In Situ Measurements of Jet Energy Scale in ATLAS

Doug Schouten^a, for the ATLAS Collaboration

^aSimon Fraser University

PisaJet 2011 - April 18, 2011

Introduction

Introduction

- ighthis talk: jet energy scale derived from 7 TeV collision data^a
- \triangleright focus for the scale in 2010 was on robustness
	- \triangleright resolution improvements with offline compensation techniques are forthcoming in ATLAS
	- \triangleright overall uncertainty will also shrink as in situ techniques mature, and data accumulates

also using input from 2004 combined testbeam (CTB) and 900 GeV data

Ingredients & Definitions

The goal of the JES calibration is to correct E and \vec{p} of jets measured in the calorimeter to the corresponding particle jets.

Ingredients

- **P** response non-compensation ($e/h > 1.3$ in ATLAS)
- \blacktriangleright inactive regions, leakage, and punch through
- \triangleright calorimeter signal definition (noise thresholds, jet width parameter)

Ingredients & Definitions

The goal of the JES calibration is to correct E and \vec{p} of jets measured in the calorimeter to the corresponding particle jets.

Ingredients

- response non-compensation ($e/h > 1.3$ in ATLAS)
- \blacktriangleright inactive regions, leakage, and punch through
- \triangleright calorimeter signal definition (noise thresholds, jet width parameter)

Definitions

- \triangleright the JES is defined for a particular class of "nominal" jets^a:
	- \triangleright in QCD dijet events (mostly jets from gluons)
	- \blacktriangleright isolated jets: $\Delta R(jet_i, jet_{j\neq i}) > 2.0$
- \triangleright and with respect to a particular reference:
	- iets from final state, stable particles^b excepting μ 's and ν 's
	- \blacktriangleright matched to measured jets in $\Delta R < 0.3$

 b stable is defined as $\tau > 10$ ps

 a unless otherwise specified, all results shown are for jets defined with the anti- k_T algorithm[1], with a width parameter $R = 0.6$, built from $4/2/0$ topological clusters

$$
p_T^{\text{calibrated}} = C(E - \mathcal{O}, \eta) \cdot V(p_T - \mathcal{O}) p_T \quad (1)
$$

The EM scale is validated in $Z\rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

$$
p_T^{\text{calibrated}} = C(E - \mathcal{O}, \eta) \cdot V(p_T - \mathcal{O}) p_T \quad (1)
$$

The EM scale is validated in $Z\rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

A pileup correction, O , is applied to make the final energy correction independent of $\mathcal L$

$$
p_T^{\text{calibrated}} = C(E - \mathcal{O}, \eta) \cdot V(p_T - \mathcal{O}) p_T \quad (1)
$$

The EM scale is validated in $Z\rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

A pileup correction, O , is applied to make the final energy correction independent of $\mathcal L$

The vertex correction, $V(p_T)$, corrects the momentum of the constituent clusters to point from the primary vertex with highest $\sum \left(p_{\mathcal{T}}^{2} \right)$.

$$
\rho_T^{\text{calibrated}} = C(E - \mathcal{O}, \eta) \cdot V(p_T - \mathcal{O}) p_T \tag{1}
$$
\nEM scale

\nof

\n

The EM scale is validated in $Z\rightarrow e^+e^-$ events for the EM LAr, and using MIP μ 's for the Tile.

A pileup correction, O , is applied to make the final energy correction independent of $\mathcal L$

The **vertex correction**, $V(p_T)$, corrects the momentum of the constituent clusters to point from the primary vertex with highest $\sum \left(p_{\mathcal{T}}^{2} \right)$.

Finally, a Monte Carlo based **energy correction**, $C(E, \eta)$, corrects to the particle level, within $+2%^a$

^aSee extra slides for more details on the procedure for extracting these corrections from the Monte Carlo.

Evaluating the EM+JES

D overall strategy: evaluate the JES by factorizing the components of $EM+JES$, and verifying that the Monte Carlo description of each feature in the data is correct

 1 ¹the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

Evaluating the EM+JES

- **Dependiviolerall strategy:** evaluate the JES by factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- \triangleright so the role of the *in situ* measurements in setting the scale is to provide systematic uncertainties

 1 ¹the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

- \triangleright use pseudo experiments in Monte Carlo to extrapolate single particle response uncertainty to jet response uncertainty
- \triangleright translation is non-trivial, but exhaustively cross-checked:
	- 1. threshold effects due to noise suppression,
	- 2. fragmentation model and soft physics
- E/p measurements for charged hadrons with $p < 20$ GeV
- for particles with $20 < p < 350$ GeV, use CTB measurements
- conservatively add 20% uncertainty for neutral hadron component

- \triangleright use pseudo experiments in Monte Carlo to extrapolate single particle response uncertainty to jet response uncertainty
- \triangleright translation is non-trivial, but exhaustively cross-checked:
	- 1. threshold effects due to noise suppression,
	- 2. fragmentation model and soft physics
- \blacktriangleright E/p measurements for charged hadrons with $p < 20$ GeV
- ▶ for particles with $20 < p < 350$ GeV, use CTB measurements
- conservatively add 20% uncertainty for neutral hadron component

E/p analysis:

- ► select events using minimum bias trigger, using \sim 0.9pb⁻¹ of 7 TeV data
- \triangleright 20M minimum bias events in Pythia
- ► collect isolated tracks ($\Delta R > 0.4$) with $p_T > 2$ GeV^a
- \triangleright considered systematics: E/p background, CTB \rightarrow in situ, EM scale, detector simulation

^afor particles with lower p_T , data collected at 900 GeV was used in analagous way

- \triangleright select calorimeter cells in topological clusters, within $\Delta R < 0.2^{\textit{a}}$ of extrapolated track at each layer
- \triangleright neutral background measured by looking in annulus $0.1 < R < 0.2$ around the axis for MIP's in the EM calorimeter $(E_{HAD}^{0.1}/\rho>0.4$ & $E_{EM}^{0.1}<$ 1 GeV)
	- \triangleright discrepancy between MC & data at 7 TeV indicates mismodeling of soft QCD

- \triangleright select calorimeter cells in topological clusters, within $\Delta R < 0.2$ ^a of extrapolated track at each layer
- \triangleright neutral background measured by looking in annulus $0.1 < R < 0.2$ around the axis for MIP's in the EM calorimeter $(E_{HAD}^{0.1}/p > 0.4$ & $E_{EM}^{0.1} < 1$ GeV)
	- ▶ discrepency between MC & data at 7 TeV indicates mismodeling of soft QCD
- \triangleright difference between MC & data (right), and uncertainties on E/p measurement propagated to jet response (below)

Evaluating the EM+JES

- \triangleright overall strategy: evaluate the JES by roughly factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- In thus, the role of the *in situ* measurements in setting the scale is to provide systematic uncertainties

 1 ¹the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

- ► for jets in $|\eta| > 0.8$, the central results are extrapolated using dijet balance
	- \triangleright CTB included only barrel Tile calorimeter
	- \triangleright better knowledge of central geometry
- \triangleright use matrix method to couple all regions
	- \triangleright improves statistics since σ falls steeply with $\Delta \eta$

$$
A = \frac{p_T^i - p_T^j}{\frac{1}{2} \left(p_T^i + p_T^j \right)}
$$

$$
R_{ij} = \frac{2 - \langle A_{ij} \rangle}{2 + \langle A_{ij} \rangle} = \frac{\alpha_i}{\alpha_j}
$$

- In for jets in $|\eta| > 0.8$, the central results are extrapolated using dijet balance
	- \triangleright CTB included only barrel Tile calorimeter
	- \blacktriangleright better knowledge of central geometry
- \triangleright use matrix method to couple all regions
	- \triangleright improves statistics since σ falls steeply with $\Delta \eta$

$$
\mathcal{S} = \sum_{i
$$

- \triangleright minimze S subject to constraint that $\langle \alpha \rangle_{n \leq 0.8} = 1$
- \triangleright yields coefficients $\alpha(p_T)|_n \pm \Delta$

$$
A = \frac{p_T^i - p_T^j}{\frac{1}{2} \left(p_T^i + p_T^j \right)}
$$

$$
R_{ij} = \frac{2 - \langle A_{ij} \rangle}{2 + \langle A_{ij} \rangle} = \frac{\alpha_i}{\alpha_j}
$$

- In for jets in $|\eta| > 0.8$, the central results are extrapolated using dijet balance
	- \triangleright CTB included only barrel Tile calorimeter
	- \blacktriangleright better knowledge of central geometry
- \triangleright use matrix method to couple all regions
	- \triangleright improves statistics since σ falls steeply with $\Delta \eta$

$$
S = \sum_{i
$$

- \triangleright minimze S subject to constraint that $\langle \alpha \rangle_{n \leq 0.8} = 1$
- \triangleright yields coefficients $\alpha(p_T)|_n \pm \Delta$

η analysis

- ighth use combination of minimum bias and jet triggers for different p_T regions
- ► require $\Delta \phi(j_1, j_2) > 2.6$, $\rho^{\dot{\imath}_3}_7 < \max(0.15\,\rho_{\scriptstyle T}, 7\; \rm{GeV})$

$$
A = \frac{p_T^i - p_T^j}{\frac{1}{2} \left(p_T^i + p_T^i \right)}
$$

$$
R_{ij} = \frac{2 - \langle A_{ij} \rangle}{2 + \langle A_{ij} \rangle} = \frac{\alpha_i}{\alpha_j}
$$

- puzzling inconsistency between Monte Carlo generators
	- \triangleright compare Herwig $++$, Alpgen (cluster model, $2 \rightarrow N$) to Pythia and Perugia tune (2 \rightarrow 2, Lund string model)
	- **F** effect is strongest in forward region, at low p_T

- puzzling inconsistency between Monte Carlo generators
	- \triangleright compare Herwig $++$, Alpgen (cluster model, $2 \rightarrow N$) to Pythia and Perugia tune (2 \rightarrow 2, Lund string model)
	- **F** effect is strongest in forward region, at low p_T
- use RMS deviation between MC and data as systematic uncertainty ⊕ uncertainty in central region

Evaluating the EM+JES

- \triangleright overall strategy: evaluate the JES by roughly factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- In thus, the role of the in situ measurements in setting the scale is to provide systematic uncertainties

 1 ¹the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

Pileup Correction (derive \mathcal{O})

Offset analysis

- \blacktriangleright L1 jet trigger, only subleading jets are used to avoid trigger bias
- count N_{PV} using vertices near beam line with $N_{PT}^{PT>150 \text{ MeV}} > 5$ $N_{trk}^{\rho_{\mathcal{T}} > 150\,\mathrm{MeV}} \geq 5$
- two methods for estimating pileup contribution
	- 1. tower-based offset:

$$
\mathcal{O}_{jet|tower}(\eta, N_{PV}) = \mathcal{O}_{tower}(\eta, N_{PV}) \cdot \left\langle N_{tover}^{jet} \right\rangle_{\eta}
$$

Pileup Correction (derive \mathcal{O})

Offset analysis

- \blacktriangleright L1 jet trigger, only subleading jets are used to avoid trigger bias
- \triangleright count N_{PV} using vertices near beam line with $N_{trk}^{p_{\mathcal{T}} > 150 \text{ MeV}} \geq 5$
- two methods for estimating pileup contribution
	- 1. tower-based offset:

$$
\mathcal{O}_{jet|tower}(\eta, N_{PV}) = \mathcal{O}_{tower}(\eta, N_{PV}) \cdot \left\langle N_{tower}^{jet} \right\rangle_{\eta}
$$

2. track \leftrightarrow calorimeter jet comparison

$$
\begin{array}{rcl} \mathcal{O}_{jet|track}(\eta, N_{PV}) & = & \Big \langle E^{jet}_T(\eta, N_{PV} | p^{track-jet}_T) \Big \rangle - \\ & & \\ & \Big \langle E^{jet}_T(\eta, N_{PV} = 1 | p^{track-jet}_T) \Big \rangle \end{array}
$$

Evaluating the EM+JES

- \triangleright overall strategy: evaluate the JES by roughly factorizing the components of EM+JES, and verifying that the Monte Carlo description of each feature in the data is correct
- In thus, the role of the in situ measurements in setting the scale is to provide systematic uncertainties

If further, we validate the uncertainty using various other measurements: γ + jet, QCD multijet balancing, and relative track \leftrightarrow calorimeter jet comparisons

 1 ¹the pileup correction is totally data-driven, so the correction and uncertainty are both derived from collision data

$\gamma +$ Jet

- \blacktriangleright jet response probed with two $\mathsf{complementary}\ \mathsf{methods}^1$:
	- 1. direct $p_{\mathcal{T}}$ balance: $p_{\mathcal{T}}^{jet}/p_{\mathcal{T}}^{\gamma}$ 2. E_T projection fraction (MPF): $1+\not{\text{E}}_T \cdot \hat{n}_{\gamma}/\rho_T^{\gamma}$

γ + jet analysis

- ► using $\int \mathcal{L} = 38$ pb⁻¹
- \triangleright γ selected based on shower shape, isolation²
- \triangleright back-to-back topology ($\Delta \phi > \pi 0.2$, $p_T^{j_2}/p_T^\gamma < 0.1)$
- \triangleright considered systematics from: QCD jet background, ISR/FSR mismodelling, γ energy scale, pileup

 1 both depend on p_{T} conservation but are differently sensitive to systematics

 2 corrected for UE and γ cluster leakage

$\overline{\gamma}$ + Jet

Monte Carlo : Data comparison for MPF and direct balance, versus ρ_{T}^{γ}

QCD Multijet Balancing

multijet analysis

- \blacktriangleright $\Delta\phi$ (lead, recoil) > π − 0.3, $\Delta\phi$ (lead, closest recoil) $\equiv \beta > 1$
- require $A = p_T^{j_2}/p_T^{recoil} < 0.6$
- \triangleright exhaustive list of systematics: recoil JES, ISR & FSR, nearby jets, flavor

Track \leftrightarrow Calorimeter Jet

Despite uncertainties in jet fragmentation, ratio of charged to total energy is highly constrained.

Trackjet analysis

- construct jets from selected tracks and match to jets from calorimeter clusters
- \blacktriangleright compare distribution of p_T^{track}/p_T^{calo} with Pythia dijet simulation

Conclusions

JES Summary

JES uncertainty for jets in barrel region, with $N_{PV} = 1$

1. using a scheme based on single particle response, ATLAS has developed a robust 2-4% absolute JES in the central barrel

- 1. using a scheme based on single particle response, ATLAS has developed a robust 2-4% absolute JES in the central barrel
- 2. multiple, independent cross-checks confirm JES
	- $\rightarrow \gamma$ + jet
	- **►** track \leftrightarrow calorimeter jet comparison
	- \blacktriangleright multi-jet balancing
- 1. using a scheme based on single particle response, ATLAS has developed a robust 2-4% absolute JES in the central barrel
- 2. multiple, independent cross-checks confirm JES
	- $\rightarrow \gamma +$ jet
	- **►** track \leftrightarrow calorimeter jet comparison
	- \blacktriangleright multi-jet balancing
- 3. local calibration schemes are being commissioned
	- \triangleright results for local and sequential schemes already tested at jet level, and show good resolution improvement
- 4. in situ techniques will improve scale with increased statistics

EXTRA SLIDES

Topological Clustering Algorithm

- 1. select cells with $|E|/\sigma > 4$ as seed cells
- 2. collect all cells with $|E|/\sigma > 2$ that are connected to seed cells
- 3. add in all neighbouring cells (0σ)

Selection of Cone Radius for E/p

 $\Delta R < 0.2$ collects $\simeq 90\%$ of deposited energy but is simultaneously unaffected by nearby particle showers

Components of JES Uncertainty from Single Particle Response

Components of JES Uncertainty from Single Particle Response

Components of JES Uncertainty in $0.3 < \eta < 0.8$

Relative Uncertainty for Jets in Events with Pileup

Comparison of Matrix Solution to Reference Method

Compare relative calibration coefficients for the case where only events are used in which a jet is in the central η < 0.8 and a jet is in a probe region in η > 0.8, compared to the method where all events are used.

Extra Plots

Validating JES in η with MPF (left) and other calibration scheme, based on local hadronic response correction (right).

- 1. M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063, arXiv:0802.1189 [hep-ph].
- 2. [ATLAS Jet/ETMiss Conference Notes](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtMissPublicCollisionResults)