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ABSTRACT

Based on a self-consistent solution of the Dyson
equation at high temperature, we show that gluons
acquire a magnetic mass-squared of order g3T2.
This implies that colour magnetic fields are screened,
and that a semi-perturbative calculation of the
thermodynamic potential to all orders in g is

possible.
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In recent papers it was pointed cut that the thermodynamic potential
of QCD at high temperature may not be perturbatively calculable beycond the fifth
power of the coupling constant. This situation is almost without precedent in
quantum field theory, The origin of this problem is the fact that gluons acquire
an electric mass-squared of order ngz whereas the magnetic mass-squared is zero
to this order. If the magnetic mass-squared was strictly zero then the resulting
infra-red divergence would cause the coefficient of the g8T* term in the thermo-
dynamic potential to be infinite, unless unexpected cancellations occur, On the
other hand if the magnetic mass-squared was of order g*T? then the coefficient
would)be finite but uncalculable since an infinite number of diagrams would coentri-
2

bute™'., 1In this letter we will show that this infra-red problem cures itself by

generating a non-perturbative magnetic mass-squared of order g¥T?,

We study a pure SU(N} gauge theory since even massless quarks should
not influence the infra-red behaviour of the gluon propagator. We work in a phy-
sical gauge, the temporal axial gauge with A; z 0, The most general form of the
gluon propagator is the same as in the vacuum, namely

o = Loy = L, = 0 (1}

/

(5o kk). ok Ry

oI = F:_"; S‘.j 7 T kie 6 kP k. (2)
The metric is Euclidean. The functicns to be determined are
Flhe, IR) = & T, (k,, IK])
k R !
6k k)= 2T (koI5 - —i;-.-;m.,(h, k1) .

where ﬁuv is the gluon self-energy. The advantage of working in this gauge is

that there are only two independent functions of two variables each. This contrasts
with the Landau gauge at finite temperature wnhich has two functions for the gluon
propagator and another for the ghost, A general covariant gauge, such as the

Feynman gauge, has an additional third function for the gluon propagator3). Further-
more our gauge does nct have any of the complications displayed by the Coulomb

gaugeq)'S).
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At first sight the singularity in Eq. (2) at ky = 0 would seem to be
disastrous since Lk, = 2mnT Is discrete. However, the same principal value des-
criptions) which is neceasary and sufficient at T = 0 is valid alsc at T £ ©C
so that no new temperature-induced divergences appear, This can be seen by expres-

sing the frequency sum in terms of contour integrals, In Minkowski space, we

haveT) ; ob
-y
P.V. T Z 'i-;:. ‘F(k,,:&irnT;) = P v Z_; o“lo 'F(L)
Nz ~ o o
ioh + &
+ —= d ko flke) + f£(-ks)
211‘:' . k:- exf(h,/T’) - I .
e (4)

Finite temperature effects arise from the second integral, which is normally
evaluated by encircling the peles of the integrand in the right half-plane and
by calculating the residues, The pole at Kk, = O 1is outside the contour of

inftegration.

We are interested in the static infra-red limit of F and G, ky = O
and 1k| + 0 M=3) It can be shown that the static limits of F and G are
directly associated with the electric and magnetic fields, respectively. To cal-
culate the limits of these two functions we set up the ¢ne-loop self-consistent
approximation to the full Dyson equation shown in the Figure, Clearly a self-
consistent equaticon is necessary to determine the non-perturbative effects we are
looking for. The one-loop approximation should be sufficient because, at high
temperature, the effective coupling constant g(T) is approaching zerc. We also
note that, although the gluon propagator is in general gauge-variant, we do not
viclate gauge invariance because we are doing a self-consistent loop expansion

with a fixed number of loopsS),

After some algebra, the diagrams of the Figure give us

a 3
mg = F(o,0 = 3 NT,,Z S(n} k) (k’fF)

a _ ‘fh: a k* A

(5)
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(6]

In the above integrands, F = Flkg,|k|) and G = G(ko,|k|). At zero temperature

we must have mél = méag = 0 as required by gauge invariance. We can perform a

lowest order perturbative analysis of these equations by setting F =G =0 in

the integrand. The result is the same as in the covariant gauges,

> _ -L Pl —_ R
my = 7 g N 1T, (1)
b N
mma, = O -
(8)

One weould at first think that corrections to these values of mél and
méag would be of order g*T? and would be obtained by expanding the integrands
in Eqs. (5) and (6) to first order in F and G. This is not the case, however,
pecause of the resulting divergence of the integrand at k = 0. To alleviate
this problem and to pick out the dominant non-perturbative effect as g~ 0, we

write:

!
i J -
| - —— 4 2 - 2
— = Flk,, Ikl k> + Ffo,o)]
k> + F (ko 1%1) h*+ F{0,0) k¢ Pk, 12 © )

The first term on the right-hand side picks out the dominant infra-red behaviour,
The second term contributes to higher order. Using this expansion and the lowest
order results for F{0,0) and G(0,0) in the right-hand side of Eq. (5), we
obtain

me -;—fNT’* B le1r (——3 N) T

e

n

(10)

The znalysis of Eq. (6) is a little more subtle, however, because of the
last term in the integrand. This term comes from the first diagram of the Figure,

and corresponds to the coupling between transverse and longitudinal
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oscillations in the plasma. For this term one cannot neglect the momentum
dependence of F and G because they are different. A careful, but rather
lengthy, analysis shows that to order g inclusive this term behaves as
X2/k3k% and not as -%2/K2(kZ+F(0,0)). We then find that

3 l 2 3/a a
- A
mma,' = ‘ (3 9 N) T .
T {(11)
This‘is the main result of our letter.
9),1G) .
Recently there have appeared two complementary papers which cal-

culate the magnetic mass at high temperature on the lattice using Monte Carlo

technigues, The first paper finds a result consistent with 0.24 ng, although

with Monte Carlo techniques it would be difficult to distinguish between that

and ¢ g%T. The second paper makes no*assumption concerning the g dependence,
)

but only calculates at one temperature ., They find mmag = (0.79£0.08)T,

whereas for SU(2), Eq. (11} predicts mmag = 0.42 T at the appropriate value
of g. This factor of two difference is not surprising because g2 =z 2,959 may

not be small encugh to neglect higher order corrections to Eg. (11),

Further details of our calculations, as well as an analysis of the

beta function at finite temperature, will be presented in a larger publication.
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The Mcnte Carlc results are consistent with each other in their domain of
overlap. '
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FIGURE CAPTION

The one~loop self-consistent expression for the gluon self-energy in

temporal axial gauge.
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