument for this crucial feature of our potential in a moment. It is this particular type

of scaling which allows for a sufficiently flat potential in the weak-flux (i.e. large volume)

limit.

While our scenario is conceptually similar to D3/D7 inflation [9, 16, 17], it has sig-

nificant advantages concerning the field range of the inflaton: The fact that a D7- rather

than a D3-brane moves in the compact space enhances the relevant kinetic term. This, in

turn, gives the canonically normalised inflaton field a much larger field range (see, however,

the ‘anisotropic compact space’ proposal in [17] and the possibility of having the D7-brane

move in the background of a large-N D3-brane stack [16]). As a second considerable virtue,

we will find that our scenario passes the cosmic string constraints more easily than generic

models of D-term inflation.

Like many other brane inflation models, D7/D7 inflation requires a certain amount of

fine tuning after Kähler moduli stabilisation. However, the mechanisms available for this

tuning are rather special. As it turns out, truly F-theoretic effects come into play in this

context.

Summary of technical results

After this general overview we would now like to enter a slightly more detailed and technical

discussion of the issues just described. We first recall the familiar ‘no-go theorem’ of [7]:

Schematically, the 4d Lagrangian for the relative motion of a p-brane and its anti-brane in

the compactification space reads

L ∼ g−2
s V R + g−1

s V||
[

(∂r)2 −
(
A−B gs

rd⊥−2

) ]
. (1.1)

Here gs is the string coupling and R is the 4d Ricci scalar. All 10d quantities, such as the

total and brane-parallel compactification volumes V and V|| as well as the brane-antibrane

separation r, are measured in units of the string length. Furthermore, we have chosen our

4d coordinates and hence L to be dimensionless. Finally, d⊥ = 9− p is the codimension of

the p-branes and A,B are positive O(1) constants.

The potential of our inflaton r in (1.1) consists of two pieces: A constant part (∼ A)

associated with the brane tensions and a Coulomb-like attractive contribution (∼ B). After

reheating, which corresponds to brane-anti-brane annihilation and is outside the validity

range of (1.1), the potential is identically zero.

It is now an easy exercise to go to the Einstein frame, to normalize the inflaton

canonically, and to calculate the slow roll parameter η ≡ V ′′/V . Introducing the brane-

perpendicular size L⊥ of the compact space, V = V||Ld⊥⊥ , the result reads

− η ∼ B

A

(
L⊥
r

)d⊥
. (1.2)

It is immediately clear that −η � 1 cannot be realised since the brane-separation r is

bounded by L⊥. This result also holds for d⊥ = 2, which is in fact our particular focus. In

this case, (1.1) has to be interpreted according to

1

rd⊥−2
→ ln(1/r) for d⊥ = 2 , (1.3)
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with the rest of the calculation leading to (1.2) unchanged.

The suggestion of the present paper is to consider two Dp-branes which we assume to

carry 2-form flux F/2 and −F/2. Thinking of ±F/2 as of (p− 2)-brane charges dissolved

within each of the p-branes [18], one expects an attractive force and hence brane motion

(inflation). When the branes finally come to be on top of each other, the flux annihilates

and supersymmetry is restored (reheating). Given this intuitive picture, one might expect

that (1.1) remains valid, but with both A and B now being ∼ |F|2. In that case F
would drop out of the formula for η and the previous negative conclusion would still follow.

Instead, as we will demonstrate, one finds the parametrical behaviour

A ∼ |F|2 and B ∼ |F|4 . (1.4)

Thus,

− η ∼ |F|2
(
L⊥
r

)d⊥
� 1 (1.5)

in the limit of weak flux. The latter is easily realised by choosing an O(1) number of flux

quanta p and going to the limit of large brane volume, using |F|2 ∼ p2/R4. Hence, at

least before moduli stabilisation, ‘fluxbrane inflation’ arises naturally, without a fine-tuned

cancellation between several competing contributions to the potential.

Obviously, the crucial point is the absence of a force ∼ |F|2, which makes the next

term in a small-|F|2 expansion dominant and leads to the scaling B ∼ |F|4. We will

now try to provide an intuitive understanding of this behaviour: We first recall that, due

to the gauge-non-invariance of B2 and its interplay with the DBI action, brane-flux is a

relative concept. In other words, two branes with flux F/2 and −F/2 can be equivalently

thought of as a brane with flux F in the background of a fluxless brane. Let us now

focus on D3-branes (although this is clearly not the phenomenologically interesting case)

and, in addition, replace the fluxless brane by a stack of N D3-branes. Thus, the brane

with flux F moves in the familiar AdS5×S5 background [19, 20] and the only effect of

this motion on its action is through a rescaling of the induced metric. However, due to

the classical scale-invariance of the leading-order 4d gauge theory Lagrangian, the energy-

density associated with the flux F is insensitive to this rescaling. In other words, there

is no force ∼ |F|2. Starting from this observation, it is easy to convince oneself that this

situation persists for p 6= 3: While the gauge theory Lagrangian is not any more scale

invariant in d 6= 4, the corresponding non-trivial r dependence is exactly compensated by

the non-trivial dilaton background that is sourced by Dp-brane stacks with p 6= 3. As a

result, the force remains ∼ |F|4 for general fluxbrane-pairs. In fact, this is closely related

to the Generalised Conformal Symmetry of p+ 1 dimensional Yang-Mills theory and the

corresponding supergravity background discussed in [21–23].3

Having now explained the basic idea in an intuitive way, we jump ahead and briefly

present a more technical supergravity formulation of our results. The leading term in the

potential, i.e. the Einstein-frame version of the term ∼ A from (1.1), can be interpreted as

3 We only require the classical version of this symmetry introduced in Sect. 2.2 of [23].
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a D-term potential with field-dependent FI-term ξ:

V =
g2

YMξ
2

2
and ξ ∼ gs

V

∫
J ∧ F . (1.6)

Here V ∼
∫
J3 measures the Calabi-Yau volume in units of the string length and the field

strength is now normalised as an integral 2-form.

The correction ∼ B with its logarithmic inflaton dependence was previously argued

to arise from a Coulomb-like force between fluxbranes. In the case of parallel branes on a

torus, we will provide a detailed derivation both in 10d supergravity (corresponding to the

Coulomb-force point of view) and through a string-loop calculation (corresponding to a

Coleman-Weinberg-type correction in 4d field theory). This stringy derivation turns out to

be much more than just a consistency-check: As we will see, the moment of 60 e-foldings

before reheating corresponds to a brane separation far below the string length. Thus,

we cannot a priori trust the 10d-supergravity-derived potential when calculating CMB

fluctuations. However, the stringy calculation demonstrates the validity of this potential

up to the very point of tachyon condensation.

The results outlined above will allow us to make a proposal for the generic Calabi-

Yau situation, where the branes are only locally (approximately) parallel and flat. The

corresponding potential reads4

V =
g2

YMξ
2

2

{
1 +

g2
YM

16π2

[
1(

1
2

∫
J2
) (∫ J ∧ F

)2

− 4

(
1

2

∫
F ∧ F

)]
ln(r)

}
. (1.7)

Here we immediately recognize the terms ∼ A and ∼ B scaling with the second and fourth

power of the flux.

The weak-flux or large-volume limit now arises in a slightly different manner: Before,

we had |F|2 ∼ p2/R4. Now, the R-dependence is encoded entirely in J . Thus, J ∼ R2 and

1/g2
YM ∼

∫
J2 ∼ R4 are responsible for the correct scaling and hence for the parametric

smallness of the η-parameter following from (1.7).

Another crucial point, which is apparent in (1.7) and which distinguishes our scenario

from a stringy realisation of generic loop-corrected D-term inflation, is the following: Let

us choose a flux which does not induce a D3 charge, i.e. a flux satisfying
∫
F2 = 0. Then

the ln(r) piece of the potential is suppressed by (
∫
J∧F)2/

∫
J2, i.e. by the ‘angle’ between

Kähler form and flux. This angle can become small if the Kähler moduli are appropriately

stabilised. Hence the ln(r) term can be suppressed beyond the generic loop-factor. As we

will explain in more detail below, this extra suppression allows us to avoid cosmic string

constraints without going to extremely small couplings and relying on corrections near the

point of tachyon condensation, as suggested in [17].

We now return in more detail to the relation of our proposal to previously discussed

scenarios of brane inflation. Considering just the form of the potential in (1.7), our setting

appears to be rather close to the D3/D7 scenario [9] (see also [16, 17, 24–37]). However,

as anticipated before, the D7/D7 scenario has a much larger field range of the canonically

4 Note that, in contrast to (1.1), this expression is in the 4d Einstein frame.
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normalised inflaton. Furthermore, we reiterate that for
∫
F ∧ F = 0 appropriate Kähler

moduli stabilisation allows us to flatten the potential beyond the generic D-term inflation

case by the above argument.

Next, we note that our setting is T-dual to scenarios where inflation arises from branes

at angles [8, 38–47] (see [48, 49] for related earlier proposals). This is apparent if one

thinks of a toroidal compactification and performs a T-duality along one of the two radii

supporting the flux. While the inflaton is still the brane separation modulus, reheating now

corresponds to brane-recombination. Compared to scenarios with branes-at-angles, D7/D7

inflation has the advantage that it arises naturally in the (arguably) best-understood region

of the landscape, i.e. in Type-II-B/F-theory with fluxes [50–52]. In particular, we hope that

D7/D7 inflation can be investigated explicitly in rather generic geometries, and issues like

the fine-tuning of the present-day cosmological constant through fluxes can be addressed

simultaneously.

Alternatively, one can perform a T-duality along one of the radii which are not wrapped

by the branes. This leads to Wilson line inflation [11, 53]. In fact, the authors of [11] briefly

mention the possibility of a T-dual version, where their Wilson line is replaced by the brane

position. They emphasize the danger of a too steep, flux-induced potential. We will return

to this critical issue in detail in Sect. 6 and App. E, arguing that at leading order such a

potential does not arise in appropriate geometries and for suitable fluxes. At subleading

order, a flux-induced potential for the inflaton may actually be a crucial ingredient, which

is necessary for a moderate tuning after Kähler moduli stabilisation.

Our paper is organized as follows. In Sect. 2, we start by describing the geometric

setup and deriving geometric constraints which ensure that 7-brane inflation can work in

the way outlined in the introduction. We then continue in Sect. 3 by calculating, both in

10d supergravity and by a string-theoretic one-loop analysis, the D7/D7-brane potential

in the simplified case of a T 6 geometry. In App. D we give a field-theoretic interpretation

of the inter-brane potential in terms of loop-corrections to the FI-term and to the gauge

kinetic function. The potential is then generalised to the Calabi-Yau situation in Sect. 4.

A preliminary phenomenological analysis, including the CMB spectrum and cosmic string

constraints, is the subject of Sect. 5. We conclude, in Sect. 6, with an outlook on the

specifics of competing F -term effects arising after Kähler moduli stabilisation. A number

of technical calculations are collected in the appendices.

2 The geometric Calabi-Yau setup for 7-brane hybrid inflation

2.1 The general mechanism

In this section we describe the geometric configuration underlying our fluxbrane inflation

scenario. We consider a general Type IIB orientifold compactification on a Calabi-Yau

3-fold X3 modded out by the orientifold action Ω(−1)FLσ. The holomorphic involution σ

is chosen such that it gives rise to O3- and O7-planes compatible with the addition of D3-

and D7-branes. The four-dimensional effective action of such Type IIB orientifolds has

been studied in detail in [54–57].
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The key players of our inflationary scenario are spacetime-filling D7-branes wrapping

holomorphic 4-cycles of X3. The inflaton is related to the position modulus for a particular

D7-brane as follows: In flat space, two parallel 7-branes can be separated from each other

in such a way that there is a non-zero distance r in the perpendicular complex plane at

every point of the branes. This means that there exists a modulus y associated with the

brane separation such that |y| = r. As we will discuss in detail in subsection 2.2, this

simple picture receives interesting modifications for curved branes on general manifolds.

Nonetheless one can maintain the concept of relative 7-brane motion and of an associated

modulus - the inflaton. Until Sect. 2.2 we will ignore all complications occurring on curved

spaces as compared to flat backgrounds.

Concretely let us denote by Σ ∈ H4(X3,Z) a divisor class with a geometric deformation

modulus; i.e. a 7-brane wrapped along a representative in the class Σ can move in X3. We

assume for simplicity that this brane does not intersect the orientifold plane or its orientifold

image in the class σ∗Σ. A pair of 7-branes Da and Db along two representatives Σa, Σb of

the divisor class Σ can then be deformed with respect to one another.

Our second ingredient is non-supersymmetric relative gauge flux along the two branes

and the resulting attractive D-term potential. If the two branes are separated from each

other, the four-dimensional gauge group is U(1)a×U(1)b. On the D7-branes we switch on

non-trivial U(1) gauge bundles La and Lb with first Chern class

c1(La) =
1

2π
(`2sFa) + ι∗B+ ∈ H2(Σa,Z/2) , (2.1)

and analogously for Lb. Here we distinguish between the (dimensionful) expectation value

of the curvature Fi = dAi and the pullback5 with respect to the embedding ι : Σ → X3

of a discrete B-field described by elements of H1,1
+ (X3) that are even under the orientifold

involution σ. By contrast the quantity

Fa =
1

2π
(`2sFa) +B (2.2)

refers to the full B-field including its non-integer piece along orientifold odd elements of

H1,1
− (X3). In our conventions the string length `s is related to the Regge slope α′ as

`s = 2π
√
α′.

The dynamics of the relative brane motion during inflation involves only the relative

gauge group U(1)− with abelian generator Q− = 1√
2
(Qa−Qb). In general there will be open

strings stretched between Da and Db charged under U(1)−. In their ground state sector

they give rise to chiral multiplets Φi
ab with charge (−1a, 1b) and Φ̃j

ab with charge (1a,−1b).

In flat space, as the parallel branes are separated, these strings would necessarily acquire

a supersymmetric mass term proportional to the brane separation with modifications on

curved spaces to be discussed below. Apart from appearing with a supersymmetric mass

the bosonic components of Φi
ab and Φ̃i

ab enter the four-dimensional N = 1 supergravity

5In the following we will omit writing ι∗ explicitly all the time. It will be clear from the context whenever

we need to pull back a form to Σ.
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D-term potential for U(1)− of the standard form6

VD =
1

2
<(f)−1

−√2
∑
i

|Φi
ab|2 +

√
2
∑
j

|Φ̃j
ab|2 + ξab

2

. (2.3)

Here f represents the gauge kinetic function associated with the four-dimensional gauge

group U(1)−. To first order its real part is given by

<(f) =
1

2π

(
1

2

∫
Σ
Ĵ ∧ Ĵ − e−φ

∫
Σ

1

2
Fab ∧ Fab

)
. (2.4)

Here Ĵ ∈ H2(X3) is the Kähler form on X3 as appearing in the ten-dimensional Einstein

frame. It is related to the Kähler form J in the ten-dimensional string frame via

Ĵ = e−φ/2J (2.5)

and is normalised such that V(Σ) = 1
2

∫
Σ J ∧ J is dimensionless and measures the string

frame volume of the divisor Σ in units of the string length `s. Furthermore, we have defined

the relative flux as Fab = 1√
2
(Fa −Fb).

The quantity ξab is known, by slight abuse of nomenclature, as the field-dependent

Fayet-Iliopoulos term and serves as an order parameter for the amount of relative super-

symmetry breaking. In the above conventions we have [57]

ξab =
M2
P

4π

∫
Σ Ĵ ∧ Fab
V̂(X3)

, V̂(X3) =
1

6

∫
X3

Ĵ ∧ Ĵ ∧ Ĵ , M2
P =

4π

`2s
, (2.6)

where MP denotes the four-dimensional reduced Planck mass.

If the two branes are separated and ξab 6= 0, an attractive potential between the branes

arises. We will compute the precise form of this potential in Sect. 3 and Sect. 4. Clearly

the amount of supersymmetry breaking responsible for this potential depends dynamically

on the Kähler moduli appearing in (2.6). Thus stabilisation of the Kähler moduli in a non-

supersymmetric manner is key to a successful realisation of inflation. For now, however,

we postpone the question of moduli stabilisation and treat ξab as a parameter.

The end of inflation is marked by the critical distance rcrit. at which one of the fields

Φi
ab or Φ̃j

ab becomes tachyonic. To determine when this happens we must take into ac-

count, in addition to the supersymmetric mass term for the string modes proportional

to the brane distance, the non-supersymmetric mass from the D-term potential. To ar-

rive at an expression for rcrit. we consider the case of a compactification on a factorisable

torus
∏3
I=1 T

2
I , reserving modifications on the curved backgrounds for the next subsection.

Separating the two branes Da and Db by a distance r, measured in units of `s, yields a

supersymmetric mass square (2π/`s)
2r2 of the open string states Φi

ab. To quantify the

6We use the same symbol Φ to denote the scalar component of a chiral superfield Φ. It will always be

clear from the context to which of the two we are referring.
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non-supersymmetric mass, suppose that the relative flux density is non-vanishing on one

torus only and parameterized by7

Fab45 =
1√
2

(
Fa45 −Fb45

)
=

1√
2

(tan θa − tan θb) . (2.7)

Then, by T-duality, one can use the familiar result of the branes at angles picture for the

mass of the lightest state [58, 59]

m2 =
(2π)2

`2s
r2 − 2πθab

`2s
, (2.8)

where we assumed (without loss of generality) that moduli stabilisation has resulted in

θab ≡ θa − θb > 0. From this expression one can read off that the lightest state becomes

tachyonic at the critical distance

r2
crit. =

θab
2π
. (2.9)

To obtain the corresponding expression in terms of a canonically normalised field φ ≡ |Φ|
(the inflaton) in four dimensions we use the relation to the eight-dimensional modulus y

[7]8

φ

MP
= r

√
gs
4

V(Σ)

V(X3)
, r ≡ |y|. (2.10)

With the help of (2.6) it follows that

φ2
crit. '

ξab√
2

(2.11)

for small θab. This is precisely the result one would obtain by embedding hybrid inflation

from D-terms in N = 2 supersymmetry where there is a relation between the trilinear

coupling λ in the superpotential and the gauge coupling gYM of the form λ2 = 2g2
YM

[60, 61]. The four-dimensional mass squared of the tachyon in this model is given by

m2
4D = 2<(f)−1

(
φ2 − ξab√

2

)
. (2.12)

Note that the D-term ξab acquires a higher correction proportional to log(r) which

will be computed in App. D. In the above expression for r2
crit. this correction is neglected.

Tachyon condensation leads to the formation of a bound state between Da and Db and

break the gauge group U(1)a × U(1)b to U(1)+ with generator 1√
2

(Qa + Qb). This is

typical of hybrid D-term inflation, where the condensing tachyon Φi
ab plays the role of the

waterfall field.

In a more general setup on curved backgrounds there is no unambiguous definition of

a distance r between the D-branes. Instead, we can use the relation (2.10) as a definition

of r in terms of the four-dimensional inflaton φ as will be discussed next.

7Whenever we work on the torus we will use a basis of coordinates xj which run from zero to 2πRj
where Rj is the radius of the corresponding S1. For more details on these conventions see Sect. 3.

8Note that the authors of [7] use different conventions for the rescaling of the metric in order to go from

ten-dimensional string frame to four-dimensional Einstein frame.
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y

Da

Cab

X3

Db

Figure 1. Deforming homologous 7-branes on a Calabi-Yau.

2.2 Constraints on generic Calabi-Yau backgrounds

In the previous section we used the notion of brane separation between two 7-branes along

representatives Σa and Σb of a divisor class with deformation modulus. The simple picture

discussed in the last subsection is modified on a general Calabi-Yau 3-fold X3 because,

in the presence of curvature, Σa and Σb cannot be separated from each other everywhere

along the 4-cycle. Rather, they generically intersect along a curve Cab given by the pullback

of, say, Σb to Σa. This situation is represented in Fig. 1. The self-intersection curve Cab
is in the homological class [Σ]|Σ. The class [Σ] is the first Chern class of the normal

bundle NΣ/X3
, which by adjunction equals the pullback of the canonical bundle KΣ|Σ.

Since generically KΣ|Σ is non-zero, the self-intersection curve is non-trivial. In this case,

a suitable deformation can still ensure that the two branes are at a large relative distance

at points far away from the intersection curve, but there necessarily exists a region where

the two branes come close to one another. For our applications this has two consequences:

First we need to identify a good description of the effective brane distance. Second we

need to revisit the distance-dependent mass terms for strings stretched between the two

branes and the appearance of tachyonic modes at the end of inflation.

To this aim we recall that deformations of a complex divisor are elements in H(0,2)(Σ) '
H0(Σ,KΣ),9 i.e. they are sections of the canonical bundle KΣ. The self-intersection of Σ

corresponds to the fact that for non-trivial canonical bundle KΣ, a section ϕ ∈ H0(Σ,KΣ)

necessarily vanishes along a curve on Σ. Since the value of ϕ is a measure for the defor-

mation of the two branes away from each other, it is therefore not possible to separate

the branes everywhere. Suppose for simplicity that h(0,2)(Σ) = 1 corresponding to a single

section ϕ ∈ H0(Σ,KΣ). Due to the non-trivial profile of ϕ along Σ the separation of the

representations Σa and Σb varies along the four-cycle.

Oriented by the considerations of the previous section the sought-after measure for

9In an orientifold, the deformations are in fact elements of the subspace H
(0,2)
− (Σ) odd under the orien-

tifold involution [55].
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the effective distance between Σa and Σb is the supersymmetric mass of strings stretched

between Σa and Σb. This mass is set by the VEV of an N = 1 chiral superfield Φ(x) of

the four-dimensional effective action which arises by dimensional reduction of the eight-

dimensional deformation modulus

ζ(x, z) = Φ(x) ϕ(z), ϕ ∈ H0(Σ,KΣ). (2.13)

To quantify the relation between 〈|Φ|〉 and the supersymmetric mass of strings between Σa

and Σb we need to recall some general facts about the localisation of massless matter on

D7-branes.

We must distinguish between so-called bulk states, i.e. modes propagating along the

entire brane divisor, and matter localised on the intersection curve of two D7-branes.

Consider first the situation of two coincident D7-branes along the divisor Σ in the presence

of supersymmetric gauge flux, ξab = 0. In this situation the massless open string states

are the bulk ground states along the entire divisor Σ. These are counted by cohomology

groups with values in the line bundles La and Lb of the two branes. More precisely, the

number of massless N = 1 chiral superfields Φi
ab with charge (−1a, 1b) and, respectively, of

chiral superfields Φ̃j
ab with charge (1a,−1b) is counted by the dimension of extension groups

Ext1(ι∗La, ι∗Lb) and Ext2(ι∗La, ι∗Lb) [62]. These extension groups in turn can be related

to the following combinations of cohomology groups (see e.g. [63] for more information)

Φi
ab ↔ Ext1(ι∗La, ι∗Lb) = H1(Σ, La ⊗ L∨b ) +H0(Σ, La ⊗ L∨b ⊗NΣ/X3

),

Φ̃i
ab ↔ Ext2(ι∗La, ι∗Lb) = H2(Σ, La ⊗ L∨b ) +H1(Σ, La ⊗ L∨b ⊗NΣ/X3

) (2.14)

with NΣ/X3
the normal bundle to Σ. On the other hand for two branes on two general

4-cycles Da and Db intersecting along a curve Cab = Da∩Db, massless matter arises on the

intersection locus and the number of zero modes are counted by the cohomology groups

Ext1(ι∗La, ι∗Lb) = H0(Cab, L
∨
a ⊗ Lb|Cab ⊗

√
KCab),

Ext2(ι∗La, ι∗Lb) = H1(Cab, L
∨
a ⊗ Lb|Cab ⊗

√
KCab) (2.15)

with KCab the canonical bundle of the matter curve Cab. In both cases the chiral index is

given by the same expression, obtained via the Hirzebruch-Riemann-Roch theorem,

χ = −#Φi
ab + #Φ̃i

ab = −
∫
X3

[Da] ∧ [Db] ∧ (c1(La)− c1(Lb)), (2.16)

where [Da], [Db] denote the 2-forms dual to the divisor classes of the two branes. I.e. in

the first case [Da] = [Db] = [Σ].

Suppose now we start with two coincident 7-branes Da and Db with massless modes

in the Da − Db sector counted by (2.14). Separating the two branes affects the massless

modes. In the four-dimensional effective action a supersymmetric mass term follows from

a trilinear superpotential

W = cij Φ Φi
ab Φ̃j

ab (2.17)
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between the charged modes and the modulus Φ describing the relative brane distance.

The internal wavefunctions associated with these fields are, respectively, ϕ ∈ H0(Σ,KΣ),

ψab ∈ Ext1(ι∗La, ι∗Lb) and ψ̃ab ∈ Ext2(ι∗La, ι∗Lb), which we take to be normalised. The

coupling matrix cij is then the non-zero triple overlap of these wavefunctions. In particular,

if the wavefunctions ψab and ψ̃ab have support only along the intersection curve, as is the

case for the localised modes, this overlap vanishes because Cab is the zero-locus of the

section ϕ.

Thus, while in flat space all states Φi
ab, Φ̃

j
ab continuously acquire a non-zero mass pro-

portional to the brane distance, on curved space there is a chance that some of the charged

fields remain massless by localising along the self-intersection curve Cab. Of course we

know that if the spectrum is chiral, all chiral states must remain massless because the

brane deformation cannot change the chiral index. The question is, however, if also some

of the vector-like pairs which may exist in addition to the chiral states remain massless by

localising along the curve Cab. For generic line bundles, the answer is no: To decide how

many of Φi
ab, Φ̃

j
ab get massive we must compute the dimensions of the cohomology groups

H i(Cab, La ⊗ L∨b |Cab ⊗
√
KCab), i = 0, 1 and compare this to the spectrum before brane

deformation, given by (2.14). As we will detail momentarily, for generic line bundles the

spectrum along the curve Cab is purely chiral, while the spectrum of bulk states generically

contains vector-like pairs. The non-chiral matter therefore acquires non-zero mass upon

brane deformation despite the self-intersection of the divisor Σ.

As anticipated, our measure for the effective brane distance is this supersymmetric

mass. Let us consider the simplest case of just a single pair of vector-like modes in (2.14)

with superpotential W = c11 Φ Φ1
ab Φ̃1

ab. Then in view of relation (2.10) in the flat case, we

can define the effective brane distance

reff = C 〈|Φ|〉, C =
|c11|
MP

√
4

gs

V(X3)

V(Σ)
. (2.18)

This quantity will allow us to generalise results for the inter-brane potential gained on flat

backgrounds to curved compactification spaces.

Let us now revisit the appearance of tachyonic modes at the end of inflation. We aim at

realising a D-term brane inflation scenario resulting in tachyon condensation at a critical

brane separation rcrit.. In those regions in Kähler moduli space where the line bundles

induce a non-zero D-term ξab, the resulting non-supersymmetric D-term mass leads to a

non-degenerate spectrum in the ground state sector. Let us assume that the Kähler moduli

are stabilised in a regime where ξab > 0 for definiteness. Then at non-zero brane distance,

the bosonic fields Φi
ab become tachyonic, while the fields Φ̃i

ab have positive mass squared,

see eq. (2.3). If in the supersymmetric case the fields Φi
ab become massive by the brane

separation because they do not localise along Cab, we are now in the situation that they

will first become massless at a critical brane deformation rcrit. and then acquire positive

mass square.

In the inflationary context we must make sure that during inflation no tachyonic modes

appear from the string ground states at the intersection curve Cab, but rather that a massive

string mode becomes tachyonic eventually. If we assume, as above, ξab > 0 for definiteness,
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the condition for this is as follows: The modes localised along the curve Cab acquire only

non-supersymmetric D-term masses from the potential (2.3), irrespective of the amount

of brane deformation. Therefore we must ensure that no tachyons appear here, i.e. the

number of modes Φi
ab along Cab must vanish,

H0(Cab, La ⊗ L∨b ⊗
√
KCab) = 0. (2.19)

At the same time, we need a state Φi
ab whose internal wave function propagates along the

whole divisor because these are the states which acquire both a supersymmetric mass term

proportional to the brane separation and a non-supersymmetric D-term mass; they can

therefore act as recombination moduli at the end of inflation. We thus require that in

addition

H1(Σ, La ⊗ L∨b ) +H0(Σ, La ⊗ L∨b ⊗NΣ) 6= 0. (2.20)

These are two topological conditions which for generic line bundles are easily met. To see

this, we recall that a generic line bundle on a curve of genus g has no sections if its degree is

negative. The line bundle appearing in (2.19) is La⊗L∨b |Cab ⊗
√
KC . Let us introduce the

notation d = c1(La ⊗ L∨b )|Cab for the degree of c1(La ⊗ L∨b )|Cab . From the Riemann-Roch

theorem,
∫
Cab

c1(KCab) = 2g − 2, we can read off that the degree of
√
KC is g − 1. Thus,

absence of states Φi
ab along Cab is guaranteed for generic line bundles as long as d < 1− g.

On the other hand, (2.16) teaches us that d is also minus 1 times the chiral index χ of

the states in the Da − Db sector. Consequently absence of tachyons along the curve Cab
is guaranteed, for ξab > 0, as long as χ ≥ g . On the other hand, a generic line bundle

configuration La, Lb of positive chirality will give rise not to a purely chiral spectrum of

states along the entire divisor, but include a set of vector-like pairs. In particular, (2.20)

is generically satisfied.10

To conclude, despite the self-intersection of D7-branes it is possible to realise a brane

inflation scenario where the end of inflation is marked by the recombination of modes that

become tachyonic at a critical brane distance rcrit..

Finally, let us turn to the process of tachyon condensation itself. As will become

apparent later, we are interested in ensuring that the vacuum energy due to D-term super-

symmetry breaking be annihilated almost completely at the end of inflation. This implies

that the resulting stable ground state after tachyon condensation should be supersym-

metric. In the process of tachyon condensation, the original gauge group U(1)a × U(1)b
is higgsed by a non-zero VEV for, say, some Φi

ab, to the diagonal subgroup U(1)+. The

appearance of this gauge group can also be understood as follows: Before tachyon con-

densation, the gauge field configuration on the divisor Σ is described by a direct sum of

the two line bundles La ⊕ Lb with structure group U(1)a × U(1)b. As the notation (2.14)

suggests, condensation of the tachyonic recombination moduli Φi
ab transforms this direct

sum into a non-split extension bundle V described by the short exact sequence

0→ La → V → Lb → 0. (2.21)

10In particular if we can tensor e.g. La by any line bundle that restricts trivially to Cab, the chiral index

does not change. In general we can pick a suitable line bundle such that (2.20) holds.
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The structure group of this bundle V is U(2) so that V breaks the would-be gauge group

U(2) for two coincident branes to the diagonal U(1)+. Note that the Chern character of V

is given by ch(V ) = ch(La)+ch(Lb). For the final configuration to be supersymmetric, two

constraints must be met: An obvious necessary condition is that the D-term associated

with the bundle V must vanish. If c1(V ) = c1(La) + c1(Lb) 6= 0 the D-flatness condition

depends on the Kähler moduli. Alternatively one can choose a configuration of gauge

flux with c1(La) = −c1(Lb) so that c1(V ) = 0 and no D-term arises after recombination,

independent of the Kähler moduli. In addition, supersymmetry requires that the non-

abelian bundle V must be Π-stable, a constraint that reduces, in the large volume limit,

to the requirement of µ-stability.11 This condition is considerably more involved and must

be checked explicitly for a concrete choice of divisor class Σ and line bundles La, Lb.

3 Fluxed D7/D7-brane potential on T 6

In this section we present two alternative approaches to obtain the attractive potential of

two magnetised D7-branes. Both computations will be carried out for the special case of

a compactification on a factorisable six-torus T 2
1 × T 2

2 × T 2
3 , postponing generalisations to

genuine Calabi-Yau spaces to Sect. 4. In App. D we provide yet another, field-theoretic

interpretation of this potential.

The two D7-branes (called D7a and D7b) wrap the first two tori T 2
1 and T 2

2 and are

separated by a distance r, measured in units of `s, on T 2
3 . We will work in the limit in

which the volume of T 2
3 goes to infinity. The torus T 2

I has coordinates x1+2I+j , j = 1, 2,

which run from zero to 2πRIj and the complex structures of the tori will be assumed to be

purely imaginary (i.e. uI = iuI2 = iRI2/R
I
1).

3.1 Potential from 10d supergravity perspective

We start by calculating the potential of a probe D7-brane with world-volume gauge flux

Fa moving in the background of a D7-brane with world-volume gauge flux Fb, roughly

following [9]. We allow for gauge flux on both tori wrapped by the D-branes, see Fig. 2.

Our starting point is the standard supergravity background solution of an extremal

D5-brane [65, 66] rotated by angles in the relevant tori. This is T-dual to the fluxed D7-

brane background solution we have in mind. Application of the Buscher rules [67, 68] leads

to the NS-NS and R-R field profile for the D7-brane background solution [69–71]. We then

calculate the potential for the probe brane moving in this background by evaluating the

DBI and CS terms of the action.

Consider therefore the background of a stack of N extremal D5-branes rotated by

angles φ1
b and φ2

b on the first and second tori of the compactification manifold. The D5-

branes source the C6 field and curve spacetime such that in string frame

ds̄2 = Z
− 1

2
5

(
−dx2

0 + . . .+ dx2
3 + dx̄2

4 + dx̄2
6

)
+ Z

1
2
5

(
dx̄2

5 + dx̄2
7 + dx2

8 + dx2
9

)
(3.1)

11Recall that a rank r vector bundle of slope µ is called µ-stable if every coherent subsheaf of positive

rank smaller than r has slope µ′ < µ. See e.g. [64] and references therein.
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Figure 2. Magnetised 7-branes on T 2
1 × T 2

2 × T 2
3 .

with R-R-form potential C6 and dilaton given by

C01234̄6̄ = g−1
s

(
Z−1

5 − 1
)
, e2φ = g2

sZ
−1
5 . (3.2)

Here x1, . . . , x3, x̄4, x̄6 denote the coordinates along the brane, which are obtained by sim-

ple rotations on the respective planes from the torus coordinates, and x̄5, x̄7, x8, x9 those

perpendicular to it. Furthermore, the single-center harmonic function Z5 on the transverse

space is given by

Z5 = 1 + gsN

(
1

2πr⊥

)2

(3.3)

with (`sr⊥)2 = x̄2
5 + x̄2

7 + x2
8 + x2

9.

We can then apply T-duality to transform this stack of D5-branes into a stack of

D7-branes wrapping the first two tori with gauge flux density

2πα′F b45 = tanφ1
b , 2πα′F b67 = tanφ2

b . (3.4)

The details of this computation, which involves the smearing of the 5-brane charge along

the lines of [72], are presented in App. A.1. The final D7-brane background metric reads

ds2 = Z
− 1

2
7 ds2(E1,3) + Z

− 1
2

7 H1ds
2(E2

45) + Z
− 1

2
7 H2ds

2(E2
67) + Z

1
2
7 ds

2(E2
89) . (3.5)

Here we have introduced Hi =
(
cos2 φib + sin2 φibZ

−1
7

)−1
and line elements e.g. ds2(E2

45) =

dx2
4 + dx2

5. Furthermore, Z7 is given by

Z7 = 1−N gs
2π

1

cosφ1
b cosφ2

b

log
( r
R

)
(3.6)

with R a typical radius of the compactification space, measured in units of `s. As will

become clear shortly it is chosen such that at r = R the dilaton φ is normalised as eφ = gs.

The fluxed D7-branes also source the remaining closed string fields. For the Kalb-Ramond

B-field the only non-vanishing terms one finds are

B45 = − tanφ1
b + tanφ1

bZ
−1
7 H1 and B67 = − tanφ2

b + tanφ2
bZ
−1
7 H2 . (3.7)
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One immediately sees that the B-field vanishes as r approaches R since there Z7 → 1 and

thus Hi → 1. For Dp-branes of lower dimensionality (p < 7) this would correspond to a

vanishing B-field at infinity. For r → 0 the Kalb-Ramond field captures the flux given

earlier in (3.4). Note that our result differs from [9] by an additional constant for the

B-field, which is immaterial in their context but cannot be neglected in our calculation.

The dilaton is calculated to be

e2φ = g2
sZ
−2
7 H1H2 , (3.8)

and the expressions for the RR-background fields are collected in eq. (A.15) in App. A.

Equipped with the IIB supergravity background of a D7-brane (from now on we set

N = 1) with gauge flux density (3.4), we are prepared to compute the potential felt by a

probe D7-brane with flux density 2πα′F a45 = tanφ1
a and 2πα′F a67 = tanφ2

a when it moves

in this background. The potential follows by evaluating the DBI and CS parts of the

probe brane action in the background. Let us first work in the limit of essentially infinite

internal dimensions, commenting on compactification effects at the end of this section. Our

conventions for the brane action in string frame are

SDBI = −T7

∫
d8σe−φ

√
−det (gµν + Fµν) , (3.9)

SCS = µ7

∫ ∑
i

Ci ∧ eB+2πα′F , T7 = µ7 =
2π

`8s
, (3.10)

where the integrals are over the world-volume of the probe brane and the embedding via

ι into ten-dimensional spacetime is left implicit. The probe brane shall be parallel to

the background brane (static gauge). Adding the probe brane flux and the contribution

from the B-field, which incorporates the background brane flux, we find for the gauge flux

density on the probe brane

Fa45 = tanφ1
a − tanφ1

b + tanφ1
bZ
−1
7 H1 ,

Fa67 = tanφ2
a − tanφ2

b + tanφ2
bZ
−1
7 H2 .

(3.11)

For the DBI part of the action and to lowest order in the flux densities one obtains

SDBI = −T7

∫
d8σe−φ

√
−det (gµν + Fµν)

≈− 2π

`4s

∫
d4x V‖ (cosφ1

a cosφ2
a)
−1 g−1

s

− 1

2

1

`4s

∫
d4x V‖ log

( r
R

) cos2(φ1
a − φ1

b) + cos2(φ2
a − φ2

b)

cos(φ1
a) cos(φ1

b) cos(φ2
a) cos(φ2

b)
,

(3.12)

where V‖ is the internal volume of the probe D-brane, measured in units of `s, after having

stripped off the warping factors. Furthermore, we have omitted the kinetic terms of the

brane scalars and higher curvature contributions. We moreover derive the CS parts of the
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action,

SCS = µ7

∫ ∑
i

Ci ∧ eB+2πα′F

=
1

`4s

∫
d4x V‖ log

( r
R

)
·
[
1 + tanφ2

b tanφ2
a + tanφ1

b tanφ1
a + tanφ1

b tanφ2
b tanφ1

a tanφ2
a

]
=

1

`4s

∫
d4x V‖ log

( r
R

)
· cos(φ1

a − φ1
b) cos(φ2

a − φ2
b)

cos(φ1
a) cos(φ1

b) cos(φ2
a) cos(φ2

b)
, (3.13)

where in the second line the charges of the dissolved D5-branes (∝
∫
F) and D3-branes

(∝
∫
F ∧ F) within the interacting flux D7-branes are manifest.

Expanding the whole action for small flux densities we deduce that the potential is

given by

Vsugra(r) =
2π

`4s
V‖ (cosφ1

a cosφ2
a)
−1 g−1

s +
1

2

V‖
`4s

[
cos(φ1

a − φ1
b)− cos(φ2

a − φ2
b)
]2

cos(φ1
a) cos(φ1

b) cos(φ2
a) cos(φ2

b)
log
( r
R

)
.

(3.14)

We see that the supersymmetric configurations of φ1
a − φ1

b = ±
(
φ2
a − φ2

b

)
both imply

a vanishing potential accounting for the BPS nature of these states. On the torus T 4

this corresponds to (anti-)self-dual flux [73, 74] as shown in more detail in App. A.2.

Furthermore, we note that the gs dependence has vanished in the distance dependent part

of the potential. This indicates that it arises as a one-loop effect from the open string

sector. Most importantly, in (3.14) we explicitly see that the logarithmic term appears

with a prefactor which roughly scales like ∼ φ4 or |F|4 for small angles (cf. (3.4)). This

can be parametrically small for large internal brane volume and order one integrated flux∫
F ∈ Z. This very point, together with the parametrically different behaviour of the

constant, implies the flatness of the inflationary potential motivated in the introduction.

The constant in (3.14), which is the energy density of the probe brane, has to be

supplemented by the energy density of the background brane

2π

`4s
V‖ (cosφ1

b cosφ2
b)
−1 g−1

s . (3.15)

Moreover, the energy density of the final BPS state [75] has to be subtracted to obtain the

correct tachyon potential [76],

V0 ≈
1

4

2π

`4s
V‖
[
(φ1
a − φ1

b)− (φ2
a − φ2

b)
]2
g−1
s . (3.16)

For details on the constant in the T-dual picture see [40].

The above results are modified if one takes into account compactness of the internal

manifold. Compactification effects have been discussed in the context of inflation from

branes at angles e.g. in [45]. It was found that these effects are subject to the same relative

suppression with respect to the constant in the potential as the logarithmic term above and

are subleading, in the regime of interest, towards the logarithm. This conclusion equally

applies to our scenario so that we will ignore their effect in the sequel.
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3.2 Potential via one-loop string computation

In this subsection the inter-brane potential is calculated via a string computation. We

explicitly evaluate the amplitude of a tree-level closed string exchange between the two

magnetised D7-branes. The purpose of this subsection is twofold: Not only do we attempt

to reproduce the form of the potential (3.14) found in Sect. 3.1, but we also try to show

that (3.14) remains valid for r < 1, as long as r is not too small. We will find that the

lower bound on r, for which (3.14) is a valid approximation, is parametrically given by the

distance at which the lowest lying state in the open string spectrum becomes tachyonic.

This is a crucial result because, as we will derive in Sect. 5, D7/D7 inflation takes place

precisely in the regime where r < 1.

We will work in the setup described at the beginning of this section and we set the

Kalb-Ramond field B to zero. To break supersymmetry we turn on gauge bundles for the

U(1)a and U(1)b gauge theories on T 2
1 which are parameterized by12

Fa45 =
pa`

2
s

(2π)2R1
1R

1
2

= tanφa, Fb45 =
pb`

2
s

(2π)2R1
1R

1
2

= tanφb, (3.17)

where pa,b are the first Chern numbers of the gauge bundles, i.e.
∫
c1(La,b) = pa,b. This

type of compactification was discussed in [77–80].

We consider the limit in which T 2
2 and T 2

3 are large in units of the string length. This

allows us to neglect the Kaluza-Klein tower (along T 2
2 ) and the winding modes (along T 2

3 )

of the open string. Furthermore, we will assume that any further D-branes and O-planes

which we have to introduce in order to obtain a globally consistent model are far away

from the two D7-branes that drive inflation. In this way, these additional objects will not

alter the results obtained in this subsection significantly. The object of interest is thus the

amplitude of a tree-level closed string exchange between D7a and D7b which, by world-

sheet duality, is equal to the annulus amplitude of open strings that stretch between D7a
and D7b. The latter is given by (see e.g. [78])13

Aab =
−iV||
25`4s

(Fa45 −F b45)

∫ ∞
0

dt

t4
exp

(
−2πtr2

)
×

×
∑

α,β∈{0,1/2}

ηαβe
iπδab(1−2β)

ϑ
[
α
β

]
(0, it)3

η(it)9

ϑ
[
α+δab
β

]
(0, it)

ϑ
[1/2+δab

1/2

]
(0, it)

. (3.18)

The amplitude is normalised to the volume of our four non-compact dimensions. Further-

more, we have defined δab ≡ φab/π ≡ (φa−φb)/π, and ηαβ = (−1)2α+2β+4αβ. The prefactor

comes from an integration over the momenta in the external directions and in T 2
2 . The

flux-dependent factor arises due to non-commutativity of the zero-modes of the string in

the presence of a magnetic field, which gives rise to a multiplicity of the ‘Landau levels’

[81]. The r-dependent exponential accounts for the r-dependent mass of the zero-modes

12For simplicity we concentrate here on the case where non-trivial gauge flux is living on T 2
1 only. The

generalisation to a setup with non-trivial gauge flux on both T 2
1 and T 2

2 is straightforward and will be given

at the end of this section.
13The definitions and some useful relations of the modular functions are collected in App. C.
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of the string stretched between the branes. The sum over the string oscillator modes gives

rise to the modular functions which are summed over the different spin structures. The

result is then integrated over conformally inequivalent annuli.

In App. B it is shown that as long as r2 � |φab|/(2π) and |φab| � 1 the annulus

amplitude Aab in (3.18) is well approximated by

Aab ≈
V||

25`4s
(Fa45 −Fb45)

∫ ∞
0

dt

t4
exp

(
−2πtr2

)
(tφab)

3. (3.19)

Evaluating the integral gives a contribution from the (ab)-sector to the inter-brane potential

of the form

V 1−loop
ab (r) ≈

V||
24`4s

φ4
ab log

( r
R

)
. (3.20)

Here R is a cutoff introduced to regulate the divergent integral in (3.19). Equation (3.20)

has to be complemented with identical expressions for the (ba)-sector, giving a factor of

two.

For the more general case of flux on both T 2
1 as well as T 2

2 we obtain, after a similar

calculation,

V 1−loop
ab (r) ≈

V||
24`4s

((
φ1
a − φ1

b

)2 − (φ2
a − φ2

b

)2)2
ln
( r
R

)
. (3.21)

Together with the identical result in the (ba)-sector this precisely matches the distance

dependent term in (3.14) in limit of small |
(
φIa − φIb

)
|.

In summary, we have shown that the potential derived via a probe brane approxi-

mation in supergravity is reproduced by the full string calculation in the limit of small

flux. Furthermore, the string calculation allows us to extend the range of validity for the

inter-brane potential beyond the naive lower bound r & 1. In fact, the logarithmic form of

the potential with the characteristic ∼ |F|4 coefficient remains valid as long as r is para-

metrically larger than the distance at which the lowest lying open string mode becomes

tachyonic.

4 The brane potential on generic Calabi-Yau manifolds

We now generalise the toroidal D7/D7 flux-brane potential to the potential for a 7-brane

configuration on a genuine Calabi-Yau orientifold X3. This potential will then be expanded

for small flux density. The resulting expression reduces, in the setup described in Sect. 3,

precisely to eq. (3.14). Furthermore, we will interpret our result as the Coleman-Weinberg

potential of a 4d gauge theory and compare it to the analogous expression for D3/D7-brane

inflation.

In the notation of Sect. 2 we wrap two 7-branes along the two homologous divisors

Σa and Σb, both in homology class [Σ]. We think of the brane along Σa as the fluxed

probe brane as in the toroidal example of Sect. 3.1. Before incorporating the effect of

the unfluxed background brane along Σb we first consider the effective action along Σa

following the analysis of [57]. Neglecting higher curvature contributions, the bosonic part
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of the DBI action for a D7-brane with gauge flux F reads

SΣa = −2π

`8s

∫
M4

d4x e−φ
√
−det g(4)

√
det
(

1 + 2πα′g−1
(4)F(4)

)
Γ. (4.1)

The interesting dynamics is encoded in the expression

Γ =

∫
Σa

√
det(gΣa + F) . (4.2)

This expression determines both the D-term potential and the gauge coupling,

VD =
2π

`8s
e−φΓF

(
e−2φV

)−2
, g−2

YM =
2π

`8s
(2πα′)2e−φΓF '

1

2π

(
1

2

∫
Σa

Ĵ ∧ Ĵ
)
, (4.3)

where we neglected subleading flux contributions to the latter.

The standard BPS calibration conditions for D7-branes [82] require F to be a (1, 1)-

form and furthermore

1

2
(J + iF) ∧ (J + iF) = eiθ

√
det(gΣa + F)

det(gΣa)
VolΣa . (4.4)

If one takes the absolute value of the integral of (4.4) and Taylor expands it for small flux

density one finds, at quadratic order,14

Γ ' 1

2

∫
Σa

J ∧ J − 1

2

∫
Σa

F ∧ F +
1

2

(∫
Σa
J ∧ F

)2(
1
2

∫
Σa
J ∧ J

) + · · · . (4.5)

These three terms correspond to the NS-NS tadpole, the flux-induced D3-brane charge and

the leading-order D-term potential. As will become clear in a moment, they do not induce

any force acting on the brane.

The crucial term responsible for the motion of the brane arises at quartic order in F
in the Taylor expansion in (4.5) and reads

−1

8

(∫
Σa
J ∧ F

)2

(
1
2

∫
Σa
J ∧ J

)3

[(∫
Σa

J ∧ F
)2

− 4

(
1

2

∫
Σa

J ∧ J
)(

1

2

∫
Σa

F ∧ F
)]

. (4.6)

So far our brane is still a holomorphic divisor in an unperturbed Calabi-Yau orientifold.

We need to generalise this expression to account for the background of the second, almost

parallel, fluxless brane along Σb. In the toroidal model of Sect. 3.1 its effect is to replace

the flat metric by the warped expression

ds2 = Z
− 1

2
7 dx2

‖ + Z
+ 1

2
7 dx2

⊥ , (4.7)

14 In addition to this simple argument, Ref. [57] also provides an alternative computation in their App. B.
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where Z7 = 1 − gs
2π log r

R and a corresponding dilaton profile arises.15 Since in flat space

the 7-branes are parallel, the effect of the warping on the probe 7-brane is accounted for

by the substitution

gΣa → Z
− 1

2
7 gΣa (4.8)

in the expression for Γ. The r dependence is now encoded entirely in Z7. We propose that

the substitution (4.8) captures the effect of the background brane even in the Calabi-Yau

case. Clearly, this is only an approximation relying on the fact that, for sufficiently small

r, the branes are still locally (approximately) flat and parallel.

To derive the flux-brane potential, we Taylor expand Γ starting directly from (4.2):

Γ =

∫
Σa

√
det gΣa

{
1− 1

4
tr
(
(g−1

Σa
F)2

)
− 1

8

[
tr
(
(g−1

Σa
F)4

)
− 1

4

(
tr(g−1

Σa
F)2

)2]
+ · · ·

}
.

(4.9)

The first, F-independent term scales as Z−1
7 according to (4.8). However, the induced r

dependence is precisely cancelled by that of the CS-action discussed in Sect. 3.1. In the

|F|2 term, the Z7 factors cancel so that no r dependence is induced. This is clearly the

same cancellation already mentioned in the introduction. Together, these contributions

correspond to those displayed in (4.5).

Finally, the crucial term, quartic in F , comes with an overall factor Z7 and hence

induces a non-trivial r dependence, as already discussed in Sect. 3.1 and App. A.2 in the

toroidal case. The complication on general Calabi-Yau spaces comes from the variation

of the inter-brane distance r between the background brane along Σb and the flux brane

along Σa. More specifically, we have

r ∼ φ ‖ϕ(z)‖ (4.10)

according to the discussion in Sect. 2.2. Thus, the quartic terms in F of (4.9) are accom-

panied by a factor

Z7 = 1− gs
2π

log
r

R
= 1− gs

2π
(lnφ+ ln ‖ϕ(z)‖+ · · · ) (4.11)

under the z-integral integral. Fortunately, since we are only interested in the variation of

the potential with φ, the functional form of ϕ(z) and the various constants are irrelevant.

We immediately see that the φ dependence is obtained by simply multiplying the com-

plete term quartic in F with an overall factor −gs/(2π) ln(φ/φ0), where φ0 is an arbitrary

normalisation.

With this understanding, we can return to the more elegant expression for the quartic

F term given in (4.6), incorporate the background effect as explained, and combine it with

the leading term, quadratic in F . The resulting D-term potential reads

VD =
1

2
g2

YMξ
2

[
1 +

1

4

{ (∫
Σ J ∧ F

)2(
1
2

∫
Σ J ∧ J

)2 − 4

(
1
2

∫
ΣF ∧ F

)(
1
2

∫
Σ J ∧ J

) } gs
2π

log

(
φ

φ0

)]
. (4.12)

15 We note that this dilaton profile is exactly cancelled by the profile of g(4) in (4.1), so it will play no

role in what follows.
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We propose this as a generalisation of the attractive potential found for branes at angles

[8, 40] on a torus in Type IIA to a generic Calabi-Yau Type IIB orientifold.

As is well-known from the general framework of hybrid inflation, the potential admits

a field-theoretic interpretation as a Coleman-Weinberg potential arising as a one-loop cor-

rection with the massive waterfall-fields running in the loop. Their masses are split after

SUSY-breaking due to the non-vanishing FI-term ξ.

To account for the one-loop nature [83] of the Coleman-Weinberg term we make a

factor of g2
YM explicit via (4.3) and find

VD =
1

2
g2

YMξ
2

[
1 +

g2
YM

16π2

{ (∫
Σ J ∧ F

)2(
1
2

∫
Σ J ∧ J

) − 4 ·
(

1

2

∫
Σ
F ∧ F

)}
log

(
φ

φ0

)]
. (4.13)

Now the first term in the big round brackets proportional to (
∫

Σ J ∧ F)2/1
2

∫
Σ J ∧ J can

be made parametrically small. At the same time the gauge flux can in principle be chosen

in such a way that the induced D3 charge
∫

ΣF ∧ F of our D7-brane vanishes. In such

situations one arrives at a highly suppressed logarithmic term which specifically arises in

our D7-brane context.

At this stage it is instructive to compare the inflationary brane potential with the

setup in D3/D7 inflation. From [17] we recall that the D3/D7 potential takes the generic

form

V =
1

2
g2

YMξ
2

(
1 +

g2
YM

16π2
log

φ

φ0

)
. (4.14)

In particular, there is no analogue of the term proportional to (
∫

Σ J ∧ F)2/1
2

∫
Σ J ∧ J ,

which arises from the non-alignment of relative D5-brane charge. Rather, the expression

only involves the relative D3-brane charge of the fluxed D7 and the mobile D3-brane. To

match this with the D7/D7-potential (4.13) we note the general result (see e.g. [63] for

details) that for gauge flux that can be made supersymmetric inside the Kähler cone the

expression −
∫

ΣF ∧ F is positive and thus measures D3 (as opposed to anti-D3) charge.

5 Phenomenological analysis

In this section we collect the basic phenomenological properties of the inflationary D-term

potential between two D7-branes. As one of our main results we will show that the D7/D7

inflationary scenario provides a mechanism to overcome the clash with observational bounds

due to cosmic string production at the end of inflation. In fact these bounds have turned

out to be a notorious problem in D-term inflation models with an underlying N = 2

structure [60].16

Our potential is of the general type

V (φ) = V0

(
1 + α log

φ

φ0

)
(5.1)

16Recall the discussion below eq. (2.11).
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for the canonically normalised inflaton field φ. Here we used the parametrisation

V0 =
1

2
g2

YMξ
2, α =

g2
YM

16π2

(
−2

∫
Σ
F2 +

g2
YM

2π

(∫
Σ
Ĵ ∧ F

)2
)
. (5.2)

The choice of φ0 corresponds to some choice of normalisation for the potential. Its value

is irrelevant at our level of precision. For convenience we will choose φ0 such that it

corresponds to the bifurcation point φ0 ≡ φcrit. of our potential, defined in (2.11), which

is where the tachyon appears and inflation ends. Close to this point the simple functional

form (5.1) is no longer valid.

Let us first analyse the field range required to obtain N = 60 e-foldings in the course

of inflation. To this end we recall that during slow-roll inflation the Hubble parameter

H ≡ ȧ(t)/a(t) and the potential V (φ) are related via Friedmann’s equation

3H2 = V, (5.3)

while the equation of motion for the inflaton takes the form

3Hφ̇ = −V ′. (5.4)

In these expressions we have set the reduced Planck mass MP ≡ 1 for convenience. The

number of e-foldings follows from the inflationary potential as

N =

∫ t0

tN

dtH =

∫ φN

φ0

dφ
V

V ′
, (5.5)

where tN denotes the time associated with the onset of the last N e-foldings and t0 marks

the end of inflation; the corresponding values of the inflaton are φN ≡ φ(tN ) and φ0 ≡
φ(t0). In our model inflation starts out far from the bifurcation point of the potential

(i.e. φN � φ0). A simple parametrical analysis shows that in a regime with good validity

of the supergravity approximation (i.e. the typical length scales of the compactification

manifold are large in units of the string length), the constant of the potential dominates

over the distance-dependent term throughout inflation, i.e. α log(φ/φ0) � 1. This allows

us to evaluate (5.5) as

V

V ′
=
φ

α
=⇒ N =

1

2α

(
φ2
N − φ2

0

)
. (5.6)

Using φN � φ0 we thus find that the field value of the inflaton at the beginning of the last

60 e-foldings is given by

φN '
√

2αN. (5.7)

The slow roll parameters are readily evaluated, in the approximation (5.7), as

ε =
1

2

(
V ′

V

)2
∣∣∣∣∣
t=tN

=
1

2

α2

φ2
N

=
α

4N
, (5.8)

η =
V ′′

V

∣∣∣∣
t=tN

= − α

φ2
N

= − 1

2N
. (5.9)
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Since α � 1 it follows that ε � |η| and thus for N = 60 the slow-roll condition ε � 1,

|η| � 1 is easily satisfied. From the above we extract a prediction for the spectral index

ns via

ns = 1− 6ε+ 2η ' 1 + 2η = 1− 1

N
= 0.983. (5.10)

This value lies marginally outside the 1σ value ns = 0.968±0.012 according to WMAP7 [84].

The inflationary potential is further constrained by measurements of the amplitude

of adiabatic curvature perturbations. They set a value for the ratio V 3/2/V ′ at time tN
as [84]

ζ̃ ≡ V 3/2

V ′

∣∣∣∣∣
t=tN

= 5.4× 10−4. (5.11)

Using the smallness of the distance-dependent term relative to the constant of the potential

(5.1), as discussed above, we can evaluate this constraint in the approximation (5.7) and

for N = 60 as

V0

α
=

ζ̃2

2N
= 2.4× 10−9. (5.12)

To appreciate the implications on the parameters of our potential it is more convenient to

analyse the inverse combination

α

V0
=

1

(2π)2ξ2

(∫
Σ
−F2

)
+ 2
V̂2(X3)

V̂(Σ)
= 4.2× 108. (5.13)

Crucially, the first summand involves the FI-term ξ. For positive
∫

Σ−F2 this therefore

sets a lower bound on ξ, which turns out to lie above the observational bound from cosmic

strings. In particular, this is the situation encountered in D3/D7 inflation, where
∫

Σ−F2

is replaced by a positive order one number.

Let us pause for a moment to review the origin of the cosmic string bound. Generically,

cosmic strings will be produced at the end of brane inflation when the tachyon appears and

the waterfall sets in [39, 85–90]. If this happens, an impact on observable quantities such as

the CMB power spectrum is expected.17 However, the spectrum produced by cosmic strings

shows the wrong behaviour to serve as the main source for the temperature anisotropies

observed in the CMB. (It has one broad peak and falls off much slower at high multipole

moment l than the spectrum obtained from inflation. The latter is due to the fact that the

string continues contributing to small scale anisotropies after recombination. In this way,

these anisotropies do not suffer from Silk damping.) On the other hand, cosmic strings are

not ruled out entirely by observations. They may contribute a small fraction to the overall

power of CMB fluctuations. This possibility has been analysed numerically (see e.g. the

recent [92]). The most important result of these analyses for us is that they constrain the

cosmic string tension µ which is commonly quoted in terms of the dimensionless quantity

17For a recent discussion of these effects see e.g. [91].
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Gµ where G is Newton’s constant. The bounds that can be found in the literature tend to

vary roughly from 2× 10−7 to 7× 10−7 depending on the kinds of methods that are used

to simulate the evolution of the string network as well as the input dataset. These bounds

correspond to a constraint for the contribution from cosmic strings to the total power of

the CMB radiation which is roughly . 10% of the total power at multipole moment l = 10.

Simulations show [92] that such a small contribution does not change the value of the

spectral index ns significantly at the 2σ-level. We will work with the latest result from

WMAP7 [84] (ns = 0.968± 0.012 at 1σ) and with a value of

Gµ . 6.4× 10−7 (5.14)

for the string tension. This was found in [92] using the Abelian-Higgs model to simulate

the evolution of the string network.18 This value implies a contribution of . 9.3% from

cosmic strings to the total power in the CMB at multipole moment l = 10. The cosmic

string tension µ is related to the FI-term ξ as [88] µ = 2πξ. Therefore, (5.14) puts an

upper bound on the size of the FI-term.

If one takes the simulations seriously at the 1σ confidence level one observes a trend

towards higher values of ns if cosmic strings are included in the simulation [92]. This fact

helps e.g. in the discussion of D3/D7 inflation models [17].

Note that the inclusion of cosmic string anisotropies in the CMB power spectrum will

obviously lower the contribution from inflationary curvature perturbations (i.e. they will

lower the value (5.11)). However, this is a minor effect and completely irrelevant at our

level of precision. Therefore, we will entirely neglect this subtlety.

Returning to the phenomenological discussion of brane inflation we note that for D3/D7

inflation the value of ξ required by the measured value for the amplitude of curvature

perturbations (and determined via the D3/D7 analog of equation (5.13)) lies above the

cosmic string bound (5.14). By contrast, our D7/D7 inflation model is in a fundamentally

different position. Namely, by a suitable choice of gauge flux it is possible to achieve∫
ΣF2 = 0 so that the FI-term completely drops out from (5.13). In this situation, what is

constrained by (5.13) is the ratio of the volume of Σ and of the Calabi-Yau X3,

1

2

∫
Σ
Ĵ ∧ Ĵ ' 4.8× 10−9

(
1

6

∫
X3

Ĵ ∧ Ĵ ∧ Ĵ
)2

. (5.15)

From this constraint we can extract a prediction for the typical volume of the compactifi-

cation manifold: If for simplicity we assume an isotropic internal space with typical length

R̂ measured in units of the Einstein-frame string length g
1/4
s `s, this means R̂ ' 10, which

18There are alternative approaches to look for signatures of cosmic strings, the most recent of which

include [93–95]. However, they seem to find upper bounds on Gµ which are comparable to the one cited

above.

After the first version of this paper had been submitted, the improved cosmic string analysis [96] appeared,

including in particular WMAP7 data. The authors report values for Gµ which are lowered by a factor of

2− 3 (depending on the kind of small-scale data they take into account in addition to WMAP7) compared

to the bounds used in the present paper. This does not change our conclusions qualitatively. If anything,

it makes our specific mechanism for the suppression of cosmic strings more important.
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leads to a regime with good validity of the supergravity approximation. It remains to be

checked that this prediction leads to an overall consistent picture of D7/D7 inflation. The

remainder of this section is devoted to this issue.

Due to our choice of a flux vector F ∈ H2(Σ) which satisfies
∫

ΣF2 = 0, the FI-term

is in principle unconstrained by (5.13) and thus the measured value for the amplitude of

curvature perturbations is not in conflict with bounds on ξ from cosmic strings: Let ξcrit.

be the ‘critical’ value of the FI-term for which the cosmic string bound is saturated, i.e.

ξcrit./4 ' 6.4 × 10−7. With the help of (5.15) one can re-express the cosmic string bound

ξ . ξcrit. as (∫
Σ Ĵ ∧ F

)2

1
2

∫
Σ Ĵ ∧ Ĵ

. 16π2ξ2
crit. × 4.2× 108 ' 0.4 . (5.16)

This makes it obvious that for generic intersection forms on the divisor Σ a suitable choice

of flux vector F can well accommodate the cosmic string bound in a manner consistent

with the prediction R̂ ' 10 deduced from the normalisation of the amplitude of curvature

perturbations (5.13).

We proceed by briefly discussing the implications of the above analysis for the field

range during inflation. Recall that in all of the above we assumed that inflation starts far

away from the bifurcation point, which is the point where inflation ends. This means that

we have to require φ0 � φN and thus, in view of (5.7),

φ2
0 � 2αN. (5.17)

According to the discussion in Sect. 2 the bifurcation point is just φ2
0 ' ξ/

√
2. Assuming

that
∫

ΣF2 = 0 and that the cosmic string bound (5.14) is saturated (i.e. ξ ' ξcrit. =

2.6× 10−6) the requirement (5.17) can be rewritten as

3.6× 102 � V̂
2(X3)

V̂2(Σ)
. (5.18)

This condition is in agreement with the prediction R̂ ' 10 for a typical length scale of

our (isotropic) compactification manifold. We now have a consistent picture of D7/D7

inflation, described in its low-energy limit by D-term hybrid inflation, in the regime where

φN � φ0.

As a final step we deduce from the above analysis the brane separation rN of the two

D7-branes at the beginning of the last 60 e-foldings of inflation. The field value of the

inflaton at this time is given by (5.7). Considering for simplicity the case of a toroidal

compactification, we may use (2.10) to calculate rN

r2
N = 16πNg

− 1
2

s ξ2 V̂3(X3)

V̂3(Σ)
, (5.19)

where rN is measured in units of `s and ξ is measured in units of MP . Assuming again that

the cosmic string bound is saturated (i.e. ξ ' ξcrit.) it is obvious that a roughly isotropic
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compactification manifold with typical length R̂ ' 10 measured in units of g
1/4
s `s leads to

inflation in the regime where rN < 1, more precisely it leads to r2
N ≈ 10−2/

√
gs. This crucial

conclusion makes it necessary to perform the full string computation in Sect. 3.2 in order to

derive the inter-brane potential because, generically, the supergravity approximation can

be trusted only at distances larger than the string length.

6 Conclusions and outlook on moduli stabilisation and F -terms

In this paper we have considered an inflationary scenario with 7-branes wrapping holo-

morphic divisors in Type IIB Calabi-Yau orientifolds. The role of the inflaton is played

by the open string modulus describing the relative distance between two 7-branes along

homologous 4-cycles. Non-supersymmetric gauge flux induces an attractive force between

the two branes which results in a logarithmic potential for the inflaton. Field-theoretically

this potential can be viewed as a brane-distance-dependent correction to the D-term of

Coleman-Weinberg type. Our scenario fits into the class of hybrid inflationary models and

is dual to inflation from branes at angles.

We have employed a two-fold strategy to compute the gauge-flux-induced inflaton po-

tential. On the one hand we have performed a supergravity computation evaluating the

action of a non-supersymmetric fluxed probe brane in the background of another brane.

While this computation is performed on a toroidal background in the supergravity regime,

we have been able to make a proposal, given in eq. (4.13), to generalise it to genuine

Calabi-Yau spaces. Inflation ends at a brane distance where open strings stretched be-

tween the two branes become tachyonic. Since this distance lies considerably below the

string scale, we have set out, again on a toroidal background, to perform an alternative,

stringy computation of the potential by evaluating the one-loop potential in the open string

channel. In fact we have established that the form of the potential at substringy distances

above a certain flux-dependent lower bound agrees with the supergravity computation.

We interpret this as evidence that also our proposal for the generalisation of the D-term

potential to non-toroidal Calabi-Yau spaces remains valid in the cosmologically relevant

regime.

From a phenomenological perspective, one of the main virtues of our D7/D7-inflationary

scenario is that already the logarithmic D-term potential by itself can avoid the tight cosmic

string bounds which are notoriously problematic in the related D3/D7 scenario. Further-

more the inflaton range is easily compatible with the cosmologically required number of

e-foldings. We view this as encouragement to further pursue the implications of our 7-

brane inflation scenario and to embed it in particular in the context of genuine F-theory

compactifications.

Our analysis in this paper has focused on the form of the attractive D-term potential

between separated 7-branes with non-supersymmetric flux and has shown that this D-term

potential as it stands is of a type favourable for inflation. Of course the ultimate success

or failure of an inflationary model hinges crucially upon the suppression or appearance of

competing inflaton dependent terms in the full scalar potential; these may well spoil the

originally envisaged inflationary mechanism. The appearance of such terms is intimately
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linked with moduli stabilisation. A quantitative treatment of moduli stabilisation and of

corrections to the D-term potential is beyond the scope of this article and relegated to

future work [97]; here we merely summarise the form of competing F -terms and point out

some of the most important challenges in the context of moduli stabilisation.

Our analysis has treated the D-term as a given order parameter for supersymme-

try breaking. As stressed, however, the flux induced D-term in Type IIB orientifolds is

well-known to depend dynamically on the Kähler moduli. Their stabilisation in a super-

symmetry breaking regime is of pivotal importance for a successful inflationary scenario.

Note that this requirement is equally relevant for all variants of D-term inflation including

the scenario of D3/D7 inflation or the T-dual inflation with branes at angles. In particular

it is crucial not only to stabilise the overall Calabi-Yau volume, which has been in the

focus of the literature so far, but the particular combination of Kähler moduli entering the

D-term ξab; this would be the prime candidate for a runaway direction that could spoil in-

flation. Our strategy in [97] will be to approach this in the context of large volume models

[98, 99], where the volume modulus of the large cycle can be stabilised by α′-corrections

in the Kähler potential as opposed to non-perturbative superpotential terms. The latter

are more difficult to use in this case because of the gauging of the Kähler modulus and the

associated necessity to take into account charged modes in the superpotential [57, 99–104].

A related challenge concerns the inevitable appearance of F -term contributions to the

7-brane modulus potential that may compete with the attractive and favourable D-term

potential. In fact, there are three qualitatively different sources for such a contribution:

brane modulus dependent corrections to the Kähler potential, a direct appearance of the

brane moduli in the flux induced superpotential or D-brane instanton induced superpoten-

tial corrections. We will now discuss these in turn.

Let us generally denote the brane deformation moduli as ζA.19 The Kähler potential

for the axio-dilaton receives ζA-dependent corrections, computed by dimensional reduction

in [55, 56] schematically as

K = −log

(
−i(S − S) + iLABζAζ

B
)

+ . . . (6.1)

for some coupling matrix LAB. Here S denotes the N = 1 chiral superfield related to the

combination τ = C0 + i
gs

by a ζA-dependent shift, see [55, 56] for details, and [105, 106]

for a recent discussion in the mirror symmetric context. These corrections are universal in

that they cannot be avoided by a particular choice of geometric setup or fluxes.20 Even in

absence of an explicit dependence of the superpotential on the brane moduli responsible for

inflation, the stabilisation of the axio-dilaton S by 3-form background fluxes in the spirit

of [50] will therefore induce a ζA-dependence of the scalar potential due to the appearance

19This is to distinguish the general brane deformation moduli from the particular combination of moduli

called y in the previous part of this article that is a linear combination of the moduli for the two branes Da
and Db.

20This is in contrast to a similar correction of the Kähler potential for the Kähler moduli, likewise

discussed in [55, 56], which can in principle be avoided for branes along 4-cycles Σ that do not couple to

the Ramond-Ramond field moduli ca− τba, obtained by dimensional reduction of C2− τB2 along elements

of H1,1
− (Σ).
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of the Kähler potential in the Kähler covariant derivative DSW = ∂SW + K,SW . This

effect is analogous to the entanglement of Kähler modulus stabilisation with a mass term

for D3-brane moduli in the scenario envisaged in [10]. It turns out that the resulting mass

term for ζA is proportional to gs|W0|2, where W0 is the value of the superpotential in

the minimum. This mass term alone can therefore in principle be avoided by stabilisation

in the extreme perturbative regime gs � 1 or by W0 � 1. These options, however, are

constrained via the general link of F - and D-terms in supergravity (see e.g. [107] for a

recent discussion) with the D-term uplift in the Kähler moduli sector pointed out above.

In addition, it must be ensured that the mass of the remaining moduli stays sufficiently

high in this regime. Both these issues depend on the particular stabilisation mechanism

and require further investigation [97].

The 7-brane moduli are known to appear also explicitly in the flux-induced superpo-

tential. Recall that the Type IIB flux superpotential can be written as [56, 108–111]

W =

∫
X3

Ω ∧ (F3 − τH3) +

∫
C5

Ω ∧ F. (6.2)

Here F3 and H3 denote the Ramond-Ramond and Neveu-Schwarz three-form flux entering

the Gukov-Vafa-Witten (GVW) superpotential [112]. The (half-)integer quantised gauge

flux F along the 7-brane divisor Σ is continued to a 5-chain C5 ending on Σ.

Let us first consider the second term induced by gauge flux F ∈ H2(Σ). Note that

H2(Σ) splits into two-forms that are the pullback of elements in H2(X3) and those which

cannot be written as a pullback from the ambient space. The latter are elements of H2
var(Σ),

the second relative cohomology [113] of the divisor Σ within the Calabi-Yau space X3. The

important point is that only gauge flux F with values in H2
var(Σ) leads to a direct F -

term [56, 110] via the second term in (6.2) stabilising the brane deformation moduli.21

The moduli are stabilised such that the gauge flux be of Hodge type (1, 1) along Σ. This

enforces the 8-dimensional F -term supersymmetry condition [82]

F = 2πα′F +B ∈ H(1,1)(Σ). (6.3)

Conversely, if we focus solely on gauge flux that does descend from two-forms in the ambient

geometry, this type of superpotential is absent. The reason is that on genuine Calabi-Yau

spaces with full SU(3) holonomy H(2)(X3) = H(1,1)(X3) and gauge flux F in the pullback

of H(1,1)(X3) automatically satisfies (6.3). Unlike the previous ζA-dependent corrections

in the Kähler potential, the second term in (6.2) can therefore be avoided by restricting

to gauge flux descending form the ambient space. Note that such fluxes are precisely the

ones that enter the D-term and thus generate the inflaton potential.

In addition, however, a more detailed evaluation of the periods entering the GVW-

superpotential W =
∫
X3

Ω∧ (F3− τH3) in [122] suggests that even in absence of gauge flux

the brane deformation moduli can appear explicitly in the superpotential. This is also in

agreement with the analysis of [110, 124, 125] for the special case of F-theory on K3×K3.

21More generally, see [114–123] for recent progress in the computation of brane superpotentials using

various techniques.
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Whether or not a suitable choice of background 3-form fluxes F3 and H3 can avoid the

appearance of such an F -term in a setup that still stabilises all complex structure moduli

and the axio-dilaton is an interesting yet complicated question that requires knowledge of

the detailed form of the periods in a concrete example.

Another, but possibly related effect was observed in [126]: The choice of 3-form flux

H3, required to stabilise τ via the GVW-superpotential, implies a non-trivial non-closed

B-field such that H3 = dB. This B-field can likewise stabilise some of the brane moduli

by the F -term supersymmetry condition [82]. This happens whenever the pullback of

B to the brane divisor is of type (2, 0). Again the supersymmetry condition (6.3) fixes

some of the brane deformations. Conversely, the stabilisation of a certain 7-brane modulus

via the effect of [126] can be avoided by turning on appropriate H3-flux and underlying

B-field. The challenge is to find H3-flux generic enough to stabilise on the one hand

the axio-dilaton τ and, together with F3, all complex structure moduli while leaving at

the same time the envisaged inflaton massless. We demonstrate this important point in

App. E by constructing a simple toroidal example, which is a straightforward generalisation

of the setup in [126], where all complex structure moduli and the dilaton are fixed in a

supersymmetric Minkowski vacuum without fixing all 7-brane moduli. Even on genuine

Calabi-Yau spaces it is to be expected that stabilisation of τ generically leaves enough

freedom to choose H3 and the B-field without fixing all 7-brane moduli.

Finally, D3-brane instantons or gaugino condensation on D7-branes are likely to yield

an explicit ζA-moduli dependence of the superpotential via loop-corrections in the gauge

kinetic function appearing in the instanton partition function that depends on the flux

induced D3-brane charge on the moving D-brane. This effect would be the direct analogue

of the superpotential for D3-brane moduli studied in [26, 127] and was suggested from a

different perspective in the context F-theory model building in [128].

To summarise, in concrete examples a detailed analysis of the F -term superpotential

for the brane deformation moduli is required. Two possible approaches are conceivable.

First, one may try to forbid each single F -term by itself without tuning order one ex-

pressions against each other. As indicated above, the explicit inflaton dependence of the

superpotential may indeed be avoidable by a suitable choice of background geometry, gauge

and 3-form fluxes. By contrast, a significant appearance of the brane moduli in the scalar

F -term potential induced by (6.1) can at best be circumvented by stabilising all moduli in

a regime where gs � 1 or W0 � 1, which, however, is subject to strong extra constraints

[97]. A probably more realistic, but less ambitious option is thus to invoke a moderate

tuning in parameter space to achieve the mutual cancellation of the various perturbative

and non-perturbative F -terms against each other. This is essentially the philosophy un-

derlying D3 inflation models of the type [10, 129]. It remains to be seen if the need for

such a tuning can be overcome in D7-brane inflation by the above mechanisms.
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A Supergravity computation of D7/D7 potential

A.1 Derivation of supergravity solution for a magnetised D7-brane

In this appendix we fill in some gaps of the discussion in Sect. 3.1 which was aimed at

calculating the solution for a magnetised D7-brane in supergravity with fluxes given by

(3.4). To obtain this solution we invoke the (extended) Buscher rules of T-duality on the

supergravity background solution for a stack of N D5-branes which are rotated by angles

φ1
b on T 2

1 and φ2
b on T 2

2 .

We start from the expressions (3.1), (3.2), and (3.3). The barred coordinates are

related to the unbarred ones by a simple rotation(
x̄4

x̄5

)
=

(
cosφ1

b sinφ1
b

− sinφ1
b cosφ1

b

)(
x4

x5

)
, (A.1)

and equivalently for the second torus. Writing the metric and C6 in terms of the torus

coordinates (without bars) we arrive at

ds2 =Z
− 1

2
5

(
−dx2

0 + . . .+ dx2
3

)
+ Z

1
2
5

(
dx2

8 + dx2
9

)
+ Z

− 1
2

5

(
cos2 φ1

b + sin2 φ1
bZ5

)
dx2

4 + Z
1
2
5

(
cos2 φ1

b + sin2 φ1
bZ
−1
5

)
dx2

5

+ Z
− 1

2
5

(
cos2 φ2

b + sin2 φ2
bZ5

)
dx2

6 + Z
1
2
5

(
cos2 φ2

b + sin2 φ2
bZ
−1
5

)
dx2

7

+ sinφ1
b cosφ1

b

(
Z
− 1

2
5 − Z

1
2
5

)
(dx4dx5 + dx5dx4)

+ sinφ2
b cosφ2

b

(
Z
− 1

2
5 − Z

1
2
5

)
(dx6dx7 + dx7dx6) ,

(A.2)

while the R-R-form potential C6 is given by

C012346 = g−1
s cosφ1

b cosφ2
b

(
Z−1

5 − 1
)
, C012347 = g−1

s cosφ1
b sinφ2

b

(
Z−1

5 − 1
)
,

C012356 = g−1
s sinφ1

b cosφ2
b

(
Z−1

5 − 1
)
, C012357 = g−1

s sinφ1
b sinφ2

b

(
Z−1

5 − 1
)
.

(A.3)

Now we perform T-duality using the Buscher rules [67]: Taking z to be the Killing

coordinate along which the T-duality is performed the T-dual metric g̃ is given by

g̃µν = gµν − (gµzgνz −BµzBνz) /gzz , g̃µz = Bµz/gzz , g̃zz = 1/gzz , (A.4)

while the dilaton and the B-field transform to

φ̃ = φ− 1

2
log |gzz| , B̃µz = gµz/gzz , B̃µν = Bµν + 2g[µ|zBν]z/gzz . (A.5)
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The extended Buscher rules for the R-R-forms are [68, 130, 131]

C̃(n)
µ1...µn = C(n+1)

µ1...µnz + nC
(n−1)
[µ1...µn−1

Bµn]z

+ n(n− 1)C
(n−1)
[µ1...µn−2|zB|µn−1|zg|µn]z/gzz ,

C̃(n)
µ1...µn−1z = C(n−1)

µ1...µn−1
− (n− 1)C

(n−1)
[µ1...µn−2|zg|µn−1]z/gzz .

(A.6)

To perform T-duality of the given solution of a rotated black extremal 5-brane along

the directions x5 and x7 we first need those to be isometries. This can be achieved by the

standard procedure of “smearing” along these directions (we closely follow [72]). Noting

that the transverse Laplace equation is linear we can distribute an array of stacks of N

D5-branes at distances 2πRn in the x5 direction. This corresponds to the case of one single

stack of N D5-branes after compactifying the x5 direction via x5 ∼ x5 + 2πR. Taking p

general for a moment we get (using (A.1))

Z̃p = 1 +
∑
n∈Z

cpgsNα
′ 7−p2[

x2
⊥ +

(
cosφ1

b (x5 − 2πRn)− sinφ1
bx4

)2] 7−p
2

. (A.7)

Now for 2πR � x⊥, a tiny compact circular dimension of radius R, we can approximate

the sum by an integral and obtain

Z̃p = 1 + cpgsNα
′ 7−p2 1

2πR cosφ1
b

∫
du

1[
x2
⊥ + u2

] 7−p
2

(A.8)

= 1 + cp+1g
′
sN

1

cosφ1
b

(√
α′

x⊥

)7−(p+1)

, (A.9)

where g′s = gs
√
α′

R . As x5 is now an isometry of the SUGRA solution we can regard the

solution (A.2) with Z5 replaced by Z̃5 as compactified on a circle along x5 with infinitesimal

radius R and use the given T-duality rules to uncompactify this dimension.

If we now repeat this procedure along x7, we see that the integral
∫
du 1√

r2+u2
diverges

((`sr)
2 = x2

8 + x2
9). We can however introduce an IR cutoff R and thus regularise the

integral by ∫ c

0
du

1√
r2 + u2

= − log r + log
(
c+

√
r2 + c2

)
≈ − log

( r
R

)
. (A.10)

This cutoff also appears in the string calculation and the potential arising from it can be

interpreted as a tadpole. Furthermore, it corresponds to the length scale at which the

dilaton is normalised to eφ = gs.

Equipped with the given T-duality rules one can deduce the new metric for a D7-brane

with flux on two tori. Since we originally had a vanishing NS-NS field Bµν in the T-duality

directions we do not get any off-diagonal terms in our new metric. The metric then reads

ds̃2 = Z
− 1

2
7 ds2(E1,3) + Z

− 1
2

7 H1ds
2(E2

45) + Z
− 1

2
7 H2ds

2(E2
67) + Z

1
2
7 ds

2(E2
89) , (A.11)
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where we have introduced the abbreviation H1/2 =
(

cos2 φ
1/2
b + sin2 φ

1/2
b Z−1

7

)−1
. Note

that, as just explained, our Z7 is given by

Z7 = 1−N gs
2π

1

cosφ1
b cosφ2

b

log
r

R
. (A.12)

The additional (cosφib)
−1 factors explain the small mismatch of the potentials in [9] (which

of course vanishes for small φi) where first the D7-brane probes the D3 background and

then the other way around. For the new Kalb-Ramond B-field the only non-vanishing

terms one finds are

B̃45 = − tanφ1
b + tanφ1

bZ
−1
7 H1 and B̃67 = − tanφ2

b + tanφ2
bZ
−1
7 H2. (A.13)

The dilaton is easily calculated to be

e2φ̃ = g2
sZ
−2
7 H1H2, (A.14)

while in general we get non-vanishing C4, C6 and C8 fields indicating the existence of

dissolved lower dimensional branes in the world-volume of the D7-brane [18]:

C̃0123 = g−1
s

(
Z−1

7 − 1
)

sinφ1
b sinφ2

b ,

C̃012345 = g−1
s

(
Z−1

7 − 1
)

cosφ1
b sinφ2

bH1,

C̃012367 = g−1
s

(
Z−1

7 − 1
)

sinφ1
b cosφ2

bH2, (A.15)

C̃01234567 = g−1
s

(
Z−1

7 − 1
)

cosφ1
b cosφ2

bH1H2.

By looking at some limiting cases we can check that these potentials are the ones to

be expected. For φ1
b = φ2

b = 0 we T-dualise perpendicular to the unrotated D5-branes

and get a stack of normal D7-branes. Thus only C̃8 is non-vanishing and the dilaton has

the standard dependence e2φ = g2
sZ

3−p
2

7 . For φ1
b = φ2

b = π
2 we T-dualise along the brane

twice and get the background of a smeared stack of standard D3-branes; an unsmeared

stack would of course have Z7 → Z3. The dilaton is constant as expected and only C4 is

non-vanishing (neglecting the additional subtlety of the self-duality constraint on F5).

A.2 (Anti-)Self-dual flux decomposition

We now interpret the flux-dependent prefactor of the distance-dependent term in our po-

tential in terms of (anti-)self-dual flux. To this aim we take the background of an extremal

D7-brane without flux, which thus only sources the RR-field C8. We then put a probe D7-

brane with some arbitrary gauge flux F into this background and calculate its potential.

The background is (again) given by (3.5) and following expressions (this time however

with φib = 0), i.e. a relative warping of the parallel and orthogonal directions of the brane

with dilaton e2φ = g2
sZ
−2
7 and RR potential C01234567 = g−1

s

(
Z−1

7 − 1
)
, where the distance

dependence comes from the warp-factor Z7 ∼ log r. Using this background we can take
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the DBI-action

SDBI = −T7

∫
d8σ e−φ

√
−det (gMN + FMN )

= −T7

∫
d8σ e−φ

√−g exp

(
1

2
Tr log

(
δMN + FMN

)) (A.16)

and expand the last exponential in terms of the components of the flux F , which up to

order O
(
|F|6

)
gives

1 +
1

4
FMNFMN − 1

8
FABFBCFCDFDA +

1

2

(
1

4
FMNFMN

)2

.

Now, neglecting the kinetic terms, we have −T7

∫
d8σe−φ

√−g = −2π`−4
s

∫
d4x V‖Z−1

7 g−1
s .

So when we put together again (A.16), the first term is ∼ Z−1
7 . This divergence however is

cancelled by part of the CS contribution SCS = µ7

∫
C8. The second term FMNFMN ∝ Z7

enjoys the aforementioned generalised conformal symmetry. So, the only relevant part

which is r-dependent is the quartic term. This however simplifies

−1

8
FABFBCFCDFDA +

1

2

(
1

4
FMNFMN

)2

= −1

8
F+
ABF+ABF−CDF−CD (A.17)

upon defining the self-dual and anti-self-dual parts of the field strength as

F+
AB =

1

2

(
FAB +

1

2
ε CD
AB FCD

)
= ∗F+

AB ,

F−AB =
1

2

(
FAB −

1

2
ε CD
AB FCD

)
= − ∗ F−AB .

(A.18)

This term goes as ∼ Z−1+2
7 and thus yields our logarithmic potential. Thus it is the

(anti-)self-dual parts of the relative flux which govern the strength of the interaction po-

tential in the case of toroidal compactification. For a Calabi-Yau orientifold this very result

has been generalised within Sect. 4 or more specifically in eq. (4.6).

B Evaluating the one-loop integral

In this appendix we provide more details for the calculation of the inter-brane potential via

an open string one-loop amplitude in Sect. 3.2. In particular, we will evaluate the modular

functions in the integrand of (3.18) and arrive at the crucial result

− i
∑

α,β∈{0,1/2}

ηαβe
iπδab(1−2β)

ϑ
[
α
β

]
(0, it)3

η(it)9

ϑ
[
α+δab
β

]
(0, it)

ϑ
[1/2+δab

1/2

]
(0, it)

≈ (tφab)
3 (B.1)

for |tφab| � 1. This allows us to write the integral in the simple form (3.19). As in the rest

of this paper, we restrict ourselves to the case of small flux, i.e. |φab| � 1. Furthermore,

without loss of generality we assume φab > 0.

In order to approximate the integrand of (3.18) we distinguish between three different

regimes: t� 1, 1� t� 1/φab, and 1/φab � t.
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Figure 3. Asymptotic behaviour of the left-hand side of (B.1) for φab = 0.1. The graph shows the

full expression (solid) as well as the approximations for 0� t� 1/φab (dashed) and for t� 1/φab
(dotted).

We first consider the regime in which t � 1. Using the modular transformation

properties (C.5) and (C.6) we find

−i
∑

α,β∈{0,1/2}

ηαβe
iπδab(1−2β)

ϑ
[
α
β

]
(0, it)3

η(it)9

ϑ
[
α+δab
β

]
(0, it)

ϑ
[1/2+δab

1/2

]
(0, it)

= −t3
∑

α,β∈{0,1/2}

ηαβ
ϑ
[−β
α

]
(0, i/t)3

η(i/t)9

ϑ
[ −β
α+δab

]
(0, i/t)

ϑ
[ 1/2
1/2+δab

]
(0, i/t)

. (B.2)

Using Riemann’s identity (C.7) this expression can be further simplified to give

− t3
∑

α,β∈{0,1/2}

ηαβ
ϑ
[−β
α

]
(0, i/t)3

η(i/t)9

ϑ
[ −β
α+δab

]
(0, i/t)

ϑ
[ 1/2
1/2+δab

]
(0, i/t)

= −2t3
ϑ
[ 1/2
1/2+δab/2

]
(0, i/t)4

η(i/t)9ϑ
[ 1/2
1/2+δab

]
(0, i/t)

. (B.3)

The modular functions have a simple expansion in q = exp(2πiτ), namely (C.2) and (C.3).

In the present case, τ = i/t i.e. q = exp(−2π/t) which is a small number if t� 1. Applying

this expansion yields

− 2t3
ϑ
[ 1/2
1/2+δab/2

]
(0, i/t)4

η(i/t)9ϑ
[ 1/2
1/2+δab

]
(0, i/t)

≈ 24t3
sin(φab/2)4

sin(φab)
≈ (tφab)

3. (B.4)

Now we move to the regime in which 1� t� 1/φab. Using

ϑ

[
α+ δ

β

]
(0, it) = q

δ2

2 e2πiβδϑ

[
α

β

]
(itδ, it) (B.5)
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as well as Riemann’s identity the expression on the left-hand side of (B.1) becomes

−i
∑

α,β∈{0,1/2}

ηαβe
iπδab(1−2β)

ϑ
[
α
β

]
(0, it)3

η(it)9

ϑ
[
α+δab
β

]
(0, it)

ϑ
[1/2+δab

1/2

]
(0, it)

= −2i
ϑ
[1/2
1/2

] (
itδab

2 , it
)4

η(it)9ϑ
[1/2
1/2

]
(itδab, it)

. (B.6)

In this case, q = exp(−2πt) which is small for t� 1. Thus, the expansion of the modular

functions in q is again applicable. We find

ϑ

[
1/2

1/2

]
(itδab, it) = −iq 1

8

∞∑
n=0

(−1)nq
n(n+1)

2

{
q−δab(n+ 1

2) − qδab(n+ 1
2)
}

≈ −iq 1
8

{
q−

δab
2 − q

δab
2

}
. (B.7)

Expanding the result for small tφab yields

− 2i
ϑ
[1/2
1/2

] (
itδab

2 , it
)4

η(it)9ϑ
[1/2
1/2

]
(itδab, it)

≈ 2

(
q−

δab
4 − q

δab
4

)4

q−
δab
2 − q

δab
2

≈ (tφab)
3. (B.8)

Thus, at leading order (B.8) exactly matches the result (B.4) found in the t� 1 region.

Finally, we consider the regime in which t � 1/φab. The treatment is very similar to

the case where 1 � t � 1/φab. However, the expansion in tφab is no longer applicable.

Instead, we find

− 2i
ϑ
[1/2
1/2

] (
itδab

2 , it
)4

η(it)9ϑ
[1/2
1/2

]
(itδab, it)

≈ 2
(
q−

δab
2 − 4

)
. (B.9)

The situation is summarised in Fig. 3. First of all we see that the expression on the

left-hand side of (B.1) is well approximated by (tφab)
3 in the whole range 0 � t � 1/φab

and not only in 0� t� 1 as one might naively expect. Furthermore, the figure illustrates

that the asymptotic behaviour of the expression for t� 1/φab is correctly given by (B.9).

The relative error that one gets using the approximations (B.1) and (B.9) instead of the

full expression is small.

Now we go back to (3.18). As we have derived in Sect. 2, the open string tachyon

appears if the distance r falls below the critical value r2
crit. = φab/(2π). Thus, during

inflation, r2 will be larger than φab/(2π). At t� 1/φab we have two competing effects: First

of all, in view of (B.9), the expression on the left-hand side of (B.1) grows exponentially

as exp(tφab). Second, the distance-dependent exponential in the integrand of (3.18) gives

an exponential suppression exp(−2πtr2). Therefore, (3.18) is convergent as long as r >

rcrit., due to the effective exponential decline of the whole integrand. For r � rcrit. this

exponential effectively cuts off the integral in the region t � 1/(2πr2). In this case the

one-loop integral has contributions only from regions where the left-hand side of (B.1) is

well approximated by (tφab)
3. We conclude that as long as r2 � φab/(2π) the expression

(3.18) is well approximated by (3.19).
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C Modular functions

In this appendix we collect the definitions and some useful formulae for the modular func-

tions. An exhaustive treatment can be found in [132]. The modular functions are defined

by

ϑ

[
α

β

]
(ν, τ) =

∑
n∈Z

exp
[
πi(n+ α)2τ + 2πi(n+ α)(ν + β)

]
=e2πiα(ν+β)qα

2/2

×
∞∏
n=1

(1− qn)(1 + e2πi(ν+β)qn−1/2+α)(1 + e−2πi(ν+β)qn−1/2−α), (C.1)

η(τ) =q
1
24

∞∏
n=1

(1− qn) = q
1
24

∞∑
n=−∞

(−1)nq
3n2−n

2 , (C.2)

where q = exp(2πiτ). The function ϑ
[1/2
1/2

]
(ν, τ) may be rewritten in a slightly more conve-

nient form:

ϑ1(ν, τ) ≡ −ϑ
[
1/2

1/2

]
(ν, τ) = 2q

1
8

∞∑
n=0

(−1)nq
n(n+1)

2 sin

(
2πν

(
n+

1

2

))
. (C.3)

The theta functions enjoy the invariance

ϑ

[
α± 1

β

]
(ν, τ) = ϑ

[
α

β

]
(ν, τ). (C.4)

The following T-modular transformations are relevant in the main text:

η(it) = t−1/2η(i/t), (C.5)

ϑ

[
α

β

]
(0, it) = t−1/2e2πiαβϑ

[−β
α

]
(0, i/t). (C.6)

Furthermore, we make use of Riemann’s identity

1

2

∑
α,β∈{0,1/2}

ηαβ

4∏
i=0

ϑ

[
α

β

]
(νi, τ) =

4∏
i=0

ϑ

[
1/2

1/2

]
(ν ′i, τ), (C.7)

where 
ν ′1
ν ′2
ν ′3
ν ′4

 =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



ν1

ν2

ν3

ν4

 . (C.8)

D 7-brane potential from N = 1 effective action

In this appendix we present an alternative derivation of the attractive potential of two

magnetised 7-branes. We will motivate an interpretation of the 7-brane potential in terms
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of corrections to quantities that appear in an effective four-dimensional supersymmetric

description of the model. This is somewhat heuristic because we will take the limit of

infinite transverse volume corresponding to the limit of rigid supersymmetry; more work

is needed to make the proposal more rigorous in a fully-fledged supergravity analysis.

In field theory language the attractive potential between branes with non-trivial rela-

tive flux results from a D-term

VD =
1

2
<(f)−1ξ2, (D.1)

where ξ is the (field-dependent) Fayet-Iliopoulos term and f is the holomorphic gauge

kinetic function. Both quantities ξ and f receive corrections from one-loop diagrams. In

this appendix we distinguish between the tree-level and one-loop pieces as

ξ|1−loop = ξ0 + δξ, <(f)|1−loop = <(f0) + ∆. (D.2)

This gives a potential

V ≈ 1

2
<(f0)−1 ξ2

0 −
1

2
<(f0)−2 ξ2

0 ∆ + <(f0)−1 ξ0 δξ. (D.3)

In principle these corrections can be calculated and the purpose of the present section is to

show that they are of the right form to reproduce the logarithmic potential that attracts

the branes towards each other.

For simplicity we will again work with a toroidal compactification in the limit of infinite

volume of the torus where the branes are separated (i.e. T 2
3 ). Let us start with non-zero

flux on T 2
1 only. Then, comparison with the standard DBI action expanded for small flux

(cf. (3.16)) yields

ξ0 =
2π<(f0)

`2s

(φa − φb)√
2

, <(f0) =
V||

2πgs
. (D.4)

We first turn to corrections to ξ. In a fully-fledged supergravity analysis, the field-

dependent Fayet-Iliopoulos term is determined by the gauging of chiral multiplets under

the associated abelian symmetry and depends on the Kähler potential. Corrections to ξ

are ultimately rooted in corrections to the Kähler potential. In this appendix we content

ourselves with the interpretation of ξ as an albeit field-dependent D-term. Instead of

thinking about one-loop corrections to the Kähler potential we directly compute one-loop

corrections to the D-term in a string calculation which to the best of our understanding is

really justified in the situation of rigid supersymmetry.

In [133, 134] the generation of a Fayet-Iliopoulos term at the one-loop level was studied

in heterotic string theory by calculating scalar masses which are generated by this term. For

this purpose the authors identify a vertex operator for the auxiliary D-field and evaluate

one-loop string diagrams with one insertion of this vertex operator. This approach is

adapted to a system of intersecting D6-branes in Type IIA string theory in [135], which

is T-dual to the setup of magnetised D7-branes dealt with in the present paper. The

authors of [135] are merely interested in the quadratic divergence of this correction which

is present already if supersymmetry is preserved and which is cancelled as soon as global
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tadpole cancellation is taken into account. The treatment in [136] goes beyond this and

calculates corrections to ξ in the case where supersymmetry is broken at tree-level. The

correction has the form

δξab = − i

2π`2s
∂ν

∫ ∞
0

dtAab(ν, it). (D.5)

Aab(ν, it) is the partition function with one insertion of exp(2πiνJ0) evaluated on the

annulus in the (ab)-sector. J0 is the zero mode of the world-sheet U(1) current which

is identified with the vertex operator for the auxiliary D-field in the (0)-ghost picture

[135, 136].

For the case of non-vanishing flux on only one torus (T-dual to D6-branes at a non-

vanishing relative angle φab in one torus only) one finds

Aab ∝V2Iab
1

t3
−i exp

(
−2πtr2

)
η(it)9ϑ

[1/2
1/2

]
(δabit, it)

× ϑ
[
1/2

1/2

](
3ν

2
+
δab
2
it, it

)
ϑ

[
1/2

1/2

](
−ν

2
+
δab
2
it, it

)
ϑ

[
1/2

1/2

](
−ν

2
− δab

2
it, it

)2

.

(D.6)

V2 is the volume along T 2
2 and δab ≡ (φa − φb)/π ≡ φab/π. Iab is the intersection number

which for simplicity we assume to have the form Iab = pa−pb (i.e. the gauge theories living

on the T-dual single-wrapped D7-branes are indeed just U(1) theories [137, 138]). Note

that there will appear further constant factors in front of this amplitude depending on its

normalisation. At this point we are a bit cavalier about these factors and simply observe

that the result matches the one found in Sect. 3.2 parametrically. To this end we perform

essentially the same steps that were needed to derive the potential in Sect. 3.2 and find

δξab ∝
V2

`2s
Iab

cos(φab/2) sin3(φab/2)

sin(φab)
log
( r
R

)
. (D.7)

Iab can be replaced in terms of Iab = pa − pb via (3.17) to get

δξab ∝
V||
`2s

cos(φab/2) sin3(φab/2)

cosφa cosφb
log
( r
R

)
. (D.8)

Inserted into (D.3) this yields the correct behaviour for small angles.

We now turn to the threshold corrections ∆ (see also [88]). Threshold corrections

in string theory can be computed by means of the background field method [139–142].

However, recall that this method actually calculates threshold corrections to the physical

gauge coupling gYM, which we will call ∆g. As is well-known, while at tree-level this

coupling is related to the real part of the gauge kinetic function as <(f) = 1/g2
YM they

start to differ at one loop [143]. There are corrections to gYM which are holomorphic

functions of the superfields and there are corrections that are not holomorphic. Only the

holomorphic part of these corrections appear in f . To calculate the threshold corrections

one evaluates the free energy F in the background of a spacetime magnetic field B at

one-loop,

F(B)|1−loop = A(B) +M(B) +K + T , (D.9)
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and deduces
1

g2
YM

=
1

(2π)2

∂2

∂B2

(
F(B)

V4d

)
, (D.10)

where V4d is the regularised volume of the non-compact dimensions.

The calculation of the annulus amplitude of an open string stretched between two

branes in the presence of a spacetime magnetic field was detailed in [139–142]. In particular

the gauged annulus amplitude in our situation reads

Aab(B) =−
V4dV||

24
B(Fa45 −Fb45)

∫ ∞
0

dt

t3
exp

(
−2πtr2

)
×

×
∑

α,β∈{0,1/2}

ηαβe
iπ(δab+ε)(1−2β)

ϑ
[
α
β

]
(0, it)2

η(it)6

ϑ
[
α+ε
β

]
(0, it)

ϑ
[1/2+ε

1/2

]
(0, it)

ϑ
[
α+δab
β

]
(0, it)

ϑ
[1/2+δab

1/2

]
(0, it)

,

(D.11)

where πε = arctan(B). Performing precisely the same steps as in App. B we arrive at

Aab(B) =− V4dV||B(Fa45 −Fb45)
sin
(
πε+φab

2

)2
sin
(
πε−φab

2

)2

sin(πε) sin(φab)
ln
( r
R

)
=−

V4dV||
4

F (B)(Fa45 −Fb45) ln
( r
R

)
, (D.12)

where

F (B) = B (cos(arctan(B))− cos(φab))
2

sin(arctan(B)) sin(φab)
. (D.13)

Noting that
∂2

∂B2
F (B)

∣∣∣∣
B=0

= − sin(φab) (D.14)

we easily find a threshold correction

∆g
ab =

1

(2π)2

∂2

∂B2

(Aab(B)

V4d

)∣∣∣∣
B=0

=
V||
4

1

(2π)2

sin2(φab)

cosφa cosφb
ln
( r
R

)
. (D.15)

However, this correction depends on the complex structure (Type IIA) or, respectively,

the Kähler moduli (Type IIB) in a non-holomorphic manner. In particular, via the logic

of [143], ∆g does not furnish a holomorphic correction ∆ to the gauge kinetic function f .

Hence we do not include this correction in (D.3).22

Let us briefly comment on the case of non-trivial flux on both T 2
1 and T 2

2 . Instead

of going through the computation of δξ from scratch it is easier to adapt the following

argument proposed in [136]: Consider a system of two fluxed branes with a small component

of supersymmetry breaking flux. Then at leading order in ξ there is a relation between δξ

and ∆g
SUSY of the form

δξ ∝ ξ0 g
2
YM ∆g

SUSY. (D.16)

22Curiously, for small relative angle φab the form of the correction (D.15) fits with the result for the

potential obtained in Sect. 3.2 except for the sign. If we did include it in the potential (D.3) it would

combine with the correction (D.8) and only modify the overall factor. In any case we see that the corrections

to ξ are essential at this point to get the right answer.
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Here ∆g
SUSY are the threshold corrections to 1/g2

YM evaluated after setting the non-super-

symmetric flux to zero. This in turn is just another confirmation of the fact that both

corrections identified in (D.3) are of the same type. Application of the background field

method proceeds as before and one finds that

∆g
SUSY ∝ V||

sinφ1
ab sinφ2

ab

cosφ1
a cosφ1

b cosφ2
a cosφ2

b

ln
( r
R

)
. (D.17)

For a small supersymmetry breaking parameter ξ this has the right form to reproduce

(3.20).

E Moduli stabilisation in a toroidal example

Our aim is to demonstrate the existence of a Type IIB compactification with a 7-brane

along a divisor Σ and with background flux H3 and F3 satisfying the following properties:

i) The Gukov-Vafa-Witten superpotential stabilises all complex structure moduli and the

dilaton in the perturbative regime.

ii) The H3-flux satisfies the Freed-Witten anomaly [H|Σ] = 0, where Σ denotes the divisor

wrapped by a 7-brane.

iii) The B-field induced by the non-trivial H3 does not stabilise all the 7-brane moduli.

In the context of toroidal orientifolds, such an example is easy to construct. Specifically

we start from the setup introduced in Sect. 4.1. of [126] (see also [144]), consisting of a

Type IIB orientifold on T 2
1 × T 2

2 × T 2
3 /Z2 × Z2. Consider the 7-brane wrapping the first 2

tori T 2
1 × T 2

2 with modulus ζ3 along the third torus T 2
3 . We switch on the following fluxes:

H3 = `2sN
(
dx1 ∧ dx2 ∧ dx3 + dy1 ∧ dy2 ∧ dx3

)
, (E.1)

F3 = `2sN
(
dx1 ∧ dx2 ∧ dy3 + dy1 ∧ dy2 ∧ dy3 + ∆F3

)
, (E.2)

∆F3 = iM dy1 ∧ dy2 ∧ dx3 +M dx1 ∧ dy2 ∧ dx3 + i dx1 ∧ dy2 ∧ dy3

− dy1 ∧ dy2 ∧ dy3. (E.3)

Note that these are the fluxes as in eq. (4.1) and (4.2) of [126] up to the extra flux ∆F3.

In particular, [126] shows that this choice of H3-flux satisfies properties ii) and iii).

To investigate property i) we evaluate the superpotential W =
∫

Ω ∧ (F3 − τH3) as

proportional to

W ∝ (1 + τ1τ2)(1 + τ3τ) + ∆W, (E.4)

∆W = M (τ1 − i)
(
τ3 −

i

M

)
. (E.5)

This superpotential satisfies

∂τW = τ3(1 + τ1τ2), (E.6)

∂τ1W = τ2(1 + τ3τ) +M

(
τ3 −

i

M

)
, (E.7)

∂τ2W = τ1(1 + τ3τ), (E.8)

∂τ3W = τ(1 + τ1τ2) +M(τ1 − i). (E.9)
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The associated F -term conditions therefore yield a SUSY Minkowski vacuum (W = 0 =

∂τW = ∂τiW ) with all moduli τi and the axio-dilaton stabilised at values

τ3 =
i

M
, τ1 = i, τ2 = i, τ = iM. (E.10)

Note that M > 1 leads to gs < 1 as required in the perturbative regime.
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