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Introductory Remarks

Introduction

LAr hadronic

> jet energy scale is strongly erid-cop HEC)
dependent on details of
ATLAS calorimetry end-cop e A
> see presentation from P.
Loch’s talk this morning for
details

Lir forword (FCal)
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Introductory Remarks

Introduction

LAr hadronic
> jet energy scale is strongly erid-cop HEC)
dependent on details of -
ATLAS calorimetry end-cop e A

> see presentation from P.
Loch’s talk this morning for

details

> this talk: jet energy scale derived from 7 TeV collision data?
» focus for the scale in 2010 was on robustness
> resolution improvements with offline compensation techniques are

forthcoming in ATLAS
> overall uncertainty will also shrink as in situ techniques mature, and data

accumulates

?also using input from 2004 combined testbeam (CTB) and 900 GeV data
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Introductory Remarks

Ingredients & Definitions

The goal of the JES calibration is to correct E and p of jets measured in the calorimeter
to the corresponding particle jets.

Ingredients
> response non-compensation (e/h > 1.3 in ATLAS)
> inactive regions, leakage, and punch through

> calorimeter signal definition (noise thresholds, jet width parameter)
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Introductory Remarks

Ingredients & Definitions

The goal of the JES calibration is to correct E and p of jets measured in the calorimeter
to the corresponding particle jets.

Ingredients
> response non-compensation (e/h > 1.3 in ATLAS)
> inactive regions, leakage, and punch through

> calorimeter signal definition (noise thresholds, jet width parameter)

Definitions

» the JES is defined for a particular class of “nominal” jets’:
> in QCD dijet events (mostly jets from gluons)
> isolated jets: AR(jet;, jetj+) > 2.0

» and with respect to a particular reference:

> jets from final state, stable particles? excepting u’s and v's
> matched to measured jets in AR < 0.3

Zunless otherwise specified, all results shown are for jets defined with the anti-kt algorithm[1], with a width
parameter R = 0.6, built from 4/2/0 topological clusters
bstable is defined as T > 10 ps
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REAETVRIEIM  JES Procedure

EM+JES Scheme

p(__}_alfbrated _ C(E _ (’)777) . \/(p-,— — O) PT (1)

pileup vertex energy
correction correction correction

The EM scale is validated in Z — eTe™ events
for the EM LAr, and using MIP p's for the Tile.
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REAETVRIEIM  JES Procedure

EM+JES Scheme

p(__}_alfbrated _ C(E _ (’)777) . \/(p-,— — O) PT (1)

pileup vertex energy

correction correction correction

The EM scale is validated in Z — eTe™ events
for the EM LAr, and using MIP p's for the Tile.

A pileup correction, O, is applied to make the
final energy correction independent of £

The vertex correction, V(pr), corrects the
momentum of the constituent clusters to point
from the primary vertex with highest > (p7).
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REAETVRIEIM  JES Procedure

EM+JES Scheme
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Jet Energy Scale JES Uncertainty

Evaluating the EM+JES

» overall strategy: evaluate the JES by factorizing the components of EM+JES, and
verifying that the Monte Carlo description of each feature in the data is correct

the pileup correction is totally data-driven, so the correction and uncertainty are both derived from
collision data
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REANERIEILE  JES Uncertainty

Evaluating the EM+JES

» overall strategy: evaluate the JES by factorizing the components of EM+JES, and
verifying that the Monte Carlo description of each feature in the data is correct

> so the role of the in situ measurements in setting the scale is to provide systematic
uncertainties

in situ measurement JES uncertainty component
E/p single particle response | central calorimeter response

dijet relative calibration extrapolation to endcap and
forward region

1

(E) oney & track-jets multiple interactions

the pileup correction is totally data-driven, so the correction and uncertainty are both derived from
collision data
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REANERIEILE  JES Uncertainty

Single Particle Response - £E/p (validate C(E,n) in barrel)

» use pseudo experiments in Monte Carlo to extrapolate single
particle response uncertainty to jet response uncertainty
> translation is non-trivial, but exhaustively cross-checked:

1. threshold effects due to noise suppression,
2. fragmentation model and soft physics

» E/p measurements for charged hadrons with p < 20 GeV
> for particles with 20 < p < 350 GeV, use CTB measurements
» conservatively add 20% uncertainty for neutral hadron component
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Jet Energy Scale [ISJUIIIEILTN

Single Particle Response - £E/p (validate C(E,n) in barrel)

» use pseudo experiments in Monte Carlo to extrapolate single
particle response uncertainty to jet response uncertainty
> translation is non-trivial, but exhaustively cross-checked:

1. threshold effects due to noise suppression,
2. fragmentation model and soft physics

» E/p measurements for charged hadrons with p < 20 GeV
> for particles with 20 < p < 350 GeV, use CTB measurements
» conservatively add 20% uncertainty for neutral hadron component

E/p analysis:
> select events using minimum bias trigger, using ~ 0.9pb™! of 7
TeV data
> 20M minimum bias events in Pythia
> collect isolated tracks (AR > 0.4) with pr > 2 GeV?

» considered systematics: E/p background, CTB — in situ, EM
scale, detector simulation

?for particles with lower pr, data collected at 900 GeV was used in analagous way
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Jet Energy Scale JES Uncertainty

Single Particle Response - £E/p (validate C(E,n) in barrel)

. . . . . 0.
» select calorimeter cells in topological clusters, within o

AR < 0.27 of extrapolated track at each layer
» neutral background measured by looking in annulus 0.06

0.1 < R < 0.2 around the axis for MIP’s in the EM
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Jet Energy Scale JES Uncertainty

Single Particle Response - £E/p (validate C(E,n) in barrel)

o
©

» select calorimeter cells in topological clusters, within & T .~ ]
0o 1
AR < 0.2 of extrapolated track at each layer Q7L Tt Data2010.Lseou! b
. . £ [ Pythia ATLAS MC10 4
» neutral background measured by looking in annulus [ sysemato unceniny m
0.1 < R < 0.2 around the axis for MIP's in the EM 0.6~ B
calorimeter (EfAp/p > 0.4 & E2i} < 1 GeV) r 1
» discrepency between MC & data at 7 TeV indicates 051 o 7
mismodeling of soft QCD 5 - ]
0.4 - -
» difference between MC & data (right), and r 1
uncertainties on E/p measurement propagated to jet 03- ATLAS Preliminary -]
response (below) = — ’
S 11 B
® E ey —— — ) I
2 E 03<p<08 antik, R=0.6, TopoCluster 7 = =1
S 1.03f ] - ==
73 E ]
S q02F ]
2 £ 3 0.9 -
5 101 ] ‘
15 L ] 1 0
% 1B d = plGeV]
8 ggor Tty E
(] E ]
2 E 1
T o0.98f s
[] = E
0'975 ATLAS Preliminary 3
£ I

| E
20 30 100 200 1000 2000
jetp, [GeV] 15/43



Jet Energy Scale JES Uncertainty

Evaluating the EM+JES

» overall strategy: evaluate the JES by roughly factorizing the components of
EM+JES, and verifying that the Monte Carlo description of each feature in the data
is correct

» thus, the role of the in situ measurements in setting the scale is to provide
systematic uncertainties

in situ measurement JES uncertainty component
E /p single particle response | central calorimeter response

dijet relative calibration extrapolation to endcap and
forward region

1

(E) ey & track-jets multiple interactions

the pileup correction is totally data-driven, so the correction and uncertainty are both derived from

collision data
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JES Uncertainty

Jet Energy Scale

n Intercalibration (validate C(E,7) in endcap)

> for jets in |n| > 0.8, the central results are
extrapolated using dijet balance
> CTB included only barrel Tile calorimeter
> better knowledge of central geometry
> use matrix method to couple all regions
> improves statistics since o falls steeply with An

A - _Propr
% (P’T + P’T)
2+ (Aj) o
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Jet Energy Scale JES Uncertainty

n Intercalibration (validate C(E,7) in endcap)

> for jets in |n| > 0.8, the central results are
extrapolated using dijet balance
> CTB included only barrel Tile calorimeter
> better knowledge of central geometry
» use matrix method to couple all regions
> improves statistics since o falls steeply with An

1 2
5= (ap (@ R~ ) +x(e) o
; ARU ’ ’ A — plT - p’T
% (P'—r + P’T)
» minimze S subject to constraint that 2— (A a

<a>n<048 =1 Ry = =

> vyields coefficients a(pr)|, = A
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JES Uncertainty

Jet Energy Scale

n Intercalibration (validate C(E,7) in endcap)

> for jets in |n| > 0.8, the central results are
extrapolated using dijet balance
> CTB included only barrel Tile calorimeter
> better knowledge of central geometry
» use matrix method to couple all regions
> improves statistics since o falls steeply with An

1 2

5= (ap (@ R~ ) +x(e) o
% (P'—r + P’T)

» minimze S subject to constraint that 2—(Aj))

(@)ycos =1 Ri = 27 (As) oy

> vyields coefficients a(pr)|, = A

n analysis
> use combination of minimum bias and jet triggers for different pr regions

> require Ag(j1,)2) > 2.6, p’73- < max(0.15 pr,7 GeV)
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Jet Energy Scale JES Uncertainty

n Intercalibration (validate C(E,n) in endcap)
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» puzzling inconsistency between Monte Carlo
generators
> compare Herwig++, Alpgen (cluster model,
2 — N) to Pythia and Perugia tune (2 — 2,
Lund string model)
> effect is strongest in forward region, at low prt
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REANERIEILE  JES Uncertainty

n Intercalibration (validate C(E,n) in endcap)
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Jet Energy Scale JES Uncertainty

Evaluating the EM+JES

» overall strategy: evaluate the JES by roughly factorizing the components of
EM+JES, and verifying that the Monte Carlo description of each feature in the data
is correct

» thus, the role of the in situ measurements in setting the scale is to provide
systematic uncertainties

in situ measurement JES uncertainty component
E /p single particle response | central calorimeter response

dijet relative calibration extrapolation to endcap and
forward region

(E) tomer & track-jets multiple interactions!

the pileup correction is totally data-driven, so the correction and uncertainty are both derived from
collision data
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Jet Energy Scale JES Uncertainty

Pileup Correction (derive O)

Offset analysis

» L1 jet trigger, only subleading jets are used to
avoid trigger bias
» count Npy using vertices near beam line with
NPZ>150 MeV >5
tri —
» two methods for estimating pileup contribution

1. tower-based offset:

Ofetltower("% Npv) = Otower(n, Npv) - <,\H§.<e;twer>77
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Jet Energy Scale JES Uncertainty

Pileup Correction (derive O)

Offset analysis

» L1 jet trigger, only subleading jets are used to
avoid trigger bias
» count Npy using vertices near beam line with
N£Z>150 MeV 5 g
» two methods for estimating pileup contribution
1. tower-based offset:
C)jet tower(rlw NPV) = Omwef(’]: NPV) . <N£\t/ver>n
2. track < calorimeter jet comparison
. o
Ojet|track(777 NPV) = <EJ7€t(777 NPV‘pE]Cac jet)> -

<E¢t(777 Npy = 1| e

technique | systematic uncertainty
tower 26% (~)
track jet 34% (~)

)

T
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REANERIEILE  JES Uncertainty

Evaluating the EM+JES

» overall strategy: evaluate the JES by roughly factorizing the components of
EM+JES, and verifying that the Monte Carlo description of each feature in the data
is correct

> thus, the role of the in situ measurements in setting the scale is to provide
systematic uncertainties

in situ measurement JES uncertainty component
E /p single particle response | central calorimeter response

dijet relative calibration extrapolation to endcap and
forward region

(E) toer & track-jets multiple interactions®

> further, we validate the uncertainty using various other measurements: v + jet,
QCD multijet balancing, and relative track < calorimeter jet comparisons

the pileup correction is totally data-driven, so the correction and uncertainty are both derived from
collision data
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Jet Energy Scale [ENISSAVEIIREVN
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REREEAEIC  JES Validation
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Monte Carlo : Data comparison for MPF and direct balance, versus p;’.
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REREEAEIC  JES Validation

QCD Multijet Balancing

> extrapolate v + jet to high pr using events
where a high pr jet recoils against an N > 1 jet

System " py Leading Jet
m(§_>1-1577uu“‘H‘HHUH‘Uéa‘m‘”‘wé‘u“Huuumu‘i X
C Total Statistical+Systematic Uncertainty |
> [ PYTHIA-MC10 Total Systematic Uncertainty ]
> r anti-k R=0.6 N Analysis+Modeling Systematic Uncertainty |
= 1= [ Recoll JES Systematic Uncertainty -
§ C m py non-leading jets
0 1,05~
= L Py Recoil System
B S
0'95; ATLAS Preliminary E
r \s=7TeV ]
0.9 JLar=38pb" 4
P I AT IR PP IR PRI P I
100 200 300 400 500 600 700 800 900 1000

RecoHpT(GeV)

multijet analysis
> Ad(lead, recoil) > m — 0.3, A¢(lead, closest recoil) = 3 > 1
> require A = p"%/ps-ew” < 0.6
» exhaustive list of systematics: recoil JES, ISR & FSR, nearby jets, flavor
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REREEAEIC  JES Validation

Track < Calorimeter Jet

Despite uncertainties in jet fragmentation, Trackjet analysis
ratio of charged to total energy is highly > construct jets from selected tracks and
constrained. match to jets from calorimeter clusters

> compare distribution of pi% /p%¥’ with
Pythia dijet simulation
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Conclusions
JES Summary

1.14 T —

1.12— .
11Le Multi-jet ATLAS Preliminary
“'['o Track-jet

1.08/—a v -jet direct balance 7
1.06—2 Y -jet MPF —

Data/MC

1.04— l —
1.02— e +""* —
1 1 '_4_' ——= .., *01—1—-+
098 . :é:*j: T ++HH .
0.96— |
0.94— —
0.92— JES uncertainty anti-k, R=0.6, EM+JES —
0.9 L L L L | L L L L M|
102 10°
pF [GeV]

JES uncertainty for jets in barrel region, with Npy =1
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Conclusions

Summary

1. using a scheme based on single particle response, ATLAS has developed a robust
2-4% absolute JES in the central barrel
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Conclusions

Summary

1. using a scheme based on single particle response, ATLAS has developed a robust
2-4% absolute JES in the central barrel

2. multiple, independent cross-checks confirm JES

> vy + jet
> track <> calorimeter jet comparison
> multi-jet balancing
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Conclusions

Summary

1. using a scheme based on single particle response, ATLAS has developed a robust
2-4% absolute JES in the central barrel

2. multiple, independent cross-checks confirm JES

> vy + jet
> track <> calorimeter jet comparison
> multi-jet balancing

3. local calibration schemes are being commissioned

> results for local and sequential schemes already tested at jet level, and show good
resolution improvement

4. in situ techniques will improve scale with increased statistics
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Extra Slides

Topological Clustering Algorithm

1. select cells with |E|/o > 4 as seed cells
2. collect all cells with |E|/o > 2 that are connected to seed cells

3. add in all neighbouring cells (0 — o)

35/43



Extra Slides Single Particle Response

Selection of Cone Radius for E/p
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R

coll
AR < 0.2 collects ~ 90% of deposited energy but

is simultaneously unaffected by nearby particle showers
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Components of JES Uncertainty from Single Particle Response

relative calorimeter jet response

relative calorimeter jet response

Extra Slides

Single Particle Response
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Extra Slides Single Particle Response

Components of JES Uncertainty from Single Particle Response
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[STER M £/ p and JES

Components of JES Uncertainty in 0.3 <7 < 0.8
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Extra Slides Pileup Uncertainty

Relative Uncertainty for Jets in Events with Pileup
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Comparison of Matrix Solution to Reference Method
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Compare relative calibration coefficients for the case where only events are used in which a jet is in the central

n < 0.8 and a jet is in a probe region in 7 > 0.8, compared to the method where all events are used.
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Extra Plots
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Validating JES in n with MPF (left) and other calibration scheme, based on local hadronic response correction
(right).
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