In Situ Measurements of Jet Energy Scale in ATLAS

Doug Schouten^a, for the ATLAS Collaboration

^aSimon Fraser University

PisaJet 2011 - April 18, 2011

Introduction

- jet energy scale is strongly dependent on details of ATLAS calorimetry
 - see presentation from P. Loch's talk this morning for details

Introduction

- jet energy scale is strongly dependent on details of ATLAS calorimetry
 - see presentation from P. Loch's talk this morning for details

- ▶ this talk: jet energy scale derived from 7 TeV collision data^a
- ▶ focus for the scale in 2010 was on robustness
 - resolution improvements with offline compensation techniques are forthcoming in ATLAS
 - overall uncertainty will also shrink as in situ techniques mature, and data accumulates

^aalso using input from 2004 combined testbeam (CTB) and 900 GeV data

Ingredients & Definitions

The goal of the JES calibration is to correct E and \vec{p} of jets measured in the calorimeter to the corresponding particle jets.

Ingredients

- ▶ response non-compensation (e/h > 1.3 in ATLAS)
- inactive regions, leakage, and punch through
- calorimeter signal definition (noise thresholds, jet width parameter)

Ingredients & Definitions

The goal of the JES calibration is to correct E and \vec{p} of jets measured in the calorimeter to the corresponding particle jets.

Ingredients

- response non-compensation (e/h > 1.3 in ATLAS)
- inactive regions, leakage, and punch through
- calorimeter signal definition (noise thresholds, jet width parameter)

Definitions

- ▶ the JES is defined for a particular class of "nominal" jets^a:
 - ▶ in QCD dijet events (mostly jets from gluons)
 - isolated jets: $\Delta R(jet_i, jet_{j\neq i}) > 2.0$
- and with respect to a particular reference:
 - jets from final state, stable particles^b excepting μ 's and ν 's
 - ▶ matched to measured jets in $\Delta R < 0.3$

^aunless otherwise specified, all results shown are for jets defined with the anti- k_T algorithm[1], with a width parameter R = 0.6, built from 4/2/0 topological clusters

 $[^]b$ stable is defined as au > 10 ps

$$p_T^{calibrated} = C(E - \mathcal{O}, \eta) \cdot V(p_T - \mathcal{O}) p_T \qquad (1)$$

$$EM \qquad pileup \qquad correction$$

$$energy \qquad correction$$

The EM scale is validated in $Z \to {\rm e^+e^-}$ events for the EM LAr, and using MIP μ 's for the Tile.

$$\rho_T^{calibrated} = C(E - \mathcal{O}, \eta) \cdot V(p_T - \mathcal{O}) p_T \qquad \text{(I}$$

$$EM \qquad \qquad \text{pileup correction} \qquad \qquad \text{vertex correction}$$

The EM scale is validated in $Z \rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

A pileup correction, \mathcal{O} , is applied to make the final energy correction independent of \mathcal{L}

The EM scale is validated in $Z \rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

A pileup correction, \mathcal{O} , is applied to make the final energy correction independent of \mathcal{L}

The vertex correction, $V(p_T)$, corrects the momentum of the constituent clusters to point from the primary vertex with highest $\sum (p_T^2)$.

$$p_T^{calibrated} = C(E - \mathcal{O}, \eta) \cdot V(p_T - \mathcal{O}) p_T \qquad (1)$$

$$EM \qquad pileup \qquad vertex \qquad energy \qquad correction$$

The EM scale is validated in $Z \to e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

A pileup correction, \mathcal{O} , is applied to make the final energy correction independent of \mathcal{L}

The vertex correction, $V(p_T)$, corrects the momentum of the constituent clusters to point from the primary vertex with highest $\sum (p_T^2)$.

Finally, a Monte Carlo based **energy correction**, $C(E, \eta)$, corrects to the particle level, within +2%

^aSee extra slides for more details on the procedure for extracting these corrections from the Monte Carlo.

Evaluating the EM+JES

▶ overall strategy: evaluate the JES by factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct

¹the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

Evaluating the EM+JES

- ▶ overall strategy: evaluate the JES by factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- so the role of the in situ measurements in setting the scale is to provide systematic uncertainties

in situ measurement E/p single particle response	JES uncertainty component central calorimeter response
dijet relative calibration	extrapolation to endcap and forward region
$\langle E angle_{tower}$ & track-jets	multiple interactions ¹

¹the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

- use pseudo experiments in Monte Carlo to extrapolate single particle response uncertainty to jet response uncertainty
- translation is non-trivial, but exhaustively cross-checked:
 - 1. threshold effects due to noise suppression,
 - 2. fragmentation model and soft physics
- ▶ E/p measurements for charged hadrons with p < 20 GeV
- for particles with 20 GeV, use CTB measurements
- conservatively add 20% uncertainty for neutral hadron component

- use pseudo experiments in Monte Carlo to extrapolate single particle response uncertainty to jet response uncertainty
- translation is non-trivial, but exhaustively cross-checked:
 - threshold effects due to noise suppression,
 - 2. fragmentation model and soft physics
- ▶ E/p measurements for charged hadrons with p < 20 GeV
- for particles with 20 GeV, use CTB measurements
- conservatively add 20% uncertainty for neutral hadron component

E/p analysis:

- \blacktriangleright select events using minimum bias trigger, using $\sim 0.9 pb^{-1}$ of 7 TeV data
- 20M minimum bias events in Pythia
- ▶ collect isolated tracks ($\Delta R > 0.4$) with $p_T > 2 \text{ GeV}^a$
- ightharpoonup considered systematics: E/p background, CTB ightharpoonup in situ, EM scale, detector simulation

 $^{^{}a}$ for particles with lower p_{T} , data collected at 900 GeV was used in analogous way

- ightharpoonup select calorimeter cells in topological clusters, within $\Delta R < 0.2^a$ of extrapolated track at each layer
- ▶ neutral background measured by looking in annulus 0.1 < R < 0.2 around the axis for MIP's in the EM calorimeter $(E_{HAD}^{0.1}/p > 0.4 \& E_{EM}^{0.1} < 1 \text{ GeV})$
 - discrepancy between MC & data at 7 TeV indicates mismodeling of soft QCD

- ▶ select calorimeter cells in topological clusters, within $\Delta R < 0.2^{a}$ of extrapolated track at each layer
- ▶ neutral background measured by looking in annulus 0.1 < R < 0.2 around the axis for MIP's in the EM calorimeter $(E_{HAD}^{0.1}/p > 0.4 \& E_{EM}^{0.1} < 1 \text{ GeV})$
 - discrepency between MC & data at 7 TeV indicates mismodeling of soft QCD
- difference between MC & data (right), and uncertainties on E/p measurement propagated to jet response (below)

Evaluating the EM+JES

- overall strategy: evaluate the JES by roughly factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- thus, the role of the in situ measurements in setting the scale is to provide systematic uncertainties

in situ measurement	JES uncertainty component
E/p single particle response	central calorimeter response
dijet relative calibration	extrapolation to endcap and forward region
$\langle E \rangle_{tower}$ & track-jets	multiple interactions ¹

 $^{^{1}}$ the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

- for jets in $|\eta| > 0.8$, the central results are extrapolated using dijet balance
 - CTB included only barrel Tile calorimeter
- better knowledge of central geometry
- use matrix method to couple all regions
 - improves statistics since σ falls steeply with $\Delta \eta$

$$A = \frac{p_T^i - p_T^j}{\frac{1}{2} \left(p_T^i + p_T^j \right)}$$

$$R_{ij} = \frac{2 - \langle A_{ij} \rangle}{2 + \langle A_{ij} \rangle} = \frac{\alpha_i}{\alpha_i}$$

- for jets in $|\eta| > 0.8$, the central results are extrapolated using dijet balance
 - CTB included only barrel Tile calorimeter
 - better knowledge of central geometry
- use matrix method to couple all regions
 - lacktriangle improves statistics since σ falls steeply with $\Delta\eta$

$$S = \sum_{i < j} \left(rac{1}{\Delta R_{ij}} (lpha_j \left\langle R_{ij}
ight
angle - lpha_i)
ight)^2 + \chi(lpha)$$

- minimze S subject to constraint that $\langle \alpha \rangle_{n < 0.8} = 1$
- yields coefficients $\alpha(p_T)|_n \pm \Delta$

$$A = \frac{p_T^i - p_T^j}{\frac{1}{2} \left(p_T^i + p_T^j \right)}$$

$$R_{ij} = \frac{2 - \langle A_{ij} \rangle}{2 + \langle A_{ij} \rangle} = \frac{\alpha_i}{\alpha_j}$$

- for jets in $|\eta| > 0.8$, the central results are extrapolated using dijet balance
 - CTB included only barrel Tile calorimeter
- better knowledge of central geometry
- use matrix method to couple all regions
 - lacktriangleright improves statistics since σ falls steeply with $\Delta\eta$

$$S = \sum_{i < j} \left(rac{1}{\Delta R_{ij}} (lpha_j \left\langle R_{ij}
ight
angle - lpha_i)
ight)^2 + \chi(lpha)$$

- minimze S subject to constraint that $\langle \alpha \rangle_{n < 0.8} = 1$
- yields coefficients $\alpha(p_T)|_{\eta} \pm \Delta$

$$A = \frac{p_T^i - p_T^j}{\frac{1}{2} \left(p_T^i + p_T^j \right)}$$

$$R_{ij} = \frac{2 - \langle A_{ij} \rangle}{2 + \langle A_{ij} \rangle} = \frac{\alpha_i}{\alpha_j}$$

η analysis

- ightharpoonup use combination of minimum bias and jet triggers for different p_T regions
- require $\Delta \phi(j_1, j_2) > 2.6$, $\rho_T^{j_3} < \max(0.15 \, \rho_T, 7 \, \text{GeV})$

- puzzling inconsistency between Monte Carlo generators
 - ▶ compare Herwig++, Alpgen (cluster model, $2 \rightarrow N$) to Pythia and Perugia tune ($2 \rightarrow 2$, Lund string model)
 - effect is strongest in forward region, at low p_T

- puzzling inconsistency between Monte Carlo generators
 - ▶ compare Herwig++, Alpgen (cluster model, $2 \rightarrow N$) to Pythia and Perugia tune ($2 \rightarrow 2$, Lund string model)
- effect is strongest in forward region, at low p_T
- use RMS deviation between MC and data as systematic uncertainty
 ⊕ uncertainty in central region

Evaluating the EM+JES

- overall strategy: evaluate the JES by roughly factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- thus, the role of the in situ measurements in setting the scale is to provide systematic uncertainties

in situ measurement	JES uncertainty component
E/p single particle response	central calorimeter response
dijet relative calibration	extrapolation to endcap and forward region
$\langle E \rangle_{tower}$ & track-jets	multiple interactions ¹

¹the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

Pileup Correction (derive \mathcal{O})

Offset analysis

- ► L1 jet trigger, only subleading jets are used to avoid trigger bias
- \blacktriangleright count N_{PV} using vertices near beam line with $N_{trk}^{p_T>150\,\mathrm{MeV}}\geq 5$
- two methods for estimating pileup contribution
 - 1. tower-based offset:

$$\mathcal{O}_{jet \mid tower}(\eta, N_{PV}) = \mathcal{O}_{tower}(\eta, N_{PV}) \cdot \left\langle N_{tower}^{jet} \right\rangle_{\eta}$$

Pileup Correction (derive \mathcal{O})

Offset analysis

- L1 jet trigger, only subleading jets are used to avoid trigger bias
- ${\color{blue} \blacktriangleright}$ count N_{PV} using vertices near beam line with $N_{trk}^{p_T>150\,{\rm MeV}}\geq 5$
- two methods for estimating pileup contribution
 - 1. tower-based offset:

$$\mathcal{O}_{jet|tower}(\eta, N_{PV}) = \mathcal{O}_{tower}(\eta, N_{PV}) \cdot \left\langle N_{tower}^{jet} \right\rangle_{\eta}$$

2. track ↔ calorimeter jet comparison

$$\begin{array}{lcl} \mathcal{O}_{jet|track}(\eta, \textit{N}_{PV}) & = & \left\langle \textit{E}_{T}^{jet}(\eta, \textit{N}_{PV}|\textit{p}_{T}^{track-jet}) \right\rangle - \\ \\ & \left\langle \textit{E}_{T}^{jet}(\eta, \textit{N}_{PV} = 1|\textit{p}_{T}^{track-jet}) \right\rangle \end{array}$$

technique	systematic uncertainty
tower	26% (~)
track jet	34% (~)

Evaluating the EM+JES

- overall strategy: evaluate the JES by roughly factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- thus, the role of the in situ measurements in setting the scale is to provide systematic uncertainties

in situ measurement	JES uncertainty component
E/p single particle response	central calorimeter response
dijet relative calibration	extrapolation to endcap and forward region
$\langle E \rangle_{tower}$ & track-jets	multiple interactions ¹

• further, we validate the uncertainty using various other measurements: γ + jet, QCD multijet balancing, and relative track \leftrightarrow calorimeter jet comparisons

 $^{^{1}}$ the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

γ + Jet

- jet response probed with two complementary methods¹:
 - 1. direct p_T balance: p_T^{jet}/p_T^{γ}
 - 2. ₽_T projection fraction (MPF): $1 + \not\!\!E_T \cdot \hat{n}_{\gamma}/p_T^{\gamma}$

γ + jet analysis

- ▶ using $\int \mathcal{L} = 38 \text{pb}^{-1}$
- \triangleright γ selected based on shower shape, isolation²
- back-to-back topology ($\Delta \phi > \pi 0.2$, $p_T^{j_2}/p_T^{\gamma} < 0.1$
- considered systematics from: QCD jet background, ISR/FSR mismodelling, γ energy scale, pileup

both depend on p_T conservation but are differently sensitive to systematics

 $^{^2}$ corrected for UE and γ cluster leakage

Monte Carlo : Data comparison for MPF and direct balance, versus p_T^{γ}

QCD Multijet Balancing

• extrapolate γ + jet to high p_T using events where a high p_T jet recoils against an N>1 jet system

multijet analysis

- lacktriangledown $\Delta\phi(\textit{lead}, \textit{recoil}) > \pi 0.3$, $\Delta\phi(\textit{lead}, \textit{closest recoil}) \equiv \beta > 1$
- require $A = p_T^{j_2}/p_T^{recoil} < 0.6$
- exhaustive list of systematics: recoil JES, ISR & FSR, nearby jets, flavor

Track ← Calorimeter Jet

Despite uncertainties in jet fragmentation, ratio of charged to total energy is highly constrained.

Trackjet analysis

- construct jets from selected tracks and match to jets from calorimeter clusters
- compare distribution of p_T^{track}/p_T^{calo} with Pythia dijet simulation

JES Summary

JES uncertainty for jets in barrel region, with $N_{PV}=1$

Summary

1. using a scheme based on single particle response, ATLAS has developed a robust 2-4% absolute JES in the central barrel

Summary

- 1. using a scheme based on single particle response, ATLAS has developed a robust 2-4% absolute JES in the central barrel
- 2. multiple, independent cross-checks confirm JES
 - $ightharpoonup \gamma + \mathrm{jet}$
 - ▶ track ↔ calorimeter jet comparison
 - multi-jet balancing

Summary

- 1. using a scheme based on single particle response, ATLAS has developed a robust 2-4% absolute JES in the central barrel
- 2. multiple, independent cross-checks confirm JES
 - $ightharpoonup \gamma + \mathrm{jet}$
 - ▶ track ↔ calorimeter jet comparison
 - multi-jet balancing
- 3. local calibration schemes are being commissioned
 - results for local and sequential schemes already tested at jet level, and show good resolution improvement
- 4. in situ techniques will improve scale with increased statistics

EXTRA SLIDES

Topological Clustering Algorithm

- 1. select cells with $|E|/\sigma > 4$ as seed cells
- 2. collect all cells with $|E|/\sigma > 2$ that are connected to seed cells
- **3.** add in all neighbouring cells (0σ)

Selection of Cone Radius for E/p

 $\Delta R < 0.2$ collects $\simeq 90\%$ of deposited energy but is simultaneously unaffected by nearby particle showers

Components of JES Uncertainty from Single Particle Response

Components of JES Uncertainty from Single Particle Response

Components of JES Uncertainty in $0.3 < \eta < 0.8$

Relative Uncertainty for Jets in Events with Pileup

Comparison of Matrix Solution to Reference Method

Compare relative calibration coefficients for the case where only events are used in which a jet is in the central $\eta < 0.8$ and a jet is in a probe region in $\eta > 0.8$, compared to the method where all events are used.

Extra Plots

Validating JES in η with MPF (left) and other calibration scheme, based on local hadronic response correction (right).

References

- 1. M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063, arXiv:0802.1189 [hep-ph].
- 2. ATLAS Jet/ETMiss Conference Notes