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ABSTRACT

An expression for the asymptotic level density of interacting
quantum fields is formulated in terms of the functional inte-
gral. The energy, the momentum, the angular momentum, and any
conserved internal quantum numbers, may be given definitely
prescribed values. Of particular interest is the asymptotic
mass spectrum of the bag medel, It is shown that interactions,
treated perturbatively, do not change the form of the asymp-
totic mass spectrum. Specifying the values of internal quantum
numbers, such as baryon number, leads to results which are

consistent with the statistical bootstrap model.
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INTRODUCTION

In the criginal paper on the MIT bag modell) the remarkable observation was
made that the asymptotic mass spectrum grows exponentially with the mass of the
hadronic bag. This is a conseguence of a particular feature of the model, that
the mass of a bag is properticnal to its time-averaged volume. When energy is
pumped into the bag, the bag boils away surrounding vacuum, making new partons
rather than raising the average kinetic energy of the partons in the bag. This
exponential rise and the associated limiting temperature of partons in the bag

are reminiscent of the statistical bootstrap model of hadronsa). Indeed, the

inverse slope of the exponential in the bag model, To' is of the order of Bl/q,
B being the bag constant. With B ~ (150 MeV)", TO comes out very close in
value to Hagedorn's limiting temperature of 160 MeV. Subsequently it was argued
that this is not a limiting temperature after all, rather it is the temperature
of a phase transition3], specifically from a gas of hadronic resonances to a gas
of free gquarks and gluonsq). Recently the pre-exponential factor was calculated

for the bag mcdel with the resultS)

pim) ~ ¢ m exP(M/’l;). (1.1)

However, it was proven, at least in the context of the bag model, that TO
cannot be the temperature of a phase transiticn from a gas of rescnances to a gas

of free partons; that must happen at a higher temperature, TC > TO.

The result (1.1) was derived in the context of the micro-canonical ensemble
(with strict momentum conservation) for massless, non-interacting partons with
arbitrary spin and statistics. It is Jjust a sum over n—body'phase space, from
n =2 to e, with specified total energy and momentum6). The effect of the
latter constraints is crucial; without them one would obtain a different {incorrect)

pre-exponential factor.

The question naturally arises as to how to include interactions among the
partons. In fact, it is easy to write some formulae. The level density is

defined as

(o(E) = %,S(E‘Ev). | : (1.2)

The prime on the sum indicates that the sum is restricted to those states which,
for example, have zero total momentum and @ units of electric charge. The
restriction depends upon the system whose level density one is interested in.

The restriction on the sum may be removed if Kronecker deltas are used,



(o(E) = % g(E—Ep) SP’w‘_" g {1.3)

q.,Q

In this paper we shall be interested in placing fields with energy E in a
volume V, and calculating the level density in the limit E - ©, V » oo,
E/V finite. In this case (1.3) can be written as

p(eY) - E\j_f Te S(H-E) S(F) S0, .

Here H is the Hamiltonian operator, P is the momentum operator, and g is
the charge operator. In general, we may have one Kronecker delta for each of
the conserved, mutually commuting, and additive charge cperators of' the system
under consideration. Angular momentum and non-Abelian symmetries require a

special discussion but, as shewn later, they can be handled with ease with the

methods used in this paper,

The purpose of this paper is te demonstrate that (1.4) can be evaluated using
the formalism and approximation techniques of relativistic gquantum field theory.
We shall mostly be interested in the applications tc hadronic physics and the
bag model. However, it should be of wider application to classical or guantum

fields when the effects of constrainis are important,

The plan of the paper is as follows, In Section 2 we consider a self-
interacting neutral scalar field. Using field theory techniques we write the
level density as the Laplace transform of g functional integral over the scalar
field. A perturbative evaluation leads to a bag model mass spectrum of the form
of {1.1} where now ¢ and To depend on the quartic coupling constant, In
Section 3 we consider the effects of constraints on the internal symmetry quantum
numbers of massless non-interacting fermions. We show that the bag model asymp-
totic mass spectrum, with fixed baryon number, has precisely the form predicted
by the statistical bootstrap model. We also consider the effect of introducing
an internal SU(2) symmetry and restricting the states to SU{2) singlets. We

close with some comments in Section 4.



INTERACTIONS

For simplicity, consider a theory with no conserved charges, or where we
sum over states of all charge. Then (l.4) can be written as a Laplace transform

of a partition function 2Z,

Aot + £
( apa’y exp(nE) Z(8,5),

—Acd + £

(O (E) (QTTA)L'

{2.1)

Z(BJ_):) = Ty exp(“BH + Xf—;)

For example, with a Lagrangian density of

L = 3 WP - Ule) (2.2)

we know that the Hamiltonian density and momentum density are given by

N = +T"+ 4(78)* + U(e)

-

70

{2.3)

TVe.

il

Bere 7 is the field momentum conjugate to ¢. First we make the convenient

change of wvariable K > BX, Then we write Z in path integral formT)_g)

Z = N § [a6] { [an] ex,,{p gdx.

Perto(;#c

[m(s 28+ 5-To) - 47 - i(wf‘-uw)]},

4}

N is an (infinite) normalization constant, the integration in ¢ is restricted

to paths pericdic in T of period B, and the integration in 7 is unrestricted.



If we were calculating the grand cancnical partition function X would be set

te zero and B would be the inverse temperature. The fact that we will eventually
do a contour integral over fpcssibly) imaginary values of 8 1is no problem; we
merely analytically continue. Since the 1 integration in (2.4) is Gaussian it

can be performed directly to yieldg)

f?
Z = N(8) §[de] exp{ §av ax [-5( 5
13

P eriedic 0

i3.7e) - (7o) -u@]] e

Here N'(B) is a new, B dependent, normalization whose B dependence has

been computedg).

The functional integral can be done exactly only when U{¢$) 1is no more than
quadratic in ¢, 1i.e., for free fields. Therefore, one can develop the usual

perturbation expansion in powers of the interaction,

L. Z = L Z, + LZI)
I Z, = A NCB) L { SLadl exr(5)]

ob \ n (2.6)
Z ';;; 5[d¢} QKP(So) g}

j;,\zlr;ﬁn{l-*‘ i

S(d‘ﬂ exf(So) :

Here S0 is that part of the action which is quadratic in the fields, SI is
the rest. Since we are dealing with relativistic interacting quantum fields we
must also deal with rencrmalization. As in the case of field theories at finite

temperaturelo)’ll)

we do not expect to find divergences in the system not already
present in the vacuum (B -+ ¢, X + 0).. Therefore, the usual vacuum renormaliza-

tion schemes should be sufficient to regulate the theory. We have not attempted



to prove this in general. We have done a two loop calculation, presented below,
in which nc g or K dependent infinities arose. We can also present the
following naive argument. Finite @ is like finite temperature, Finite tempera-
ture does not affect ultra-viclet divergences, and often softens infra-red diver=
gences due to the screening effect. Finite K is due to the momentum constraint.
Constraining the total momentum of the state should not introduce any new infini-

ties; at best it may even serve to soften them.

As an example, consider the potential U(¢) = g%6*. The 1n z, can be

evaluated in the usual wayg)'la) (wn = 2m/B).

-t

bz = L N(R) - % A dit [(wni 3 R) e R
L N(B) - AT [ (i TR

L avE (SRt k(i)
g

Nz~

Vv
90 8° (1-32)" -

In (2.7) we have thrown away an infinite constant which is independent of £

and K, as well as the infinite zero point energy of the field., If we set T=0
we recognize {ln ZO)/BV as the pressure of a non-interacting gas of massless
bosons. Notice that (2.7) was calculated assuming that V » =, Surface and

higher order corrections have not been included.

The order g? contribution to 1n ZI is the figure-eight diagram shown
There zre the usual finite temperature Feynman rules with the only

in Fig. 1.
change being a K dependent propagator.
3), ! 2
‘ _ 2 A _‘?'__--—-—-—:—:‘"—_-T]
ﬁ"za = -39 Gv[ﬂg (AH)Q(W.,'X)"');*'&A

. (2.8)
+ subTractions,



The subtractions [see, for example, Ref. ll)] Just cancel the infinities in the

quantity in brackets so that

9"V
- G g B?(I_S’A)A . (2.9)

1

In Z,

Hence,

Ask+ €
3
. (am 3
R G
—ieh £

where we have scaled i - X/B and

V ,r:l 2
f= BE+ L Z = NF + £ (7’5 "—%). (2.11)

(p*-33"

With g2 = 0 we recognize (2.10) and (2,11) as the same expression derived on

the basis of single particle phase space6)’5).

To evaluate (2.10) asymptotically, ie., as V+ =, E+ », E/V fixed, we

use the saddle point, or stationary phase, approximation. Then

(E) ~ (a")s 1 exp(f) (2.12)
F v (am® m )

which is evaluated at the saddle point determined by the equations

-ELf = 0)
I} (2.13)

V.f = o.



These give, as the saddle point,

3 =0,
(2.14)
4 _ 3V(_"_Tj - 1)
2 3 90 yg 7 -

The det is the 4 x 4 determinant of the second order derivatives of f with
respect to B and );. It factorizes into (52£/382)(d%f/a7%)? Dbecause of

rotational invariance. Putting it all together results in

i0

F(E) 3.3% (1 J:); v ¢ f("’BE)-@-lS)

Q0 qg

where g is given by (2.14).

In the bag model the tctal energy is not E but is m = E + BV, angd the
equilibrium value of the volume is V = m/4B l). Using these relationships among

E, m and V in (2.15) gives us the asymptotic level density for hadrons in the
bag model.

4 7’ _is 9 "2 =3
()(Vn) ~ q§-3ya(| 2 TT-*)B " exf(ﬂ”")J
m = P
y _ L - _sz : 33- (2.16)
€ - B (‘io Gy /-

Notice that this has the same form as in the case of no interactions, namely
¢cm—3exp(8m). The difference now is that ¢ and B depend on g?. This result
is quite clear. If we compute a level density, and then turn on the interactions
perturbatively, the positioning of the energy levels will change a bit but the
total number of levels will not. We expect this to remain true to all orders of
perturbation theory, although we have not proven it. We suspect that, if Pth(e}
is the thermal pressure of the bosons calculated in the grand canonical ensemble,
then R will be determined by the balance of pressurel)’S)



B = P, (B)

and
3 -2 -3
90 Y4 ]
o(m) ~ __‘i_ff_; [—1-7__" R P%(B) B m exp(fAm)
yg. 37
If we choose U(g) = % M?¢? then we have a non-interacting but massive

boson. The Z can be evaluated exactly. The result for the bag model is

y y
P * -3
f>( ha) ~ 287 e 2P 2 P exp (/3543%
G (BP) (—5-5) (2.17)

where

P = 5 A% k k' ’
(21)° 3w exp(Be) —|

v (2.18}
W = (kl‘* M&) 2-.

The saddle point is found by setting the thermal pressure of bosons equal to the
bag pressure, P(R,M) = B, Thus, the introduction of an intrinsie energy scale,

namely the boson mass M, does not change the asymptotic form of the mass spectrum.

INTERNAL SYMMETRIES

Having estabiished that perturbative interactions do not change the analytic
Torm of the asymptotic level density, let us consider what happens when we
constrain the internal quantum numbers of the states. For simplicity, we shall
considér only massless, nbn—interacting fermion fields. We could work directly

6) for these examples. However, the

in fterms of the single particle phase space
derivations and calculations are simpler in terms of the functional integral
meﬁhod; especially if we were interested in states of fixed angular momentﬁm.
First we will consider a global U{l) "baryon" symmetry and then a global SU(2)

"colour" symmetry.



With a Lagrangian density of
5( - I?T B ;j LP , (3.1)
and a conserved baryon current of
J-A - "L'Fb,a LFJ (3.2)
we have the level density given by (1.4), where the charge operater is
6=b =TIV, (3.3)
Vv

and where the total baryon number of the state is Q = b, Writing the energy,
momentum and baryen number constraints in integral representation, and writing

the trace as a path integral over anti-periodic Dirac fields, we arrive at
Ach+ &

PCE, b) = (tr)}@?;l_)_‘* w 5 dB d’y B exp(RE):
o ib+E
’ g dm exp(~+pBmb) Z}
-

{3.4)

B —
Z = Nf[dq’][d‘,“] exf{ gdtydjx \-,/[,A,Z‘ +
0 174 .
c PN T il )

Notice that wu is like an imaginary chemical potential which ranges from -m/B
to m/8 because of the discreteness of baryon number. Note also we have scaled

X - BK and p -+ Ry for convenience.

The partition function, being gquadratic in the fields, can now be evaluated

in the usual way
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InZ = U IAN(B) 4 I dt [ Y2520 33T vim) i ] F]
= ~4h N (B)+ Ty b [1*(-2E, -3k vim)Tl]

{3.5)
Here En = (én + 1)n/8. The =4 appears above because for fermions there are

four independent degrees of freedom and a minus sign for anti-pericdicity.
Carrying out the trace and dropping the zero point energy and an infinite constant,

we find

Toartptute Lopd)

"4 ] 4
L‘Z:H_—_——ﬂ-i“)* I(l/t T

an® n?(y (3.6)

If we set A = O and let W+ iy we would recognize (ln Z)/RV as the pressure
of a gas of massless non-interacting fermions. Making the change cof variables

K + K/B and py » -iy/8 we have

At E
3
p(E, b)= B0 L fana)fa‘ﬂ exp (f),
’ »/ (a:.A
-—a bt E - AT
(3.7}
- _ b + L’ fl - Yy 2 2. a; B
f=RE ~m Tt (3237 [/4 * 27, + Z ”q].

To evaluate (3.7) asymptotically we use the saddle point approximation. The
equations which determine the saddle point are



1l

- d

A= 0,

E _—-'—-—-[,u +2ﬁ‘a,¢4"+iﬁ“q} (3.8)
v T e , '
Lo [l

vV - e

In fact, (3.8) is just the usuzl expression for the energy density and baryon
density in terms of the "temperature™ g-! and "chemical potential" RAu. Unfor-
tunately, we cannot solve for p(E/V, ©/V) and B(E/V, b/V) in closed form.
Therefore, we restrict our attention to small values of b©/V and determine the

saddle pcint approximately as

&

(3.9)

74

'’

/‘4:: BB —_— .
v

Evaluating (3.7) in the context of the bag model (m = 4BV = E + BV} glves

a  _gy 7. 2
2 /3 Y 3T b
(0("", b) ~ An ('-'lr" f g exp(ﬂm 30 ﬁ,,,) (3.10)

lo .

We see that the mass spectrum is cut off with a Gaussizn in the baryon number.

Amazingly this has precisely the same analytic form as found in the statistical

3)! Summing over all baryon numbers gives back the pre-exponential

power of m~?%, as well as the correct absolute normalizationS).

bootstrap modell

Next, let us censider what happens when our massless quarks obey a global
3U{2) Tcolour" symmetry. We will require that the hadronic states all be colour

singlets. How is that accomplished? The conserved current is

T = oyt V¥ (3.11)

a .

We cannct specify the values of all three charges simultaneously since they do

not commute. We can specify Q2% and Q3. However, we cannot follow the usual



1z

statistical mechanical procedure, i.,e., introduce a chemical potential for 62
and then take the Laplace transform, since 52 is not an additive observable,
14)

It was noticed, in the context of the angular momentum of nuclear states .

that

(o(m) Q) = F("’b QJ:Q) - /0(""’} QJ = (P*f), (3.12)

That is, the number of states with total charge Q 1is equal to the difference
between the number of states with third component of charge Q and Q + 1,
Therefore, if we wish to compute the level density for cclour singlet states of
3U(2) it suffices to calculate the level density for fixed Qi equal to zero
and one. This evaluation is nearly identical to the case of fixed baryon number.

It leads to

“‘) Tt AW (;) * %‘ ﬁql (3.13)

\'4
=z =
b oo (n RISE

and to

33 - 5/a - ?/QL 1Y > .
(J(MQ)A-Q\u ("fﬂ f m e"f’(ﬁm—J——?‘L))

Ny [3rn
(3.14)
where the saddle point value of 8 1is
>
Gq = T (3.15)

90 B

Applying this to (3.12) gives the singlet level density

. \ a :73 - ?41 -9/
ps(m) = p(m, @=0) ~ 6w (5F) o exp (),

{3.16)

L I T T T T e T Ry T R P R TIPS NI
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Notice that the power of m is reduced by 3/2 units, whereas the power was
reduced by 1/2 unit in the case of fixed baryon number., This is in agreement

with cbservations made in the statistical bootstrap modell3)

that restricting
each symmetry reduces the power by 1/2 unit. This is in spite of the fact that
the three generators of SU(2) do not commute.

The group thecretical techniques to generalize (3.12) to any internal

15),16)

symmetry group have been given We refer the interested reader to those

papers.

CONCLUSIONS

We have derived an expression for the asymptotic level density of interacting
relativistic quantum fields, obeying constraints in a very large volume. This
expression may be evaluated using the functional integral and the associated
approximations and techniques, In the context of the bag model we showed that
perturbative interactions do not change the analytic structure of the asympfotic
mass spectrum. Restricting the baryon numpber to a specified value leads to
results identical in form to the results of the statistical bootstrap medel. The
restriction of states to SU(2) singlets was also carried oub. Restricting the
states to a fixed value of the total angular momentum, with or without interactions

among the partons, sheould be a straightforward exercise.

In this paper we have imposed periodic boundary conditions on the bosonic
fields and anti-periodic boundary conditions on the fermionic fields. These
are not the correct boundary conditions for the bag model. However, different
boundary conditions usually lead to the same bulk properties of the system, only
the surface terms are different. Therefore, we should expect our asymptotic

estimates of the level density of the bag model to remain valid.

This statement needs a little discussion for the case of a non-Abelian Sauge
symmetry. The bag model boundary conditions require that all states be colour
singlets. If we impose (anti)periodic boundary conditions and do coupling constant
perturbation theory non-singlet states will contribute to the level density. If
we could evaluate Z exactly then we would expect the non-singlet states to have
infinite energy and so not contribute to the level density. This is the expected
colour confinement, As a practical matter we could pick out by hand (with
Kronecker deltas) only the colour singlet states and do perturbation theory

about . them.
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FIGURE CAPTION

The order g? contribution to 1n Zp.
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