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Abstract
These lectures are directed at a level suitable for graduate students in ex-
perimental and theoretical High Energy Physics. They are intended to give
an introduction to the theory and phenomenology of quantum chromody-
namics (QCD) as it is used in collider physics applications. The aim is to
bring the reader to a level where informed decisions can be made concern-
ing different approaches and their uncertainties. The material is divided into
four main areas: 1) fundamentals, 2) perturbative QCD, 3) soft QCD, and
4) Monte Carlo event generators.
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1 Introduction
When probed at very short wavelengths, QCD is essentially a theory of free ‘partons’ — quarks and
gluons — which only scatter off one another through relatively small quantum corrections, that can be
systematically calculated. At longer wavelengths, of order the size of the proton ∼ 1fm = 10−15m,
however, we see strongly bound towers of hadron resonances emerge, with string-like potentials build-
ing up if we try to separate their partonic constituents. Due to our inability to solve strongly coupled
field theories, QCD is therefore still only partially solved. Nonetheless, all its features, across all
distance scales, are believed to be encoded in a single one-line formula of alluring simplicity; the
Lagrangian of QCD.

The consequence for collider physics is that some parts of QCD can be calculated in terms of
the fundamental parameters of the Lagrangian, whereas others must be expressed through models or
functions whose effective parameters are not a priori calculable but which can be constrained by fits to
data. However, even in the absence of a perturbative expansion, there are still several strong theorems
which hold, and which can be used to give relations between seemingly different processes. (This
is, e.g., the reason it makes sense to constrain parton distribution functions in ep collisions and then
re-use the same ones for pp collisions.) Thus, in the chapters dealing with phenomenological models
we shall emphasize that the loss of a factorized perturbative expansion is not equivalent to a total loss
of predictivity.

An alternative approach would be to give up on calculating QCD altogether and use leptons
instead. Formally, this amounts to summing inclusively over strong-interaction phenomena, when
such are present. While such a strategy might succeed in replacing what we do know about QCD
by “unity”, however, even the most adamant “chromophobe” must acknowledge a few basic facts of
collider physics for the next decade(s): 1) At the Tevatron and LHC, the initial states are unavoidably
hadrons, and hence, at the very least, well-understood and precise parton distribution functions (PDFs)
will be required; 2) high precision will mandate calculations to higher orders in perturbation theory,
which in turn will involve more QCD; 3) the requirement of lepton isolation makes the very definition
of a lepton depend implicitly on QCD, and 4) the rate of jets that are misreconstructed as leptons in the
experiment depends explicitly on it. Finally, 5) though many new-physics signals do give observable
signals in the lepton sector, this is far from guaranteed. It would therefore be unwise not to attempt
to solve QCD to the best of our ability, the better to prepare ourselves for both the largest possible
discovery reach and the highest attainable subsequent precision.

In the following, we shall focus squarely on QCD for mainstream collider physics. This in-
cludes factorization, hard processes, infrared safety, parton showers and matching, event generators,
hadronization, and the so-called underlying event. While not covering everything, hopefully these
topics can also serve at least as stepping stones to more specialized issues that have been left out, such
as heavy flavours or forward physics, or to topics more tangential to other fields, such as lattice QCD
or heavy-ion physics.

1.1 A First Hint of Colour
Looking for new physics, as we do now at the LHC, it is instructive to consider the story of the
discovery of colour. The first hint was arguably the ∆++ baryon, found in 1951 [1]. The title and
part of the abstract from this historical paper are reproduced in figure 1. In the context of the quark
model — which first had to be developed, successively joining together the notions of spin, isospin,
strangeness, and the eightfold way — the flavour and spin content of the ∆++ baryon is:

∣∣∆++
〉

= |u↑ u↑ u↑〉 , (1)
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“[...] It is concluded that the apparently anomalous features of the scattering can be interpreted to
be an indication of a resonant meson-nucleon interaction corresponding to a nucleon isobar with
spin 3

2 , isotopic spin 3
2 , and with an excitation energy of 277 MeV.”

Fig. 1: The title and part of the abstract of the 1951 paper [1] (published in 1952) in which the
discovery of the ∆++ baryon was announced.

clearly a highly symmetric configuration. However, since the ∆++ is a fermion, it must have an over-
all antisymmetric wave function. In 1965, fourteen years after its discovery, this was finally under-
stood by the introduction of colour as a new quantum number associated with the group SU(3) [2, 3].
The ∆++ wave function can now be made antisymmetric by arranging its three quarks antisymmetri-
cally in this new degree of freedom,

∣∣∆++
〉

= εijk |ui↑ uj↑ uk↑〉 , (2)

hence solving the mystery.

More direct experimental tests of the number of colours were provided first by measurements
of the decay width of π0 → γγ decays, which is proportional to N2

C , and later by the famous “R”
ratio in e+e− collisions. Below, in Section 1.2 we shall see how to calculate such colour factors.

1.2 The Lagrangian of QCD
Quantum Chromodynamics is based on the gauge group SU(3), the Special Unitary group in 3 (com-
plex) dimensions. In the context of QCD, we represent this group as a set of unitary 3 × 3 matrices
with determinant one. This is called the adjoint representation and can be used to represent gluons
in colour space. Since there are 9 linearly independent unitary complex matrices, one of which has
determinant −1, there are a total of 8 independent directions in the adjoint colour space, i.e., the glu-
ons are octets. In QCD, these matrices can operate both on each other (gluon self-interactions) and
on a set of complex 3-vectors (the fundamental representation), the latter of which represent quarks in
colour space. The fundamental representation has one linearly independent basis vector per degree of
SU(3), and hence the quarks are triplets.

The Lagrangian of QCD is

L = ψ̄iq(iγ
µ)(Dµ)ijψ

j
q −mqψ̄

i
qψqi −

1

4
F aµνF

aµν , (3)

where ψiq denotes a quark field with colour index i, ψq = (ψqR, ψqG, ψqB)T , γµ is a Dirac matrix that
expresses the vector nature of the strong interaction, with µ being a Lorentz vector index, mq allows
for the possibility of non-zero quark masses (induced by the standard Higgs mechanism or similar),
F aµν is the gluon field strength tensor for a gluon with colour index a (in the adjoint representation,
i.e., a ∈ [1, . . . , 8]), and Dµ is the covariant derivative in QCD,

(Dµ)ij = δij∂µ − igstaijAaµ , (4)

4



A1
µ

ψqR ψqG

∝ − i
2gs ψ̄qR λ1 ψqG

= − i
2gs

(
1 0 0

)



0 1 0
1 0 0
0 0 0







0
1
0




Fig. 2: Illustration of a qqg vertex in QCD, before summing/averaging over colours: a gluon in a state
represented by λ1 interacts with quarks in the states ψqR and ψqG.

with gs the strong coupling (related to αs by g2
s = 4παs; we return to the strong coupling in more

detail below), Aaµ the gluon field with (adjoint-representation) colour index a, and taij proportional to
the hermitean and traceless Gell-Mann matrices of SU(3),

QCD lecture 1 (p. 5)

What is QCD Lagrangian + colour

Quarks — 3 colours: ψa =




ψ1

ψ2

ψ3




Quark part of Lagrangian:

Lq = ψ̄a(iγ
µ∂µδab − gsγ

µtC
abAC

µ − m)ψb

SU(3) local gauge symmetry ↔ 8 (= 32 − 1) generators t1
ab . . . t8

ab

corresponding to 8 gluons A1
µ . . . A8

µ.

A representation is: tA = 1
2λA,

λ1 =

0

@

0 1 0
1 0 0
0 0 0

1

A , λ2 =

0

@

0 −i 0
i 0 0
0 0 0

1

A , λ3 =

0

@

1 0 0
0 −1 0
0 0 0

1

A , λ4 =

0

@

0 0 1
0 0 0
1 0 0

1

A ,

λ5 =

0

@

0 0 −i
0 0 0
i 0 0

1

A , λ6 =

0

@

0 0 0
0 0 1
0 1 0

1

A , λ7 =

0

@

0 0 0
0 0 −i
0 i 0

1

A , λ8 =

0

B

@

1√
3

0 0

0 1√
3

0

0 0 −2√
3

1

C

A
,

. (5)

These generators are just the SU(3) analogs of the Pauli matrices in SU(2). By convention, the
constant of proportionality is normally taken to be1

taij =
1

2
λaij . (6)

This choice in turn determines the normalization of the coupling gs, via equation (4), and fixes the
values of the SU(3) Casimirs and structure constants, to which we return below.

An example of the colour flow for a quark-gluon interaction in colour space is given in fig-
ure 2. Typically, however, we do not measure colour in the final state — instead we average over
all possible incoming colours and sum over all possible outgoing ones, wherefore QCD scattering
amplitudes (squared) in practice always contain sums over quark fields contracted with Gell-Mann
matrices. These contractions in turn produce traces which yield the colour factors that are associated
to each QCD process, and which basically count the number of “paths through colour space” that the
process at hand can take, modulo that the convention choice represented by equation (6) introduces a
“spurious” factor of 2 for each power of the coupling αs, as we shall see2.

A very simple example of a colour factor is given by the decay process Z → qq̄. This vertex
contains a simple δij in colour space; the outgoing quark and antiquark must have identical (anti-)col-

1Another choice that is occasionally (though rarely) seen in the literature is t = λ/
√

2. This gives a more intuitive
colour counting, but since it also implies a different normalization for the coupling and since most text material uses the
convention defined by equation (6), we shall stick to that choice for the remainder of these lectures.

2Again, although one could in principle absorb that factor into a redefinition of the coupling, effectively redefining the
normalization of “unit colour charge”, the standard definition of αs is now so entrenched that alternative choices would be
counter-productive, at least in the context of a supposedly pedagogical review.

5



ours. Squaring the corresponding matrix element and summing over final-state colours yields a colour
factor of

Z → qq̄ :
∑

colours

|M |2 ∝ δijδ∗ji = Tr{δ} = NC = 3 , (7)

since i and j are quark (i.e., 3-dimensional fundamental-representation) indices.

A next-to-simplest example is given by the Drell-Yan process, qq̄ → γ∗/Z, i.e., just a crossing
of the previous one. By crossing symmetry, the squared matrix element, including the colour factor, is
exactly the same as before, but since the quarks are here incoming, we must average rather than sum
over their colours, leading to

qq̄ → Z :
1

9

∑

colours

|M |2 ∝ 1

9
δijδ

∗
ji =

1

9
Tr{δ} =

1

3
, (8)

where the colour factor now expresses a suppression which can be interpreted as due to the fact that
only quarks of matching colours are able to collide and produce a Z boson, effectively reducing the
incoming quark-antiquark flux by a factor 1/NC .

To illustrate what happens when we insert (and sum over) quark-gluon vertices, such as the
one depicted in figure 2, we take the process Z → 3 jets. The colour factor for this process can be
computed as follows, with the accompanying illustration showing a corresponding diagram (squared)
with explicit colour-space indices on each vertex:

Z → qgq̄ :
∑

colours

|M |2 ∝ δijt
a
jk (ta`kδ

∗
i`)
∗

= Tr{tata}

=
1

2
Tr{δ} = 4 ,

δij

tajk taℓk

δiℓ

qi qi

qj

qk qk

qℓ

ga
jk ga

ℓk (9)

where the last Tr{δ} = 8, since the trace runs over indices in the 8-dimensional adjoint representation.

The tedious task of taking traces over SU(3) matrices can be greatly alleviated by use of the
relations given in Table 1. In the standard normalization convention for the SU(3) generators, equa-
tion (6), the Casimirs of SU(3) appearing in Table 1 are3

TR =
1

2
CF =

4

3
CA = NC = 3 . (10)

In addition, the gluon self-coupling on the third line in Table 1 involves factors of fabc. These are
called the structure constants of QCD and they enter due to the non-Abelian term in the gluon field
strength tensor appearing in equation (3),

F aµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (11)

3See, e.g., [5, Appendix A.3] for how to obtain the Casimirs in other normalization conventions.
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Trace Relation Indices Occurs in Diagram Squared

Tr{tatb} = TR δ
ab a, b ∈ [1, . . . , 8]

a b

∑
a t
a
ijt

a
jk = CF δik

a ∈ [1, . . . , 8]
i, j, k ∈ [1, . . . , 3]

i kj

a

∑
c,d f

acdf bcd = CA δ
ab a, b, c, d ∈ [1, . . . , 8]

a b

taijt
a
k` = TR

(
δjkδi` − 1

NC
δijδk`

)
i, j, k, ` ∈ [1, . . . , 3] ∝ −1

NC

j

k ℓ

i

(Fierz)

Table 1: Trace relations for t matrices. These relations are convention-independent as they stand.
Relations for a specific normalization convention for the t matrices are obtained by inserting the
specific values of TR, CF , and CA pertaining to that convention choice, as discussed in the text. More
relations can be found in [4, Section 1.2] and in [5, Appendix A.3].

The structure constants of SU(3) are listed in
the table to the right. Expanding the FµνFµν

term of the Lagrangian using equation (11), we
see that there is a 3-gluon and a 4-gluon vertex
that involve fabc, the latter of which has two
powers of f and two powers of the coupling.
Finally, the last line of Table 1 is not really
a trace relation but instead a useful so-called
Fierz transformation. It is often used, for in-
stance, in shower Monte Carlo applications,
to assist in mapping between colour flows in
NC = 3, in which cross sections and split-
ting probabilities are calculated, and those in
NC →∞, used to represent colour flow in the
MC “event record”.

Structure Constants of SU(3)

f123 = 1 (12)

f147 = f246 = f257 = f345 =
1

2
(13)

f156 = f367 = −1

2
(14)

f458 = f678 =

√
3

2
(15)

Antisymmetric in all indices
All other fijk = 0

(valid for the convention t = λ
2

)

(for the alternative convention t = λ√
2

, multiply all fijk by
√
2)

A gluon self-interaction vertex is illustrated in figure 3, to be compared with the quark-gluon
one in figure 2. We remind the reader that gauge boson self-interactions are a hallmark of non-Abelian
theories and that their presence leads to some of the main differences between QED and QCD. One
should also keep in mind that the colour factor for the vertex in figure 3, CA, is roughly twice as large
as that for a quark, CF .
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A4
ν(k2)

A6
ρ(k1) A2

µ(k3)

∝ −gs f246 [(k3 − k2)ρgµν

+(k2 − k1)µgνρ

+(k1 − k3)νgρµ]

Fig. 3: Illustration of a ggg vertex in QCD, before summing/averaging over colours: interaction
between gluons in the states λ2, λ4, and λ6 is represented by the structure constant f246.

1.3 The Strong Coupling
To first approximation, QCD is scale invariant. That is, if one “zooms in” on a QCD jet, one will
find a repeated self-similar pattern of jets within jets within jets, reminiscent of fractals such as the
famous Mandelbrot set in mathematics, or the formation of frost crystals in physics. In the context
of QCD, this property was originally called light-cone scaling, or Bjorken scaling after the famous
physicist James D. Bjorken. It has since been rebranded by a new generation as conformal invariance,
a mathematical property of several QCD-“like” theories which are now being studied. It is also closely
related to the physics of so-called “unparticles”, though that is a relation that goes beyond the scope
of these lectures.

Regardless of the labeling, if the strong coupling did not run (we shall return to the running of
the coupling below), Bjorken scaling would be absolutely true. QCD would be a theory with a fixed
coupling, the same at all scales. This simplified picture already captures some of the most important
properties of QCD, as we shall discuss presently.

In the limit of exact Bjorken scaling — QCD at fixed coupling — properties of high-energy in-
teractions are determined only by dimensionless kinematic quantities, such as scattering angles (pseu-
dorapidities) and ratios of energy scales4. For applications of QCD to high-energy collider physics,
an important consequence of Bjorken scaling is thus that the rate of bremsstrahlung jets with a given
transverse momentum scales in direct proportion to the hardness of the fundamental partonic scat-
tering process they are produced in association with. For instance, in the limit of exact scaling, a
measurement of the rate of 5-GeV jets produced in association with an ordinary Z boson could be
used as a direct prediction of the rate of 50-GeV jets that would be produced in association with a
900-GeV Z ′ boson, and so forth. Our intuition about how many bremsstrahlung jets a given type
of process is likely to have should therefore be governed first and foremost by the ratios of scales
that appear in that particular process, as has been highlighted in a number of studies focusing on the
mass and p⊥ scales appearing, e.g., in Beyond-the-Standard-Model (BSM) physics processes [6–10].
Bjorken scaling is also fundamental to the understanding of jet substructure in QCD, see, e.g., [11].

In real QCD, the coupling runs logarithmically with the energy,

Q2 ∂αs
∂Q2

=
∂αs

∂ lnQ2
= β(αs) , (16)

4Originally, the observed approximate agreement with this was used as a powerful argument for pointlike substructure in
hadrons; since measurements at different energies are sensitive to different resolution scales, independence of the absolute
energy scale is indicative of the absence of other fundamental scales in the problem and hence of pointlike constituents.
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where the function driving the energy dependence, the beta function, is defined as

β(αs) = −α2
s(b0 + b1αs + b2α

2
s + . . .) , (17)

with LO (1-loop) and NLO (2-loop) coefficients

b0 =
11CA − 4TRnf

12π
, (18)

b1 =
17C2

A − 10TRCAnf − 6TRCFnf
24π2

=
153− 19nf

24π2
. (19)

Numerically, the value of the strong coupling is usually specified by giving its value at the specific
reference scale Q2 = M2

Z , from which we can obtain its value at any other scale by solving equa-
tion (16),

αs(Q
2) = αs(M

2
Z)

1

1 + b0αs(M2
Z) ln Q2

M2
Z

+O(α2
s)
, (20)

with relations including theO(α2
s) terms available, e.g., in [4]. Relations between scales not involving

M2
Z can obviously be obtained by just replacing M2

Z by some other scale Q′2 everywhere in equa-
tion (20). As an application, let us prove that the logarithmic running of the coupling implies that an
intrinsically multi-scale problem can be converted to a single-scale one, up to corrections suppressed
by two powers of αs, by taking the geometric mean of the scales involved. This follows from expand-
ing an arbitrary product of individual αs factors around an arbitrary scale µ, using equation (20),

αs(µ1)αs(µ2) · · ·αs(µn) =

n∏

i=1

αs(µ)

(
1 + b0 αs ln

(
µ2

µ2
i

)
+O(α2

s)

)

= αns (µ)

(
1 + b0 αs ln

(
µ2n

µ2
1µ

2
2 · · ·µ2

n

)
+O(α2

s)

)
, (21)

whereby the specific single-scale choice µn = µ1µ2 · · ·µn (the geometric mean) can be seen to push
the difference between the two sides of the equation one order higher than would be the case for any
other combination of scales5.

The appearance of the number of flavours, nf , in b0 implies that the slope of the running
depends on the number of contributing flavours. Since full QCD is best approximated by nf = 3
below the charm threshold, by nf = 4 from there to the b threshold, and by nf = 5 above that,
it is therefore important to be aware that the running changes slope across quark flavour thresholds.
Likewise, it would change across the threshold for top or for any coloured new-physics particles that
might exist, with a magnitude depending on the particles’ colour and spin quantum numbers.

The negative overall sign of equation (17), combined with the fact that b0 > 0, leads to the
famous result6 that the QCD coupling effectively decreases with energy, called asymptotic freedom,
for the discovery of which the Nobel prize in physics was awarded to D. Gross, H. Politzer, and
F. Wilczek in 2004. An extract of the prize announcement runs as follows:

5In a fixed-order calculation, the individual scales µi, would correspond, e.g., to the n hardest scales appearing in an
infrared safe sequential clustering algorithm applied to the given momentum configuration.

6 Perhaps the highest pinnacle of fame for equation (17) was reached when the sign of it “starred” in an episode of the
TV series “Big Bang Theory”.
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What this year’s Laureates discovered was something that, at first sight, seemed com-
pletely contradictory. The interpretation of their mathematical result was that the
closer the quarks are to each other, the weaker is the “colour charge”. When the
quarks are really close to each other, the force is so weak that they behave almost
as free particlesa. This phenomenon is called “asymptotic freedom”. The converse
is true when the quarks move apart: the force becomes stronger when the distance
increasesb.

aMore correctly, it is the coupling rather than the force which becomes weak as the distance de-
creases. The 1/r2 Coulomb singularity of the force is only dampened, not removed, by the diminishing
coupling.

bMore correctly, it is the potential which grows, linearly, while the force becomes constant.

Among the consequences of asymptotic freedom is that perturbation theory becomes better be-
haved at higher absolute energies, due to the effectively decreasing coupling. Perturbative calculations
for our 900-GeV Z ′ boson from before should therefore be slightly faster converging than equivalent
calculations for the 90-GeV one. Furthermore, since the running of αs explicitly breaks Bjorken
scaling, we also expect to see small changes in jet shapes and in jet production ratios as we vary
the energy. For instance, since high-p⊥ jets start out with a smaller effective coupling, their intrinsic
shape (irrespective of boost effects) is somewhat narrower than for low-p⊥ jets, an issue which can
be important for jet calibration. Our current understanding of the running of the QCD coupling is
summarized by the plot in figure 4, taken from a recent comprehensive review by S. Bethke [12].

As a final remark on asymptotic freedom, note that the decreasing value of the strong coupling
with energy must eventually cause it to become comparable to the electromagnetic and weak ones, at
some energy scale. Beyond that point, which may lie at energies of order 1015 − 1017 GeV (though
it may be lower if as yet undiscovered particles generate large corrections to the running), we do not
know what the further evolution of the combined theory will actually look like, or whether it will
continue to exhibit asymptotic freedom.

Now consider what happens when we run the coupling in the other direction, towards smaller
energies. Taken at face value, the numerical value of the coupling diverges rapidly at scales below 1
GeV, as illustrated by the curves disappearing off the left-hand edge of the plot in figure 4. To make
this divergence explicit, one can rewrite equation (20) in the following form,

αs(Q
2) =

1

b0 ln Q2

Λ2

, (22)

where
Λ ∼ 200 GeV (23)

specifies the energy scale at which the perturbative coupling would nominally become infinite, called
the Landau pole. (Note, however, that this only parametrizes the purely perturbative result, which
is not reliable at strong coupling, so equation (22) should not be taken to imply that the physical
behaviour of full QCD should exhibit a divergence for Q→ Λ.)

Finally, one should be aware that there is a multitude of different ways of defining both Λ
and αs(MZ). At the very least, the numerical value one obtains depends both on the renormalization
scheme used (with the dimensional-regularization-based “modified minimal subtraction” scheme, MS,
being the most common one) and on the perturbative order of the calculations used to extract them.
As a rule of thumb, fits to experimental data typically yield smaller values for αs(MZ) the higher the
order of the calculation used to extract it (see, e.g., [12, 13]), with αs(MZ)|LO ∼> αs(MZ)|NLO ∼>

10
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Fig. 4: Illustration of the running of αs in a theoretical calculation (yellow shaded band) and in
physical processes at different characteristic scales, from [12].

αs(MZ)|NNLO. Further, since the number of flavours changes the slope of the running, the location of
the Landau pole for fixed αs(MZ) depends explicitly on the number of flavours used in the running.
Thus each value of nf is associated with its own value of Λ, with the following matching relations
across thresholds guaranteeing continuity of the coupling at one loop,

nf = 4↔ 5 : Λ5 = Λ4

(
Λ4

mb

) 2
23

Λ4 = Λ5

(
mb

Λ5

) 2
25

, (24)

nf = 3↔ 4 : Λ4 = Λ3

(
Λ3

mc

) 2
25

Λ3 = Λ4

(
mc

Λ4

) 2
27

. (25)

It is sometimes stated that QCD only has a single free parameter, the strong coupling. Appeal-
ing as this may be, it is a bit of an overstatement. Even in the perturbative region, the beta function
depends explicitly on the number of quark flavours, as we have seen, and thereby also on the quark
masses. Furthermore, in the non-perturbative region around or below ΛQCD, the value of the perturba-
tive coupling, as obtained, e.g., from equation (22), gives little or no insight into the behaviour of the
full theory. Instead, universal functions (such as parton densities, form factors, fragmentation func-
tions, etc), effective theories (such as the Operator Product Expansion, Chiral Perturbation Theory, or
Heavy Quark Effective Theory), or phenomenological models (such as Regge Theory or the String
and Cluster Hadronization Models) must be used, which in turn depend on additional non-perturbative
parameters whose relation to, e.g., αs(MZ), is not a priori known. For some of these questions, such
as hadron masses, lattice QCD can furnish important additional insight, but for multi-scale and/or
time-evolution problems, the applicability of lattice methods is still severely restricted.
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Fig. 5: Left: Rutherford scattering of quarks in QCD, exemplifying the type of process that dominates
the short-distance interaction cross section at hadron colliders. Right: an example of what such a
reaction may look like in a detector, in this case the ATLAS experiment.

2 Perturbative QCD
Our main tool for solving QCD for high-energy collider physics is perturbative quantum field theory,
the starting point for which is Matrix Elements (MEs) which can be calculated systematically at fixed
orders in the strong coupling αs. At least at lowest order (LO), the procedure is standard textbook
material [5] and it has also by now been highly automated, by the advent of tools like CALCHEP [14],
COMPHEP [15], MADGRAPH [16], and others [17–21]. Here, we require only that the reader has a
basic familiarity with the methods involved from graduate-level particle physics courses based, e.g.,
on [5, 22]. Our main concern are the uses to which these calculations are put, their limitations, and
ways to improve on the results obtained with them.

For illustration, take one of the most commonly occurring processes in hadron collisions —
Rutherford scattering of two quarks via a t-channel gluon exchange — which has the differential
cross section

qq′ → qq′ :
dσ

dt̂
=

π

ŝ2

4

9
α2
s

ŝ2 + û2

t̂2
, (26)

with the 2 → 2 Mandelstam variables (“hatted” to emphasize that they refer to a partonic 2 → 2
scattering rather than the full pp→ jets process)

ŝ = (p1 + p2)2 , (27)

t̂ = (p3 − p1)2 = −ŝ(1− cos θ̂)

2
, (28)

û = (p4 − p1)2 = −ŝ(1 + cos θ̂)

2
. (29)

This process is illustrated in the left-hand pane of figure 5, including a rough (formally leading-NC)
representation of the “colour transfer” mediated by the gluon (as was discussed in Section 1.2).

Reality, however, is more complicated; the picture on the right-hand pane of figure 5 shows
a real dijet event, as recorded by the ATLAS experiment. The complications to be addressed when
going from left to right in figure 5 are: firstly, additional jets, a.k.a. real-emission corrections, which
significantly change the topology of the final state, potentially shifting jets in or out of an experimen-
tally defined acceptance region. Secondly, loop factors, a.k.a. virtual corrections, change the number
of available quantum paths through phase space, and hence modify the normalization of the cross
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section (total and differential). And finally, additional corrections to the simple factorized pertur-
bative picture are generated by components such as hadronization and the underlying event. These
corrections must be taken into account to complete our understanding of QCD and connect the short-
distance physics with macroscopic experiments. Apart from the perturbative expansion itself, the
most powerful tool we have to organize this vast calculation, is factorization.

2.1 Factorization
When applicable, factorization allows us to subdivide the calculation of an observable into a pertur-
batively calculable short-distance part and an approximately universal long-distance part, the latter
of which may be modeled and constrained by fits to data. Factorization can also be applied multiple
times, to break up a complicated calculation into simpler pieces that can be treated as approximately
independent, such as when dealing with successive emissions in a parton shower, or when factoring
off decays of long-lived particles from a hard production process.

Using collinear factorization (see, e.g., [4, 23]), the differential cross section for an observable
O in hadron-hadron collisions can be computed as:

dσ

dO =
∑

a,b

∫ 1

0
dxa dxb

∑

F

∫
dΦF fh1a (xa, µF )fh2b (xb, µF )

dσ̂ab→F

dÔ
DF (Ô → O, µF ) (30)

where the outer sum runs over all partonic constituents, a and b of the colliding hadrons, h1,2, re-
spectively, and the inner sum runs over all possible final states, ab→ F (with the standard final-state
phase-space differential denoted dΦF ).

Before we discuss the integrand — composed of the factors fa,b, dσ̂ , and DF — let us first re-
emphasize the crucial feature of equation (30); it separates the calculation of the cross section into two
independent pieces, one of which is the perturbatively calculable short-distance cross section, dσ̂ , and
the other of which is the product of parton distribution functions (PDFs), fafb, with a fragmentation
function (FF), DF , with the latter components being universal functions7 whose forms are a priori
unknown but which can be constrained in one process and then reused in another. The dividing line
between the two is drawn at an arbitrary (“user-defined”) scale µF , called the factorization scale.

Returning now to the integrand, the parton density functions, fhij (xj , µF ), parametrize the
distribution of partons of type j carrying momentum fraction xj inside a hadron of type hi when
probing the latter at the factorization scale µF . (Note: issues specific to PDFs in the context of Monte
Carlo event generators will be covered in Section 3.1.) The partonic scattering cross section dσ̂ab→F
is calculable in fixed-order perturbation theory as

dσ̂ab→F =
1

2ŝab
|Mab→F |2(ΦF ;µF , µR) , , (31)

with |M|2 the matrix element squared for the process ab → F , appropriately summed and averaged
over helicities and/or colours, and evaluated at the factorization and renormalization scales µF and µR,
respectively. The fragmentation functions (FFs), DF (Ô → O, µF ) parametrize the transition from
partonic final state to the hadronic observable (bremsstrahlung, hadronization, jet definition, etc).

7At least, they are universal within the framework of collinear factorization. In full QCD, there are several types of
corrections, including also some perturbative ones, that go beyond this framework, such as small-x effects and multiple
parton interactions, both of which mandate the introduction of objects that go beyond the scope of collinear-factorized
PDFs. In the case of small-x evolution, these more general objects are so-called unintegrated PDFs, which have an explicit
dependence on the parton transverse momentum in addition to the factorization scale, while multi-parton interactions require
explicit multi-parton and/or generalized (impact-parameter-dependent) PDFs.
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There is some arbitrariness involved in this division of the calculation into a short-distance
and a long-distance part. Firstly, one has to choose a value for the dividing scale, µF . Some heuristic
arguments to guide in the choice of factorization scale are the following. On the long-distance side, the
PDFs include a (re)summation of multiple emissions (bremsstrahlung) all the way up to the scale µF .
It would therefore not make much sense to take µF significantly larger than the scales characterizing
resolved particles on the short-distance side of the calculation (i.e., the particles appearing explicitly
in ΦF ); otherwise the PDFs would be including sums over radiations as hard as or harder than those
included explicitly in the matrix element which would result in double-counting. On the other hand,
it should not be taken much lower than the scales appearing in the matrix element either, since, as
we shall see in subsequent chapters, fixed-order matrix elements are at most able to include part of
such multiple-bremsstrahlung emissions, and hence a low choice of factorization scale would lead to
problems with “undercounting” of such corrections.

For matrix elements characterized by a single well-defined scale, such as theQ2 scale in deeply
inelastic scattering (DIS) or the invariant-mass scale ŝ in Drell-Yan production (qq̄ → Z/γ∗ → `+`−),
such arguments essentially fix the preferred scale choice, which may then be varied by a factor of 2
(or larger) around the nominal value in order to estimate uncertainties. For multi-scale problems,
however, such as pp→ Z/W + n jets, there are several a priori equally good choices available, from
the lowest to the highest QCD scales that can be constructed from the final-state momenta, usually
with several dissenting groups of theorists arguing over which particular choice is best. Suggesting
that one might simply measure the scale would not really be an improvement, as the factorization scale
is fundamentally unphysical and therefore unobservable (similarly to gauge or convention choices).
One plausible strategy is to look at higher-order (NLO or NNLO) calculations, in which correction
terms appear that explicitly remove the over- or under-counting introduced by the initial scale choice
up to the given order, thus reducing the overall dependence on it and stabilizing the final result. From
such comparisons, a “most stable” initial scale choice can in principle be determined, which then
furnishes a reasonable starting point, but we emphasize that the question is intrinsically ambiguous,
and no “golden recipe” is likely to magically give all the right answers. The best we can do is to vary
the value of µF not only by an overall factor, but also by exploring different possible forms for its
functional dependence on the momenta appearing in ΦF . In this way, one could hope to provide a
more complete uncertainty estimate for multi-scale problems.

Secondly, and more technically, at NLO and beyond one also has to settle on a factorization
scheme in which to do the calculations. For all practical purposes, students focusing on LHC physics
are only likely to encounter one such scheme, the modified minimal subtraction (MS) one already
mentioned in the discussion of the definition of the strong coupling in Section 1.3. At the level of
these lectures, we shall therefore not elaborate further on this choice here.

2.2 Infrared Safety
The second perturbative tool, infrared safety, provides us with a special class of observables which
have minimal sensitivity to long-distance physics, and which can be consistently computed in per-
turbative QCD (pQCD). By “infrared”, we here mean any limit that involves a low scale (i.e., any
non-UV limit), without regard to whether it is collinear or soft8. An observable is infrared safe if:

1. (Safety against soft radiation): Adding any number of infinitely soft particles should not change
the value of the observable.

8This distinction will be discussed further in Section 2.4.
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2. (Safety against collinear radiation): Splitting an existing particle up into two comoving parti-
cles, with arbitrary fractions z and 1 − z, respectively, of the original momentum, should not
change the value of the observable.

If both of these conditions are satisfied, any long-distance non-perturbative corrections will be sup-
pressed by the ratio of the long-distance scale to the short-distance one to some (observable-dependent)
power, typically

IR Safe Observables: IR corrections ∝ Q2
IR

Q2
UV

(32)

where QUV denotes a generic hard scale in the problem, and QIR ∼ ΛQCD ∼ O(1 GeV).

Due to this power suppression, IR safe observables are not so sensitive to our lack of ability to
solve the strongly coupled IR physics, unless of course we go to processes for which the relevant hard
scale, QUV, is small (such as minimum-bias, soft jets, or small-scale jet substructure). Even when
a high scale is present, however, as in resonance decays, jet fragmentation, or underlying-event-type
studies, infrared safety only guarantees us that infrared corrections are small, not that they are zero.
Thus, ultimately, we run into a precision barrier even for IR safe observables, which only a reliable
understanding of the long-distance physics itself can address.

To constrain models of long-distance physics, one needs infrared sensitive observables9. In-
stead of the suppressed corrections above, the perturbative prediction for such observables contains
logarithms

IR Sensitive Observables: IR Corrections ∝ αns logm
(
Q2

UV

Q2
IR

)
, m ≤ 2n , (33)

which grow increasingly large as QIR/QUV → 0. As an example, consider such a fundamental
quantity as particle multiplicities; in the absence of nontrivial infrared effects, the number of partons
that would be mapped to hadrons in a naïve local-parton-hadron-duality [24] picture would tend log-
arithmically to infinity as the IR cutoff is lowered. Similarly, the distinction between a charged and
a neutral pion only occurs in the very last phase of hadronization, and hence observables that only
include charged tracks, for instance, are always IR sensitive10.

Two important categories of infrared safe observables that are widely used are event shapes and
jet algorithms. Jet algorithms are perhaps nowhere as pedagogically described as in last year’s ESHEP
lectures by Salam [25, Chapter 5]. Event shapes in the context of hadron colliders have not yet been as
widely explored, but the basic phenomenology is introduced also by Salam and collaborators in [26],
with a first measurement reported by CMS [27] and a proposal to use them also for the characterization
of minimum-bias events put forth in [28].

Let us here merely emphasize that the real reason to prefer infrared safe jet algorithms over
unsafe ones is not that they necessarily give very different or “better” answers in the experiment
— experiments are infrared safe by definition, and the difference between infrared safe and unsafe
algorithms may not even be visible when running the algorithm on experimental data — but that it is
only possible to compute perturbative QCD predictions for the infrared safe ones. Any measurement
performed with an infrared unsafe algorithm can only be compared to calculations that include a
detailed hadronization model. This both limits the number of calculations that can be compared to

9 Hence it is not always the case that infrared safe observables are preferable — the purpose decides the tool.
10This remains true in principle even if the tracks are clustered into jets, although the energy clustered in this way does

provide a lower bound on QUV in the given event, since “charged + neutral > charged-only”.
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and also adds an a priori unknown sensitivity to the details of the hadronization description, details
which one would rather investigate and constrain separately, in the framework of more dedicated
fragmentation studies.

2.3 Fixed-Order QCD: Matrix Elements
Schematically, we express the all-orders differential cross section for an observable O, in the pro-
duction of F + anything (≡ inclusive F production, with F an arbitrary final state), in the following
way:

dσF
dO

∣∣∣∣
ME

=
∞∑

k=0

∫
dΦF+k

︸ ︷︷ ︸
Σ legs

∣∣∣
∞∑

`=0

M(`)
F+k

︸ ︷︷ ︸
Σ loops

∣∣∣
2
δ
(
O −O(ΦF+k)

)
, (34)

where, for compactness, we have suppressed all PDF and luminosity normalization factors. The sum
over k represents a sum over additional “real-emission” corrections, called legs, and the sum over `
runs over additional virtual corrections, loops. Without the δ function, the formula would give the total
integrated cross section, instead of the cross section differentially inO. The purpose of the δ function
is thus to project out hypersurfaces of constant O in the full dΦF+k phase space, with O(ΦF+k) a
function that defines O evaluated on each specific momentum configuration, ΦF+k.

We recover the various fixed-order truncations of pQCD by limiting the nested sums in equa-
tion (34) to include only specific values of k + `. Thus,

k = 0, ` = 0 =⇒ Leading Order (usually tree-level) for inclusive F production
k = n, ` = 0 =⇒ Leading Order for F + n jets
k + ` ≤ n, =⇒ NnLO for F (includes Nn−1LO for F + 1 jet, Nn−2LO for F +

2 jets, and so on up to LO for F + n jets) .

Already at this stage, before entering into the details of the calculations, we can make several obser-
vations on how numerical values of cross sections and decay widths must be computed in fixed-order
perturbation theory.

Firstly, the dimensionality of the phase space to be integrated increases by d = 3 for each leg
we add. In dimensions higher than 5, the fastest converging numerical integration algorithm is Monte
Carlo integration [29], whose purely stochastic error ∝ O(1/

√
N ), with N the number of generated

points, is independent of dimension, while all other algorithms scale with powers of the dimension.
Therefore, virtually all numerical cross section calculations are based on Monte Carlo techniques in
one form or another, the simplest being the RAMBO algorithm [30] which can be expressed in about
half a page of code and generates a flat scan over n-body phase space11.

Secondly, due to the infrared singularities in perturbative QCD, the functions to be integrated,
|M|2, are highly non-uniform for large k, which implies that we will have to be clever in the way
we sample phase space if we want the integration to converge in any reasonable amount of time —
simple algorithms like RAMBO quickly become inefficient for k greater than a few. To address this
bottleneck, the simplest step up from RAMBO is to introduce generic (i.e., automated) importance-
sampling methods, such as offered by the VEGAS algorithm [31, 32]. This is still the dominant basic
technique, although most modern codes do employ several additional refinements, such as several
different copies of VEGAS running in parallel (multi-channel integration), to further optimize the

11Strictly speaking, RAMBO is only truly uniform for massless particles. Its massive variant makes up for phase-space
biases by returning weighted momentum configurations.
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sampling. Alternatively, a few algorithms incorporate the singularity structure of QCD explicitly
in their phase-space sampling, either by directly generating momenta distributed according to the
leading-order QCD singularities, in a sort of “QCD-preweighted” analog of RAMBO, called SARGE

[33], or by using all-orders Markovian parton showers to generate them (VINCIA [34, 35]).

Thirdly, for k ≥ 1, ` = 0, we are really not considering inclusive F production anymore;
instead, we are considering the LO contribution to the process F + k jets. However, if we simply
integrate over all momenta, as implied by the integration over dΦF+k in equation (34), we would
be including configurations in which one or more of the k partons become collinear or soft, leading
to singularities in the integration region. At the LO level, this problem can only be mitigated by re-
stricting the integration region to only include “hard, well-separated” momenta. As discussed above,
due to the approximate Bjorken scaling of QCD, it would be meaningless to express this requirement
in dimensionful terms, as an absolute scale. Instead, it is the ratios of scales present in any given
process that determine whether such enhancements are present or absent: a 50-GeV jet would be con-
sidered hard and well-separated if produced in association with an ordinary Z boson, while it would
be considered soft if produced in association with a 900-GeV Z ′ boson [6–8]. Thus, for example, it
would be a complete disaster to use the same dimensionful phase-space cuts for Z ′+jets as one uses
for Z+jets (unless of course the Z ′ happens to have a mass scale very close to the Z one). A good
rule of thumb is that if σk+1 ≈ σk (at whatever order you are calculating), then you are integrating
over a region in which the perturbative series is no longer converging, or is converging too slowly for
a fixed-order truncation of it to be reliable. For fixed-order perturbation theory to be applicable, you
must have σk+1 � σk. In the discussion of parton showers and resummations in Section 2.4, we shall
see how the region of applicability of perturbation theory can be extended.

And finally, the virtual amplitudes, for ` ≥ 1, are divergent for any point in phase space.
However, as encapsulated by the famous KLN theorem [36,37], unitarity (which essentially expresses
probability conservation) puts a powerful constraint on the IR divergences12, forcing them to cancel
exactly against those coming from the unresolved emissions that we had to cut out above, order by
order, making the complete answer for fixed k + ` = n finite. Nonetheless, since this cancellation
happens between contributions that formally live in different phase spaces, a main aspect of loop-
level higher-order calculations is how to arrange for this cancellation in practice, either analytically or
numerically, with many different methods currently on the market.

A convenient way of illustrating the terms of the perturbative series that a given matrix-element-
based calculation includes is given in figure 6. In the left-hand pane, the shaded box corresponds to
the lowest-order “Born-level”13 matrix element squared. This coefficient is non-singular and hence
can be integrated over all of phase space, which we illustrate by letting the shaded area fill all of
the relevant box. A different kind of leading-order calculation is illustrated in the right-hand pane of
figure 6, where the shaded box corresponds to the lowest-order matrix element squared for F + 2 jets.
This coefficient diverges in the part of phase space where one or both of the jets are unresolved (i.e.,
soft or collinear), and hence integrations can only cover the hard part of phase space, which we reflect
by only shading the upper half of the relevant box.

Figure 7 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a point
on notation: by σ(1)

0 , we intend

σ
(1)
0 =

∫
dΦ0 2Re[M(1)

0 M
(0)∗
0 ] , (35)

12The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
13Photo from nobelprize.org
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Fig. 6: Coefficients of the perturbative series covered by LO calculations. Left: F production at
lowest order. Right: F +2 jets at LO, with the half-shaded box illustrating the restriction to the region
of phase space with exactly 2 resolved jets. The total power of αs for each coefficient is n = k + `.
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Fig. 7: Coefficients of the perturbative series covered by NLO calculations. Left: F production at
NLO. Right: F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the region of
phase space with exactly 1 resolved jet. The total power of αs for each coefficient is n = k + `.

which is of order αs relative to the Born level. Compare, e.g., with the expansion of equation (34) to
order k + ` = 1. In particular, σ(1)

0 should not be confused with the integral over the 1-loop matrix
element squared (which would be of relative order α2

s and hence forms part of the NNLO coefficient
σ

(2)
0 ). Returning to figure 7, the unitary cancellations between real and virtual singularities imply that

we can now extend the integration of the real correction in the left-hand pane over all of phase space,
while retaining a finite total cross section,

σNLO
0 =

∫
dΦ0 |M(0)

0 |2 +

∫
dΦ0 2Re[M(1)

0 M
(0)∗
0 ] +

∫
dΦ1 |M(0)

1 |2

= σ
(0)
0 + σ

(1)
0 + σ

(0)
1 ,

(36)

where the divergence caused by integrating the third term over all of phase space is canceled by that
coming from the integration over loop momenta in the second term. However, if our starting point for
the NLO calculation is a process which already has a non-zero number of hard jets, we must continue
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Fig. 8: Coefficients of the perturbative series covered by an NNLO calculation. The total power of
αs for each coefficient is n = k + `. Green shading represents the full perturbative coefficient at the
respective k and `.

to impose that at least that number of jets must still be resolved in the final-state integrations,

σNLO
1 (p⊥min) =

∫

p⊥>p⊥min

dΦ1 |M(0)
1 |2 +

∫

p⊥>p⊥min

dΦ1 2Re[M(1)
1 M

(0)∗
1 ] +

∫

p⊥1>p⊥min

dΦ2 |M(0)
2 |2

= σ
(0)
1 (p⊥ > p⊥min) + σ

(1)
1 (p⊥ > p⊥min) + σ

(0)
2 (p⊥1 > p⊥min) ,

(37)
where the restriction to at least one jet having p⊥ > p⊥min has been illustrated in the right-hand pane
of figure 7 by shading only the upper part of the relevant boxes. In the last term in equation (37), the
notation p⊥1 is used to denote that the integral runs over the phase space in which at least one “jet”
(which may consist of one or two partons) must be resolved with respect to p⊥min. Here, therefore, an
explicit dependence on the algorithm used to define “a jet” enters for the first time. This is discussed
in more details in the ESHEP lectures by Salam [25].

To extend the integration to cover also the case of 2 unresolved jets, we must combine the left-
and right-hand parts of figure 7 and add the new coefficient

σ
(2)
0 = |M(1)

0 |2 + 2Re[M(2)
0 M

(0)∗
0 ] , (38)

as illustrated by the diagram in figure 8.

2.4 Infinite-Order QCD: Parton Showers
In the preceding section, we noted two conditions that had to be valid for fixed-order truncations of
the perturbative series to be valid: firstly, the strong coupling αs must be small for perturbation theory
to be valid at all. This restricts us to the region in which all scales Qi � ΛQCD. We shall maintain
this restriction in this section, i.e., we are still considering perturbative QCD. Secondly, however, in
order to be allowed to truncate the perturbative series, we had to require σk+1 � σk, i.e., the correc-
tions at successive orders must become successively smaller, which — due to the enhancements from
soft/collinear singular (conformal) dynamics — effectively restricted us to consider only the phase-
space region in which all jets are “hard and well-separated”, equivalent to requiring all Qi/Qj ≈ 1.
In this section, we shall see how to lift this restriction, extending the applicability of perturbation
theory into regions that include scale hierarchies, Qi � Qj � ΛQCD, such as occur for soft jets, jet
substructure, etc.
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In fact, the simultaneous restriction to all resolved scales being larger than ΛQCD and no large
hierarchies is extremely severe, if taken at face value. Since we collide and observe hadrons (→ low
scales) while simultaneously wishing to study short-distance physics processes (→ high scales), it
would appear trivial to conclude that fixed-order pQCD is not applicable to collider physics at all. So
why do we still use it?

The answer lies in the fact that we actually never truly perform a fixed-order calculation in
QCD. Let us repeat the factorized formula for the cross section, equation (30),

dσ

dO =
∑

a,b

∫ 1

0
dxa dxb

∑

F

∫
dΦF fh1a (xa, µF )fh2b (xb, µF )

dσ̂ab→F

dÔ
DF (Ô → O, µF ) . (39)

Although dσab→F does represent a fixed-order calculation, the parton densities, fh1a and fh2b , include
so-called resummations of perturbative corrections to all orders from the initial scale of order the
mass of the proton, up to the factorization scale, µF . Note that the oft-stated mantra that the PDFs are
purely non-perturbative functions is therefore misleading. True, they are defined as essentially non-
perturbative functions at some very low scale, but, if µF is taken large, they necessarily incorporate
a significant amount of perturbative physics as well. On the “fixed-order side”, all we have left to
ensure in dσab→F is then that there are no large hierarchies remaining between µF and the QCD
scales appearing in ΦF . Likewise, in the final state, the fragmentation functions, DF , include infinite-
order resummations of perturbative corrections all the way from µF down to some low scale, with
similar caveats concerning mantras about their non-perturbative nature as for the PDFs.

2.4.1 Step One: Infinite Legs
The infinite-order resummations that are included in objects such as the PDFs and FFs in equation (39)
(and in their parton-shower equivalents) rely on some very simple and powerful properties of gauge
field theories. One way to arrive at them is the following; assume we have computed the Born-level
cross section for some process, F , and that this process contains some number of coloured partons14.
For each pair of (massless) colour-anticolour charges A and B in F , it is then a universal property of
QCD that the cross sections for F + 1 partons, dσ

(0)
F+1 will include a factor

dσ
(0)
F+1 = g2

s

(
NAB→a1b

dsa1

sa1

ds1b

s1b
+ less singular terms

)
× dσ

(0)
F , (40)

where, for compactness, we have lumped some uninteresting normalization factors15 into NAB→a1b,
g2
s = 4παs is the strong coupling, a and b represent partons A and B after the branching (i.e., they

include possible recoil effects) and si1 is the invariant between parton i and the emitted “+1” parton.
Intuitively, this structure follows from the simple observations illustrated by the left and middle panes
of figure 9; the Feynman diagram in which parton “1” is emitted from the “a” (or “b”) leg has a pole
for sa1 → 0 (s1b → 0), corresponding to the intermediate propagator “a∗” (“b∗”) going on shell
(middle pane). Summing the two and squaring them, i.e., including their mutual interference, one
obtains the structure in equation (40), which is called the Eikonal factor.

14Assume further that octet colour charges (gluons) may be represented as the sum of a colour triplet and an antitriplet
charge — compare, e.g., with the illustrations of gluon colour flow, Figures 2 and 3. This picture of octets is correct up to
corrections of order 1/N2

C , which will be good enough for our purposes here.
15 I.e., NAB→a1b contains colour and phase-space normalization factors. Up to mildly non-universal corrections of order

1/N2
C (which depend on whether the emitting particles are quarks or gluons), it is NAB→a1b = 2CA/(16π2)
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Fig. 9: a) and b) Illustration of the QCD singularities induced by on-shell propagators. c) The approx-
imation obtained in the first step can be iterated to add additional legs.

The leading part of the singularity structure to which we have already referred many times is
clearly visible here: if we integrate over the entire phase space including the region sa1 → 0, s1b → 0,
we end up with a double pole. If we instead regulate the divergence by cutting off the integration at
some minimal perturbative cutoff scale µ2

IR, we end up with a logarithm squared of that scale16. This
is a typical example of “large logs” being generated by the presence of scale hierarchies.

Before we continue, it is worth noting that equation (40) is often rewritten in other forms to
emphasize specific aspects of it. One such rewriting is thus to reformulate the invariants si1 appearing
in equation (40) in terms of energies and angles,

sij = 2EiEj (1− cos θij) . (41)

Rewritten in this way, the differentials in equation (40) become

dsa1

sa1

ds1b

s1b
∝ dE1

E1

dθa1

θa1
+

dE1

E1

dθ1b

θ1b
. (42)

This kind of rewriting enables an intuitively appealing categorization of the singularities as related to
vanishing energies and angles, called soft and collinear limits, respectively. Although such formu-
lations have undeniably been helpful in obtaining many important results in QCD, one should still
keep in mind that Lorentz non-invariant formulations come with similar caveats and warnings as do
gauge non-invariant formulations of quantum field theory: while they can be practical to work with
at intermediate stages of a calculation, one should be careful with any physical conclusions that rely
explicitly on them. We shall therefore here restrict ourselves to a Lorentz invariant formalism based
directly on equation (40). The collinear limit is then replaced by a more general single-pole limit
in which a single parton-parton invariant vanishes (as, for instance, when a pair of partons become
collinear), while the soft limit is replaced by one in which two (or more) invariants involving the same
parton vanish simultaneously (as, for instance by that parton becoming soft in a frame defined by two
or more hard partons). This avoids frame-dependent ambiguities from entering into the language, at
the price of a slight reinterpretation of what is meant by collinear and soft.

Independently of rewritings and philosophy, the real power of equation (40) lies in the fact that
it is universal. Thus, for any process F , we can apply equation (40) in order to get an approximation
for dσF+1 . We may then, for instance, take our newly obtained expression for F + 1 as our arbitrary
process and crank equation (40) again, to obtain an approximation for dσF+2 , and so forth. What we
have here is therefore a very simple recursion relation that can be used to generate approximations

16The precise definition of µ2
IR is not unique. Any scale choice that properly isolates the singularities from the rest of

phase space will do, with some typical choices being, for example, invariant-mass and/or transverse-momentum scales.
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to leading-order cross sections with arbitrary numbers of additional legs. The quality of this approx-
imation is governed by how many terms besides the leading one shown in equation (40) are included
in the game. Including all possible terms, the most general form for the cross section at F + n jets,
restricted to the phase-space region above some infrared cutoff scale µIR, has the following algebraic
structure,

σ
(0)
F+n = αns

(
ln2n + ln2n−1 + ln2n−2 + . . .+ ln +R

)
(43)

where we use the notation lnλ without an argument to denote generic functions of transcendentality λ
(the logarithmic function to the power λ being a “typical” example of a function with transcendentality
λ appearing in cross section expressions, but also dilogarithms and higher logarithmic functions17 of
transcendentality> 1 should be implicitly understood to belong to our notation lnλ). The last term,R,
represents a rational function of transcendentality 0. We shall also use the nomenclature singular and
finite for the lnλ andR terms, respectively, a terminology which reflects their respective behaviour in
the limit µIR → 0.

The simplest approximation one can build on equation (43), dropping all but the leading ln2n

term in the parenthesis, is thus the leading-transcendentality approximation. This approximation is
better known as the DLA (double logarithmic approximation), since it generates the correct coeffi-
cient for terms which have two powers of logarithms for each power of αs, while terms of lower
transcendentalities are not guaranteed to have the correct coefficients. In so-called LL (leading-
logarithmic) parton shower algorithms, one generally expects to reproduce the correct coefficients
for the ln2n and ln2n−1 terms. In addition, several formally subleading improvements are normally
also introduced in such algorithms (such as explicit momentum conservation, gluon polarization and
other spin-correlation effects [38], higher-order coherence effects, renormalization scale choices [39],
finite-width effects [40], etc), as a means to improve the agreement with some of the more subleading
coefficients as well, if not in every phase-space point then at least on average. Though LL showers do
not magically acquire NLL (next-to-leading-log) precision from such procedures, one therefore still
expects a significantly better average performance from them than from corresponding “strict” LL
analytical resummations. A side effect of this is that it is often possible to “tune” shower algorithms
to give better-than-nominal agreement with experimental distributions, by adjusting the parameters
controlling the treatment of subleading effects. One should remember, however, that there is a limit
to how much can be accomplished in this way — at some point, agreement with one process will only
come at the price of disagreement with another, and at this point further tuning would be meaningless.

Applying such an iterative process on a Born-level cross section, one obtains the description of
the full perturbative series illustrated in the left-hand pane of figure 10. The yellow (lighter) shades
used here for k ≥ 1 indicate that the coefficient obtained is not the exact one, but rather an approxima-
tion to it that only gets its leading singularities right. However, since this is still only an approximation
to infinite-order tree-level cross sections (we have not yet included any virtual corrections), we cannot
yet integrate this approximation over all of phase space, as illustrated by the yellow boxes being only
half filled on the left-hand side of figure 10; the summed total cross section would still be infinite.
This particular approximation would therefore still appear to be very useless indeed — on one hand,
it is only guaranteed to get the singular terms right, but on the other, it does not actually allow us to
integrate over the singular region. In order to obtain a truly all-orders calculation, the constraint of
unitarity must also be explicitly imposed, which furnishes an approximation to all-orders loop correc-
tions as well. Let us therefore emphasize that figure 10 is included for pedagogical purposes only; all

17Note: due to the theorems that allow us, for instance, to rewrite dilogarithms in different ways with logarithmic and
lower “spillover” terms, the coefficients at each λ are only well-defined up to reparametrization ambiguities involving the
terms with transcendentality greater than λ.
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Fig. 10: Coefficients of the perturbative series covered by LO + LL calculations, Left: without impos-
ing unitarity, and Right: imposing unitarity order by order for each n = k+ `. Green (darker) shading
represents the full perturbative coefficient at the respective k and `. Yellow (lighter) shading repre-
sents an LL approximation to it. Half-shaded boxes indicate phase spaces in which we are prohibited
from integrating over the IR singular region, as discussed in sections 2.3 and 4.2.

resummation calculations, whether analytical or parton-shower based, include virtual corrections as
well and consequently yield finite total cross sections, as will now be described.

2.4.2 Step Two: Infinite Loops
Order-by-order unitarity, such as used in the KLN theorem, implies that the singularities caused by
integration over unresolved radiation in the tree-level matrix elements must be canceled, order by
order, by equal but opposite-sign singularities in the virtual corrections at the same order. That is,
from equation (40), we immediately know that the 1-loop correction to dσF must contain a term,

dσ
(1)
F = −g2

s NAB→a1b dσ
(0)
F

∫
dsa1

sa1

ds1b

s1b
+ less singular terms, (44)

that cancels the divergence coming from equation (40) itself. Further, since this is universally true, we
may apply equation (44) again to get an approximation to the corrections generated by equation (40)
at the next order and so on. By adding such terms explicitly, order by order, we may now bootstrap our
way around the entire perturbative series, using equation (40) to move horizontally and equation (44)
to move along diagonals of constant n = k + `. Since real-virtual cancellations are now explicitly
restored, we may finally extend the integrations over all of phase space, resulting in the picture shown
on the right-hand pane of figure 10.

The right-hand pane, not the left-hand one, corresponds to what is actually done in resummation
calculations, both of the analytic and parton-shower types18. Physically, there is a significant and
intuitive meaning to the imposition of unitarity, as follows.

Take a jet algorithm, with some measure of jet resolution, Q, and apply it to an arbitrary sample
of events, say dijets. At a very crude resolution scale, corresponding to a high value for Q, you find
that everything is clustered back to a dijet configuration, and the 2-jet cross section is equal to the total
inclusive cross section,

σtot = σF ;incl . (45)
18In the way these calculations are formulated in practice, they in fact rely on one additional property, called exponenti-

ation, that allows us to move along straight vertical lines in the loops-and-legs diagrams. However, since the two different
directions furnished by equations (40) and (44) are already sufficient to move freely in the full 2D coefficient space, we
shall use exponentiation without extensively justifying it here.
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At finer resolutions, decreasing Q, you see that some events that were previously classified as 2-jet
events contain additional, lower-scale jets, that you can now resolve, and hence those events now
migrate to the 3-jet bin, while the total inclusive cross section of course remains unchanged,

σtot = σF ;incl = σF ;excl(Q) + σF+1;incl(Q) , (46)

where “incl” and “excl” stands for inclusive and exclusive cross sections19, respectively, and the Q-
dependence in the two terms on the right-hand side must cancel so that the total inclusive cross section
is independent ofQ. Later, some 3-jet events now migrate further, to 4 and higher jets, while still more
2-jet events migrate into the 3-jet bin, etc. For arbitrary n and Q, we have

σF+n;incl(Q) = σF ;incl −
n−1∑

m=0

σF+m;excl(Q) . (47)

This equation expresses the trivial fact that the cross section for n or more jets can be computed as
the total inclusive cross section for F minus a sum over the cross sections for F + exactly m jets
including all m < n. On the theoretical side, it is these negative terms which must be included in the
calculation, for each order n = k+`, to restore unitarity. Physically, they express that, at a given scale
Q, a given event will be classified as having either 0, 1, 2, or whatever jets. Or, equivalently, for each
event we gain in the 3-jet bin as Q is lowered, we must loose one event in the 2-jet one; the negative
contribution to the 2-jet bin is exactly minus the integral of the positive contribution to the 3-jet one,
and so on. We may perceive of this detailed balance as an evolution of the event structure with Q, for
each event, which is effectively what is done in parton-shower algorithms, to which we shall return in
Section 4.1.

3 Soft QCD
In a complete high-energy collision, many different physics (sub-)processes contribute to the total
observed activity. We here give a very brief overview of the main aspects of soft QCD that are relevant
for hadron-hadron collisions, such as parton distribution functions, minimum-bias and soft-inclusive
physics, and the so-called “underlying event”. This will be kept at a strictly pedestrian level and is
largely based on the review in [41]. A discussion of the modeling of these components, as well as
a discussion of the process of hadronization, is deferred to the relevant parts of Section 4 on Monte
Carlo event generators.

3.1 Parton Densities
Physically, parton densities express the fact that hadrons are composite, with a time-dependent struc-
ture, illustrated in figure 11. More formally, they are defined by the factorization theorem discussed
in Section 2.1. Occasionally, the words structure functions and parton densities are used interchange-
ably. However, there is a very important distinction between the two, which we find often in (quantum)
physics: one is a physical observable, the other is a “fundamental” quantity extracted from it.

Structure functions, such as F2, are completely unambiguous physical observables, which can
be measured, for instance, in DIS processes. (For a definition, see, e.g., [43].) From these, and
other observables, a set of more fundamental and theoretically useful objects, parton density func-
tions (PDFs), can be extracted, but there is a price; since the parton densities are not, themselves,

19F inclusive = F plus anything. F exclusive = F and only F . Thus, σF ;incl =
∑∞

k=0 σF+k;excl
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Parton Distribution Functions

Hadrons are composite, with time-dependent structure:
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structure function parton distributions

Fig. 11: Illustration (from [42]) of partonic fluctuations inside a proton beam.

physically observable, they can only be defined within a specific factorization scheme, order by or-
der in perturbation theory. The only exception is at leading order, at which they have a very simple
physical interpretation, as the probability of finding a quark of a given flavor and carrying a given
momentum fraction, x, inside a hadron of a given type, probed at a specific scale, Q2. They are then
related to the structure function F2 by their charge-weighted momentum sum,

F2(x,Q2)︸ ︷︷ ︸
Physical Observable

=
∑

i

e2
ix fi(x,Q

2)︸ ︷︷ ︸
Extracted Quantity

, (48)

where fi denotes the parton density for a parton of flavor/type i. When going to higher orders, we
tend to keep the simple intuitive picture from leading order in mind, but one should be aware that
the fundamental relationship is now more complicated, and that the parton densities no longer have a
clear probabilistic interpretation.

The reader should also be aware that there is currently a significant amount of debate concerning
many aspects of PDF definitions and usage:

– The “initial condition” for the PDFs, i.e., their shape in x at some low value of Q2
F , and other

constraints imposed on their evolution, such as positivity, flavour symmetries, treatment of mass
effects, and extrapolation beyond the fit region. Each PDF group has its own particular ideol-
ogy when it comes to these issues, and while the differences caused by these choices in well-
constrained regions may appear small, the user should be warned that large differences can
occur when extrapolating, e.g., to small x, or for observables that are particularly sensitive, e.g.,
to flavour symmetries, etc.

– Using PDFs extracted using higher-order matrix elements in lower-order calculations, as, e.g.,
when using NLO PDFs as input to an LO calculation. In principle, the higher-order PDFs are
better constrained and the difference between, e.g., an NLO and an LO set should formally be
beyond LO precision, so that one might be tempted to simply use the highest-order available
PDFs for any calculation. However, as described in section 2.4, it is often possible to partly ab-
sorb higher-order terms into lower-order coefficients. In the context of PDFs, the fit parameters
of lower-order PDFs will effectively attempt to “compensate” for missing higher-order contri-
butions in the matrix elements. To the extent those higher-order contributions are universal, this
is both desirable and self-consistent. However, this will only give an improvement when used
with matrix elements at the same order as those used to extract the PDFs. It is therefore quite
possible that NLO PDFs used in conjunction with LO matrix elements give a worse agreement
with data than LO PDFs do.
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– PDF uncertainties. Uncertainty estimates for PDF determinations is a highly delicate procedure,
owing in part to the diversity of the data sets that enter into the fitting procedures (especially
since some data sets appear to have “tensions”, i.e., mutual incompatibilities, between them),
but also the differences in philosophy mentioned above (e.g., on parametrizations and evolution
constraints) can cause apparent incompatibilities between different sets which are hard to give
precise uncertainty estimates for. Currently, a consensus on meaningful uncertainty estimates is
slowly building, though future years are likely to see continued active discussions on how best
to address this topic.

– How to use PDFs in conjunction with parton-shower Monte Carlo codes. The initial-state show-
ers in a Monte Carlo model are essentially supposed to mimic the evolution in the PDFs, and
vice versa. However, since PDF fits are not done with MC codes, but instead use analytical
resummation models that are not identical to their MC counterparts, the PDF fits are essentially
“tuned” to a slightly different resummation than that incorporated in a given MC model. Since
both types of calculations are supposed to be accurate at least to LL, any difference between
them should in principle be subleading. In practice, not much is known about the size and im-
pact of this ambiguity, so we mention it mostly to make sure the reader is aware that it exists.
Known differences include: the size of phase space (purely collinear massless PDF evolution vs.
the finite-transverse-momentum massive MC phase space), the treatment of momentum conser-
vation and recoil effects, additional higher-order effects explicitly or implicitly included in the
MC evolution, choice of renormalization scheme and scale, and, for those MC algorithms that
do not rely on collinear (DGLAP, see [22]) splitting kernels (e.g., the various kinds of dipole
evolution algorithms, see [44]), differences in the effective factorization scheme.

3.2 Elastic and Inelastic Components of σtot

Elastic scattering consists of all reactions of the type

A(pA)B(pB)→ A(p′A)B(p′B) , (49)

where A and B are particles carrying momenta pA and pB , respectively. Specifically, the only ex-
changed quantity is momentum; all quantum numbers and masses remain unaltered, and no new
particles are produced. Inelastic scattering covers everything else, i.e.,

AB → X 6= AB , (50)

where X 6= AB signifies that one or more quantum numbers are changed, and/or more particles are
produced. The total hadron-hadron cross section can thus be written as a sum of these two physically
distinguishable components,

σtot(s) = σel(s) + σinel(s) , (51)

where s = (pA + pB)2 is the beam-beam centre-of-mass energy squared.

If A and/or B are not elementary, the inelastic final states may be further divided into “diffrac-
tive” and “non-diffractive” topologies. This is a qualitative classification, usually based on whether
the final state looks like the decay of an excitation of the beam particles (diffractive20), or not (non-
diffractive), or upon the presence of a large rapidity gap somewhere in the final state which would
separate such excitations.

20An example of a process that would be labeled as diffractive would be if one the protons is excited to a ∆+ which then
decays back to p+ + π0, without anything else happening in the event. In general, a whole tower of possible diffractive
excitations are available, which in the continuum limit can be described by a mass spectrum falling roughly as dM2 /M2.
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Given that an event has been labeled as diffractive, either within the context of a theoretical
model, or by a final-state observable, we may distinguish between three different classes of diffractive
topologies, which it is possible to distinguish between physically, at least in principle. In double-
diffractive (DD) events, both of the beam particles are diffractively excited and hence none of them
survive the collision intact. In single-diffractive (SD) events, only one of the beam particles gets
excited and the other survives intact. The last diffractive topology is central diffraction (CD), in which
both of the beam particles survive intact, leaving an excited system in the central region between them.
(This latter topology includes “central exclusive production” where a single particle is produced in the
central region.) That is,

σinel(s) = σSD(s) + σDD(s) + σCD(s) + σND(s) , (52)

where “ND” (non-diffractive, here understood not to include elastic scattering) contains no gaps in
the event consistent with the chosen definition of diffraction. Further, each of the diffractively ex-
cited systems in the events labeled SD, DD, and CD, respectively, may in principle consist of several
subsystems with gaps between them. Eq. (52) may thus be defined to be exact, within a specific
definition of diffraction, even in the presence of multi-gap events. Note, however, that different theo-
retical models almost always use different (model-dependent) definitions of diffraction, and therefore
the individual components in one model are in general not directly comparable to those of another.
It is therefore important that data be presented at the level of physical observables if unambiguous
conclusions are to be drawn from them.

3.3 Minimum-bias and soft inclusive physics
The term “minimum-bias” (MB) is an experimental term, used to define a certain class of events that
are selected with the minimum possible trigger bias, to ensure they are as inclusive as possible21. In
theoretical contexts, the term “minimum-bias” is often used with a slightly different meaning; to de-
note specific (classes of) inclusive soft-QCD subprocesses in a given model. Since these two usages
are not exactly identical, in these lectures we have chosen to reserve the term “minimum bias” to
pertain strictly to definitions of experimental measurements, and instead use the term “soft inclusive”
physics as a generic descriptor for the class of processes which generally dominate the various exper-
imental “minimum-bias” measurements in theoretical models. This parallels the terminology used in
the review [41], from which most of the discussion here has been adapted. See equation (52) above for
a compact overview of the types of physical processes that contribute to minimum-bias data samples.
For a more detailed description of Monte Carlo models of this physics, in particular ones based on
Multiple Parton Interactions (MPI), see Section 4.4.

3.4 Underlying event and jet pedestals
In events containing a hard parton-parton interaction, the underlying event (UE) can be roughly con-
ceived of as the difference between QCD with and without including the remnants of the original
beam hadrons. Without such “beam remnants”, only the hard interaction itself, and its associated

21A typical min-bias trigger would thus be the requirement of at least one measured particle in a given rapidity region,
so that all events which produce at least one observable particle would be included, which must, indeed, be considered
the minimal possible bias. In principle, everything is a subset of minimum-bias, including both hard and soft processes.
However, compared to the total minimum-bias cross section, the fraction that is made up of hard processes is only a very
small tail. Since only a tiny fraction of the total minimum-bias rate can normally be stored, the minimum-bias sample would
give quite poor statistics if used for hard physics studies. Instead, separate dedicated hard-process triggers are typically
included in addition to the minimum-bias one, in order to ensure maximal statistics also for hard physics processes.
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parton showers and hadronization, would contribute to the observed particle production. In reality,
after the partons that participate in the hard interaction have been taken out, the remnants still contain
whatever is left of the incoming beam hadrons, including also a partonic substructure, which leads to
the possibility of “multiple parton interactions” (MPI), as will be discussed in section 4.4. Due to the
simple fact that the remnants are not empty, an “underlying event” will always be there — but how
much additional energy does it deposit in a given measurement region? A quantifation of this can be
obtained, for instance, by comparing measurements of the UE to the average activity in minimum-bias
events at the same

√
s. Interestingly, it turns out that the underlying event is much more active, with

larger fluctuations, than the average MB event. This is called the jet pedestal effect (hard jets sit on
top of a higher-than-average “pedestal” of underlying activity), and is interpreted as follows. When
two hadrons collide at non-zero impact parameter, high-p⊥ interactions can only take place inside
the overlapping region. Imposing a hard trigger therefore statistically biases the event sample toward
more central collisions, which will also have more underlying activity. See Section 4.4 for a more
detailed description of Monte Carlo models of this physics, based on MPI.

4 Monte Carlo Event Generators
In this section, we discuss the physics of Monte Carlo generators and their mathematical foundations,
at an introductory level. We shall attempt to convey the main ideas as clearly as possible without bury-
ing them in an avalanche of technical details. References to more detailed discussions are included
where applicable. We assume the reader is already familiar with the contents of the preceding sections
of this report, in particular section 2.3 on matrix elements and section 2.4 on parton showers. Several
of the discussions rely on material from the recent more comprehensive review in [41], which also
contains brief descriptions of the physics implementations of each of the main general-purpose event
generators on the market, together with a guide on how to use (and not use) generators in various
connections, and a collection of comparisons to important experimental distributions. We highly rec-
ommend readers to obtain a copy of that review, as it is the most comprehensive and up-to-date review
of event generators currently available. Another useful and pedagogical review on event generators is
contained in the 2006 ESHEP lectures by Sjöstrand [42], with a more recent update in [45].

4.1 Perturbation Theory with Markov Chains
Consider again the Born-level cross section for an arbitrary hard process, F , differentially in an arbi-
trary infrared-safe observable O, as obtained from equation (34):

dσ
(0)
F

dO

∣∣∣∣∣
Born

=

∫
dΦF |M(0)

F |2 δ(O −O(ΦF )) , (53)

where the integration runs over the full final-state on-shell phase space of F (this expression and
those below would also apply to hadron collisions were we to include integrations over the parton
distribution functions in the initial state), and the δ function projects out a 1-dimensional slice defined
by O evaluated on the set of final-state momenta which we denote ΦF .

To make the connection to parton showers, we insert an operator, S, that acts on the Born-level
final state before the observable is evaluated, i.e.,

dσF
dO

∣∣∣∣S
=

∫
dΦF |M(0)

F |2 S(ΦF ,O) . (54)
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Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appearing
explicitly in equation (53) is now implicit in S.

Algorithmically, parton showers cast S as an iterative Markov (i.e., history-independent) chain,
with an evolution parameter, QE , that formally represents the factorization scale of the event, below
which all structure is summed over inclusively. Depending on the particular choice of shower algo-
rithm, QE may be defined as a parton virtuality (virtuality-order showers), as a transverse-momentum
scale (p⊥-ordered showers), or as a combination of energies times angles (angular ordering). Regard-
less of the specific form of QE , the evolution parameter will go towards zero as the Markov chain
develops, and the event structure will become more and more exclusively resolved. A transition from
a perturbative evolution to a non-perturbative one can also be inserted, when the evolution reaches an
appropriate scale, typically around 1 GeV. This scale thus represents the lowest perturbative scale that
can appear in the calculations, with all perturbative corrections below it summed over inclusively.

Working out the precise form that S must have in order to give the correct expansions discussed
in section 2.4 takes a bit of algebra, and is beyond the scope we aim to cover in these lectures. Heuris-
tically, the procedure is as follows. We noted that the singularity structure of QCD is universal and that
at least its first few terms are known to us. We also saw that we could iterate that singularity structure,
using universality and unitarity, thereby bootstrapping our way around the entire perturbative series.
This was illustrated by the right-hand pane of figure 10 in section 2.4.

Skipping intermediate steps, the form of the all-orders pure-shower Markov chain, for the evo-
lution of an event between two scales QE1 > QE2, is,

S(ΦF , QE1, QE2,O) = ∆(ΦF , QE1, QE2) δ (O −O(ΦF ))︸ ︷︷ ︸
F + 0 exclusive above QE2

+
∑

r

∫ QE1

QE2

dΦr
F+1

dΦF

Sr(ΦF+1) ∆(ΦF , QE1, QF+1) S(ΦF+1, QF+1, QE2,O)

︸ ︷︷ ︸
F + 1 inclusive above QE2

,

(55)
with the so-called Sudakov factor,

∆(ΦF , QE1, QE2) = exp

[
−
∑

r

∫ QE1

QE2

dΦr
F+1

dΦF

Sr(ΦF+1)

]
, (56)

defining the probability that there is no evolution (i.e., no emissions) between the scales QE1 and
QE2, according to the radiation functions Sr to which we shall return below. The term on the first
line of equation (55) thus represents all events that did not evolve as the resolution scale was lowered
from QE1 to QE2, while the second line contains a sum and phase-space integral over those events
that did evolve — including the insertion of S(ΦF+1) representing the possible further evolution of
the event and completing the iterative definition of the Markov chain.

The factor dΦr
F+1 /dΦF defines the chosen phase space factorization. Our favourite is the so-

called dipole-antenna factorization, whose principal virtue is that it is the simplest Lorentz invariant
factorization which is simultaneously exact over all of phase space while only involving on-shell
momenta. For completeness, its form is

dΦr
F+1

dΦF

=
dΦr

3

dΦ2

= dsa1 ds1b
dφ

2π

1

16π2sr
, (57)
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Fig. 12: Illustration of the double-counting problem caused by naively adding cross sections involving
matrix elements with different numbers of legs.

which involves just one colour-anticolour pair for each r, with invariant mass squared sr = (pa +
p1 + pb)

2. Other choices, such as purely collinear ones (only exact in the collinear limit or involving
explicitly off-shell momenta), more global ones involving all partons in the event (more complicated,
in our opinion), or less global ones with a single parton playing the dominant role as emitter, are also
possible, again depending on the specific algorithm considered.

The radiation functions Sr obviously play a crucial role in these equations, driving the emission
probabilities. For example, if Sr → 0, then ∆ → exp(0) = 1 and all events stay in the top line of
equation (55). Thus, in regions of phase space where Sr is small, there is little or no evolution.
Conversely, for Sr → ∞, we have ∆ → 0, implying that all events evolve. One possible choice for
the radiation functions Sr was implicit in equation (40), in which we took them to include only the
leading (double) singularities, with r representing colour-anticolour pairs. In general, the shower may
exponentiate the entire set of universal singular terms, or only a subset of them (for example, the terms
leading in the number of coloursNC), which is why we here let the explicit form of Sr be unspecified.
Suffice it to say that in traditional parton showers, Sr would simply be the DGLAP splitting kernels
(see, e.g., [22]), while they would be so-called dipole or antenna radiation functions in the various
dipole-based approaches to QCD (see, e.g., [34, 35, 46–49]).

The procedure for how to technically “construct” a shower algorithm of this kind, using random
numbers to generate scales distributed according to equation (55), is described more fully in [34],
using a notation that closely parallels the one used here. The procedure is also described at a more
technical level in the review [41], though using a slightly different notation. Finally, a pedagogical
introduction to Monte Carlo methods in general can be found in [29].

4.2 Matching
The essential problem that leads to matrix-element/parton-shower matching can be illustrated in a
very simple way. Assume we have computed the LO cross section for some process, F , and that we
have added an LL shower to it, as in the left-hand pane of figure 12. We know that this only gives us an
LL description of F +1. We now wish to improve this from LL to LO by adding the actual LO matrix
element for F + 1. Since we also want to be able to hadronize these events, etc, we again add an LL
shower off them. However, since the matrix element for F +1 is divergent, we must restrict it to cover
only the phase-space region with at least one hard resolved jet, illustrated by the half-shaded boxes in
the middle pane of figure 12. Adding these two samples, however, we end up counting the LL terms
of the inclusive cross section for F + 1 twice, since we are now getting them once from the shower
off F and once from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the
right-hand pane of figure 12. This double-counting problem would grow worse if we attempted to add
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Fig. 13: Illustration of the original matching scheme implemented in HERWIG [51, 52], in which the
dead zone of the HERWIG shower was used as an effective “matching scale” for one emission beyond
a basic hard process.

more matrix elements, with more legs. The cause is very simple. Each such calculation corresponds
to an inclusive cross section, and hence naive addition would give

σtot = σ0;incl + σ1;incl = σ0;excl + 2σ1;incl . (58)

Instead, we must match the coefficients calculated by the two parts of the full calculation — showers
and matrix elements — more systematically, for each order in perturbation theory, so that the nesting
of inclusive and exclusive cross sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three different
ways in which we can consider matching the two [34]:

1. Slicing: The most commonly encountered matching type is currently based on separating
(slicing) phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of approach
was first used in HERWIG [50], to include matrix-element corrections for one emission beyond the
basic hard process [51, 52]. This is illustrated in figure 13. The method has since been generalized
by several independent groups to include arbitrary numbers of additional legs [53–57]. Effectively,
the shower approximation is set to zero above some scale (either due to the presence of explicit dead
zones in the shower, as in HERWIG, or by vetoing any emissions above a certain matching scale, as in
the (L)-CKKW [53,54,56] and MLM [55,57] approaches), causing the matched result to be identical
to the matrix element (ME) in that region, modulo higher-order corrections. We may sketch this as

Matched (above matching scale) =

ME︷ ︸︸ ︷
Exact ×

corrections︷ ︸︸ ︷
(1 +O(αs)) , (59)

where the “shower-corrections” include approximate Sudakov factors and αs reweighting factors ap-
plied to the matrix elements in order to obtain a smooth transition to the shower-dominated region.
Below the matching scale, the small difference between the matrix elements and the shower approx-
imation can be dropped (since their leading singularities are identical and this region by definition
includes no hard jets), yielding the pure shower answer in that region,

Matched (below matching scale) =

shower︷ ︸︸ ︷
Approximate +

correction︷ ︸︸ ︷
(Exact− Approximate)

= Approximate + non-singular

→ Approximate . (60)
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Fig. 14: Illustration of slicing approaches to matching, with up to two additional emissions beyond
the basic process. The showers off F and F + 1 are set to zero above a specific “matching scale”.
(The number of coefficients shown was reduced a bit in these plots to make them fit in one row.)
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Fig. 15: Illustration of the MC@NLO approach to matching. In the middle pane, cyan boxes de-
note non-singular correction terms, while the egg-coloured ones denote showers off such corrections,
which cannot lead to double-counting at the LL level.

This type of strategy is illustrated in figure 14. Since this strategy is discontinuous across phase
space, a main point here is to ensure that the behaviour across the matching scale be as smooth as
possible. CKKW showed [53] that it is possible to remove any dependence on the matching scale
through NLL precision by careful choices of all ingredients in the matching; technical details of the
implementation (affecting the O(αs) terms in eq. (59)) are important, and the dependence on the
unphysical matching scale may be larger than NLL unless the implementation matches the theoretical
algorithm precisely [54, 56, 58]. One should also be aware that all strategies of this type are quite
computing intensive. This is basically due to the fact that a separate phase-space generator is required
for each of the n-parton correction terms, with each such sample a priori consisting of weighted events
such that a separate unweighting step (often with quite low efficiency) is needed before an unweighted
sample can be produced.

2. Subtraction: Another way of matching two calculations is by subtracting one from the other
and correcting by the difference, schematically

Matched =

shower︷ ︸︸ ︷
Approximate +

correction︷ ︸︸ ︷
(Exact− Approximate) . (61)

This looks very much like the structure of an NLO fixed-order calculation, in which the shower ap-
proximation plays the role of subtraction terms, and indeed this is what is used in strategies like
MC@NLO [59–61], illustrated in figure 15. In this type of approach, however, negative-weight events
will generally occur, for instance in phase-space points where the approximation is larger than the
exact answer. This motivated the development of the so-called POWHEG approach [62], illustrated
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Fig. 16: Illustration of the POWHEG approach to matching. In the middle pane, cyan boxes de-
note non-singular correction terms, while the egg-coloured ones denote showers off such corrections,
which cannot lead to double-counting at the LL level.
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Fig. 17: Illustration of the MENLOPS approach to matching. Note that each of the POWHEG and
CKKW samples are composed of separate sub-samples, as illustrated in figures 14 and 16.

in figure 16, which is constructed specifically to prevent negative-weight events from occurring and
simultaneously to be more independent of which parton-shower algorithm it is used with. The ad-
vantage of these methods is obviously that NLO corrections to the Born level can be systematically
incorporated. However, a systematic way of extending this strategy beyond the first additional emis-
sion is not available, save for combining them with a slicing-based strategy for the additional legs, as
in MENLOPS [63], illustrated in figure 17. These issues are, however, no more severe than in ordinary
fixed-order NLO approaches, and hence they are not viewed as disadvantages if the point of reference
is an NLO computation.

3. Unitarity: The oldest, and in our view most attractive, approach [64, 65] consists of working
out the shower approximation to a given fixed order, and correcting the shower splitting functions at
that order by a multiplicative factor given by the ratio of the matrix element to the shower approxima-
tion, phase-space point by phase-space point. We may sketch this as

Matched =

shower︷ ︸︸ ︷
Approximate ×

correction︷ ︸︸ ︷
Exact

Approximate
. (62)

When these correction factors are inserted back into the shower evolution, they guarantee that the
shower evolution off n − 1 partons correctly reproduces the n-parton matrix elements, without the
need to generate a separate n-parton sample. That is, the shower approximation is essentially used
as a pre-weighted (stratified) all-orders phase-space generator, on which a more exact answer can
subsequently be imprinted order by order in perturbation theory. In the original approach [64, 65],
used by PYTHIA [66,67], this was only worked out for one additional emission beyond the basic hard
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Fig. 18: Illustration of the two purely unitarity-based approaches to matching discussed in the text.
Only one event sample is produced by each of these methods, and hence no sub-components are
shown.

process. In POWHEG [62], it was extended to include also virtual corrections to the Born-level matrix
element. Finally, in VINCIA [34], it has been extended to include arbitrary numbers of emissions at
tree level, though that method has so far only been applied to final-state showers. An illustration of the
perturbative coefficients that can be included in each of these approaches is illustrated in figure 18, as
usual with green (darker shaded) boxes representing exact coefficients and yellow (light shaded) boxes
representing logarithmic approximations. Finally, two more properties unique to this method deserve
mention. Firstly, since the corrections modify the actual shower evolution kernels, the corrections are
automatically resummed in the Sudakov exponential, which should improve the logarithmic precision
once k ≥ 2 is included, and secondly, since the shower is unitary, an initially unweighted sample of
(n− 1)-parton configurations remains unweighted, with no need for a separate event-unweighting or
event-rejection step.

4.3 The String Model of Hadronization
In the context of event generators, hadronization denotes the process by which a set of post-shower
partons is transformed into a set of primary hadrons, which may then subsequently decay further. This
non-perturbative transition takes place at the hadronization scale, which by construction is identical
to the infrared cutoff of the parton shower. In the absence of a first-principles solution to the relevant
dynamics, event generators use QCD-inspired phenomenological models to describe this transition.

Although non-perturbative QCD is not solved, we do have some knowledge of the properties
that such a solution must have. For instance, Poincaré invariance, unitarity, and causality are all
concepts that apply beyond perturbation theory. In addition, lattice QCD provides us a means of
making explicit quantitative studies in a genuinely non-perturbative setting, albeit only of certain
questions.

An important result in “quenched” lattice QCD22 is that the potential of the colour dipole field
between a charge and an anticharge appears to grow linearly with the separation of the charges, when
the separation is greater than about a femtometer.This is known as “linear confinement”, and it forms
the starting point for the string model of hadronization.

Starting from early concepts developed by Artru and Mennessier [68], several hadronization
models based on strings were proposed in the late 1970’ies and early 80’ies. Of these, the most
sophisticated and widely used today is the so-called Lund model, implemented in the PYTHIA code.
We shall therefore concentrate on that particular model here, though many of the overall concepts

22Quenched QCD implies no “dynamical” quarks, i.e., no g → qq̄ splittings allowed.
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Fig. 19: Illustration of the transition between a Coulomb potential at short distances to the string-like
one of equation (63) at large qq̄ separations.

would be shared by any string-inspired method. (A more extended discussion can be found in the
very complete and pedagogical review of the Lund model by Andersson [69].)

Consider the production of a qq̄ pair from vacuum, for instance in the process e+e− → γ∗/Z →
qq̄ → hadrons. As the quarks move apart, linear confinement implies that a potential

V (r) = κ r (63)

is asymptotically reached for large distances, r. (At short distances, there is a Coulomb term propor-
tional to 1/r as well, but this is neglected in the Lund model.) This potential describes a string with
tension (energy per unit length) κ. The physical picture is that of a colour flux tube being stretched
between the q and the q̄, figure 19. From hadron mass spectroscopy the string tension κ, is known to
be

κ ∼ 1 GeV/fm ∼ 0.2 GeV2. (64)

A straightforward Lorentz-invariant description of this object is provided by the massless relativistic
string in 1+1 dimensions, with no transverse degrees of freedom. The mathematical, one-dimensional
string can be thought of as parameterizing the position of the axis of a cylindrically symmetric flux
tube. (Note that the expression “massless” is somewhat of a misnomer, since κ effectively corresponds
to a “mass density” along the string.)

As the q and q̄ move apart, their kinetic energy is gradually converted to potential energy, stored
in the growing string spanned between them. In the “quenched” approximation, in which g → qq̄ split-
tings are not allowed, this process would continue until the endpoint quarks have lost all their momen-
tum, at which point they would reverse direction and be accelerated by the now shrinking string. In
the real world, quark-antiquark fluctuations inside the string field can make the transition to become
real particles by absorbing energy from the string, thereby screening the original endpoint charges
from each other and breaking the string into two separate colour-singlet pieces, (qq̄)→ (qq̄′) + (q′q̄),
illustrated in figure 20 a. This process then continues until only ordinary hadrons remain. (We will
give more details on the individual string breaks below.) More complicated multi-parton topologies
including gluons are treated by representing gluons as transverse “kinks”. Thus soft gluons effec-
tively “build up” a transverse structure in the originally one-dimensional object, with infinitely soft
ones absorbed into the string without leading to modifications. For strings with finite-energy kinks,
the space-time evolution is then slightly more involved [69], and modifications to the fragmentation
model to handle stepping across gluon corners have to be included, but the main point is that there
are no separate free parameters for gluon jets. Differences with respect to quark fragmentation arise
simply because quarks are only connected to a single string piece, while gluons have one on either
side, increasing the energy loss per unit (invariant) time from a gluon to the string by a factor of 2
relative to quarks, which can be compared to the ratio of colour Casimirs CA/CF = 2.25.
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Fig. 20: a) Illustration of string breaking by quark pair creation in the string field. b) Illustration of
the algorithmic choice to process the fragmentation from the outside-in, splitting off a single on-shell
hadron in each step.

Since the string breaks are causally disconnected (as can easily be realized from space-time
diagrams [69]), they do not have to be considered in any specific time-ordered sequence. In the
Lund model, the string breaks are instead generated starting with the leading hadrons, containing the
endpoint quarks, and iterating inwards towards the centre of the string, alternating randomly between
fragmentation off the left- and right-hand sides, respectively, figure 20b. This has the advantage that a
single on-shell hadron can be split off in each step, making it straightforward to ensure that only states
consistent with the known spectrum of hadron resonances are produced, as will be discussed below.

The details of the individual string breaks are not known from first principles. The Lund model
invokes the idea of quantum mechanical tunneling, which leads to a Gaussian suppression of the
energies and masses imparted to the produced quarks,

Prob(m2
q , p

2
⊥q) ∝ exp

(
−πm2

q

κ

)
exp

(
−πp2

⊥q
κ

)
, (65)

where mq is the mass of the produced quark and p⊥ is the transverse momentum imparted to it by the
breakup process (the antiquark obviously has the same mass and opposite p⊥).

Due to the factorization of the p⊥and m dependence implied by equation (65), the p⊥spectrum
of produced quarks in this model is independent of the quark flavour, with a universal average value
of 〈

p2
⊥q
〉

= σ2 = κ/π ∼ (250 MeV)2 . (66)

Bear in mind that “transverse” is here defined with respect to the string axis. Thus, the p⊥in a frame
where the string is moving is modified by a Lorentz boost factor. Also bear in mind that σ2 is here
a purely non-perturbative parameter. In a Monte Carlo model with a fixed shower cutoff, the effec-
tive amount of “non-perturbative” p⊥may be larger than this, due to effects of additional unresolved
soft-gluon radiation below the shower cutoff scale. In principle, the magnitude of this additional com-
ponent should scale with the cutoff, but in practice it is up to the user to enforce this by retuning the
effective σ parameter when changing the hadronization scale. Since hadrons receive p⊥ contributions
from two breakups, one on either side, their average transverse momentum squared will be twice as
large, 〈

p2
⊥h
〉

= 2σ2 . (67)
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The mass suppression implied by equation (65) is less straightforward to interpret. Since quark
masses are notoriously difficult to define for light quarks, the value of the strangeness suppression
must effectively be extracted from experimental measurements, e.g., of theK/π ratio, with a resulting
suppression of roughly s/u ∼ s/d ∼ 0.2 – 0.3. Inserting even comparatively low values for the
charm quark mass in equation (65), however, one obtains a relative suppression of charm of the order
of 10−11. Heavy quarks can therefore safely be considered to be produced only in the perturbative
stages and not by the soft fragmentation.

Baryon production can be incorporated in the same basic picture [70], by allowing string breaks
to occur also by the production of pairs of so-called diquarks, loosely bound states of two quarks in
an overall 3̄ representation (e.g., red + blue = antigreen). Again, the relative rate of diquark-to-quark
production is not known a priori and must be extracted from experimental measurements, e.g., of the
p/π ratio. More advanced scenarios for baryon production have also been proposed, in particular the
so-called popcorn model [71, 72], which is normally used in addition to the diquark picture and then
acts to decrease the correlations among neighbouring baryon-antibaryon pairs by allowing mesons to
be formed inbetween them. Within the PYTHIA framework, a fragmentation model including explicit
string junctions [73] has so far only been applied to baryon-number-violating new-physics processes
and to the description of beam remnants (and then acts to increase baryon stopping [74]).

This brings us to the next step of the algorithm, assignment of the produced quarks within
hadron multiplets. The fragmenting quark (antiquark) may combine with the antiquark (quark) from a
newly created breakup to produce either a vector or a pseudoscalar meson, or, if diquarks are involved,
either a spin-1/2 or spin-3/2 baryon. Unfortunately, the string model is entirely unpredictive in this
respect, and this is therefore the sector that contains the largest amount of free parameters. From
spin counting alone, one would expect the ratio V/S of vectors to pseudoscalars to be 3, but in
practice this is only approximately true for B∗/B. For lighter flavours, the difference in phase space
caused by the V –S mass splittings implies a suppression of vector production. Thus, for D∗/D, the
effective ratio is already reduced to about ∼ 1.0 – 2.0, while for K∗/K and ρ/π, extracted values
range from 0.3 – 1.0. Recall, as always, that these are production ratios of primary hadrons, hence
feed-down complicates the extraction of these parameters from experimental data, in particular for
the lighter hadron species. The production of higher meson resonances is assumed to be low in a
string framework23. For diquarks, separate parameters control the relative rates of spin-1 diquarks vs.
spin-0 ones and, likewise, have to extracted from data, with resulting values of order (qq)1/(qq)0 ∼
0.075 – 0.15.

With p2
⊥ and m2 now fixed, the final step is to select the fraction, z, of the fragmenting end-

point quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string
picture is substantially more predictive than for the flavour selection. Firstly, the requirement that the
fragmentation be independent of the sequence in which breakups are considered (causality) imposes
a “left-right symmetry” on the possible form of the fragmentation function, f(z), with the solution

f(z) ∝ 1

z
(1− z)a exp

(
−b (m2

h + p2
⊥h)

z

)
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a
by-product, the probability distribution in invariant time τ of q′q̄ breakup vertices, or equivalently
Γ = (κτ)2, is also obtained, with dP/dΓ ∝ Γa exp(−bΓ) implying an area law for the colour flux,
and the average breakup time lying along a hyperbola of constant invariant time τ0 ∼ 10−23s [69].

23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are
poorly known and thus may result in a worse overall description when included.

37



u(~p⊥0, p+)

dd̄

ss̄

π+(~p⊥0 − ~p⊥1, z1p+)

K0(~p⊥1 − ~p⊥2, z2(1 − z1)p+)

...

QIR

shower

· · ·
QUV

Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation
model.

The a and b parameters are the only free parameters of the fragmentation function, though a may
in principle be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder
fragmentation function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p⊥, and z values is illustrated in figure 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p⊥0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E ± pz . Next, an adjacent dd̄ pair from the vacuum is created, with relative
transverse momenta ±p⊥1. The fragmenting quark combines with the d̄ from the breakup to form a
π+, which carries off a fraction z1 of the total lightcone momentum p+. The next hadron carries off a
fraction z2 of the remaining momentum, etc.

For massive endpoints (e.g., c and b quarks, or hypothetical hadronizing new-physics particles,
generally called R-hadrons), which do not move along straight lightcone sections, the exponential
suppression with string area leads to modifications of the form [75], f(z) → f(z)/zbm

2
Q , with mQ

the mass of the heavy quark. Strictly speaking, this is the only fragmentation function that is consistent
with causality in the string model, though a few alternative forms are typically provided as well.

Note, however, that the term fragmentation function in the context of non-perturbative hadroniza-
tion models is used to denote only the corrections originating from scales below the infrared cutoff
scale of the parton shower. That is, the fragmentation functions introduced here are defined at an
intrinsically low scale of order Q ∼ 1 GeV. It would therefore be highly inconsistent and misleading
to compare them directly to those that are used in fixed-order and/or analytical-resummation contexts,
which are typically defined at a factorization scale of order the scale of the hard process.

4.4 Multiple Parton Interactions
In Monte Carlo modeling contexts, multiple parton interactions (MPI) denote the possibility of hav-
ing multiple partonic 2 → 2 interactions occurring within a single hadron-hadron collision. The
most striking and easily identifiable consequence of MPI is thus arguably the possibility of observing
several distinct (i.e., hard) parton-parton interactions in some fraction of hadron-hadron events. Ad-
ditional jet pairs produced in this way are sometimes referred to as “minijets”, but in the interest of
maintaining a compact terminology, we shall here just call them MPI jets. The main distinguishing
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feature of such jets is that they tend to form back-to-back pairs, with little total p⊥. For comparison,
jets from bremsstrahlung tend to be aligned with the direction of their “parent” partons. The fraction
of multiple interactions that give rise to additional reconstructible jets is, however, quite small (how
small depends on the exact jet definition used). Additional soft interactions, below the jet cutoff, are
much more plentiful, and can give significant corrections to the colour flow and total scattered en-
ergy of the event. This affects the final-state activity in a more global way, increasing multiplicity
and summed ET distributions, and contributing to the break-up of the beam remnant in the forward
direction.

The first detailed Monte Carlo model for perturbative MPI was proposed by Sjöstrand and van
Zijl in [76], and with some variation this still forms the basis for most modern implementations. Here,
we therefore focus on that model and on its more recent “interleaved” version [77]. Some discussion
of alternative models as well as additional references to the history and development of the subject of
multiple interactions can be found in [41].

An intuitive way of arriving at the idea of multiple interactions is to view hadrons simply as
‘bunches’ of incoming partons. No physical law then prevents several distinct pairs of partons from
undergoing scattering processes within one and the same hadron-hadron collision. The other key idea
to bear in mind is that the exchanged QCD particles are coloured, and hence such multiple interactions
— even when soft — can cause non-trivial changes to the colour topology of the colliding system as
a whole, with potentially major consequences for the particle multiplicity in the final state.

To begin to construct a model for this, we first observe that, at low p⊥, t-channel propagators
almost go on shell (reminiscent of the case of bremsstrahlung, described in detail in section 2.4),
which causes the differential QCD parton-parton scattering cross sections (such as the Rutherford one
illustrated in section 2) to become very large, behaving roughly as:

dσ̂2→2 ∝
dt̂

t̂2
∼ dp̂2

⊥
p̂4
⊥
, (69)

An integration of this cross section from a lower cutoff p⊥min to
√
s, using the full (leading-

order) QCD 2→ 2 matrix elements folded with some recent parton-density sets, is shown in figure 22,
for pp collisions at 14 TeV [78]. The solid curves, representing the calculated cross sections as
functions of p⊥min, are compared to a few different predictions for σtot (the total pp cross section
[79]), shown as horizontal lines with different dashing styles on the same plot. Physically, the jet
cross section can of course not exceed the total pp one, yet this is what appears to be happening at
scales of order 4–5 GeV in figure 22. How to interpret this behaviour?

Recall that the interaction cross section is an inclusive number. Thus, if a single hadron-hadron
event contains two parton-parton interactions, it will count twice in σ2→2 but only once in σtot, and
so on for higher parton-parton interaction numbers. In the limit that all the individual parton-parton
interactions are independent and equivalent (to be improved on below), we have

σ2→2(p⊥min) = 〈n〉(p⊥min) σtot , (70)

with 〈n〉(p⊥min) giving the average of a Poisson distribution in the number of parton-parton interac-
tions above p⊥min per hadron-hadron collision,

Pn(p⊥min) = [〈n〉(p⊥min)]n
exp [−〈n〉(p⊥min)]

n!
, (71)

and that number may well be above unity. This simple argument in fact expresses unitarity; instead
of the total interaction cross section diverging as p⊥min → 0 (which would violate unitarity), we have
restated the problem so that it is now the number of interactions per collision that diverges.
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Fig. 22: The inclusive jet cross section calculated at LO for three different proton PDFs, compared
to various extrapolations of the non-perturbative fits to the total pp cross section at 14 TeV centre-of-
mass energy. From [78].

Two important ingredients remain to be introduced in order to fully regulate the remaining
divergence. Firstly, the interactions cannot use up more momentum than is available in the parent
hadron. This will suppress the large-n tail of the naïve estimate above. Obviously, exact momentum
conservation is included in all Monte Carlo models currently on the market, although the details vary
somewhat from model to model. In the PYTHIA-based models [76, 77, 80], the multiple interactions
are ordered in p⊥, and the parton distributions for each successive interaction are explicitly constructed
so that the sum of x fractions can never be greater than unity. In the HERWIG models [81,82], instead
the uncorrelated estimate of 〈n〉 above is used directly as an initial guess, but the actual generation of
interactions stop once the energy-momentum conservation limit is exceeded (with the last “offending”
interaction also removed from consideration).

The second ingredient suppressing the number of interactions, at low p⊥ and x, is colour screen-
ing; if the wavelength ∼ 1/p⊥ of an exchanged coloured parton becomes larger than a typical colour-
anticolour separation distance, it will only see an average colour charge that vanishes in the limit
p⊥ → 0, hence leading to suppressed interactions. This screening effectively provides an infrared
cutoff for MPI similar to that provided by the hadronization scale for parton showers. A first estimate
of an effective lower cutoff due to colour screening would be the proton size

p⊥min '
~
rp
≈ 0.2 GeV · fm

0.7 fm
≈ 0.3 GeV ' ΛQCD , (72)

but empirically this appears to be too low. In current models, one replaces the proton radius rp in
the above formula by a “typical colour screening distance” d, i.e. an average size of a region within
which the net compensation of a given colour charge occurs. This number is not known from first
principles, so effectively this is simply a cutoff parameter, which can then just as well be put in
transverse momentum space. The simplest choice is to introduce a step function Θ(p⊥−p⊥min), such
that the perturbative cross section completely vanishes below the p⊥min scale. Alternatively, one may
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note that the jet cross section is divergent like α2
s(p

2
⊥)/p4

⊥, cf. eq. (69), and that therefore a factor

α2
s(p

2
⊥0 + p2

⊥)

α2
s(p

2
⊥)

p4
⊥

(p2
⊥0 + p2

⊥)2
(73)

would smoothly regularize the divergences, now with p⊥0 as the free parameter to be tuned to data.
Regardless of whether it is imposed as a smooth (PYTHIA and SHERPA) or steep (HERWIG ++) func-
tion, this is one of the main “tuning” parameters in such models. Note also that this parameter does not
have to be energy-independent. Higher energies imply that parton densities can be probed at smaller
x values, where the number of partons rapidly increases. Partons then become closer packed and the
colour screening distance d decreases. The uncertainty on the energy and/or x scaling of the cutoff is
a major concern when extrapolating between different collider energies.

We now turn to the origin of the so-called “pedestal effect”, the observational fact that hard jets
appear to sit on top of a higher “pedestal” of underlying activity than events with no hard jets. This
is interpreted as a consequence of impact-parameter-dependence, as follows. In peripheral collisions,
only a small fraction of events contain any high-p⊥ activity, whereas central collisions are more likely
to contain at least one hard scattering; a high-p⊥ triggered sample will therefore be biased towards
small impact parameters. The ability of a model to describe the shape of the pedestal (e.g., to describe
both “minimum-bias” data and underlying-event distributions simultaneously) therefore depends upon
its modeling of the impact-parameter dependence, and correspondingly the impact-parameter shape
constitutes another main tuning parameter for models that include this dependence.

For each impact parameter, b, the number of interactions ñ can then still be assumed to be dis-
tributed according to a Poissonian, eq. (71), again modulo momentum conservation, but now with the
mean value of the Poisson distribution depending on impact parameter, 〈ñ(b)〉. If the matter distri-
bution has a tail to infinity (as, e.g., Gaussians do), one may nominally obtain events with arbitrarily
large b values. In order to obtain finite total cross sections, it is therefore necessary to give a separate
interpretation to the “zero bin” of the Poisson distribution, which corresponds to no-interaction events.
In models that attempt to describe the entire inelastic non-diffractive cross section, this bin is simply
ignored, since the events in it can only represent elastic or diffractive scatterings, which are modeled
separately. Alternatively, in models that pertain only to hard inelastic events, it can be reinterpreted as
containing that fraction of the total inelastic cross section which do not contain any hard interactions.

Finally, we should mention that there are two perturbative modeling aspects which go beyond
the introduction of MPI themselves. In particular, this concerns

1. Parton showers off the MPI.
2. Perturbative parton-rescattering effects.

Without showers, MPI models would generate very sharp peaks for back-to-back MPI jets,
caused by unshowered partons passed directly to the hadronization model. However, with the excep-
tion of the oldest PYTHIA 6 model [76], all of the general-purpose event-generator models do include
such showers, and hence should exhibit more realistic (i.e., broader and more decorrelated) MPI jets.
On the initial state side of the MPI shower issue, the main questions are whether and how correlated
multi-parton densities are taken into account, and, as discussed previously, how the showers are regu-
lated at low p⊥ and/or low x. Although none of the MC models currently impose a rigorous correlated
multi-parton evolution, all of them include some elementary aspects. The most significant for parton-
level results is arguably momentum conservation, which is enforced explicitly in all the models. The
so-called “interleaved” models [74,77] attempt to go a step further, generating an explicitly correlated
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multi-parton evolution in which flavour sum rules can be imposed to conserve, e.g., the total numbers
of valence and sea quarks across interaction chains.

Perturbative rescattering in the final state occurs if partons are allowed to undergo several
distinct interactions, with showering activity possibly taking place inbetween. This has so far not
been studied extensively, but a first fairly complete model and exploratory study has been presented
in the context of PYTHIA 8 [80]. In the initial state, parton rescattering effects have so far not been
included in any of the general-purpose Monte Carlo models.

4.5 Colour (Re)-Connections and Beam Remnants
Consider now a hadron-hadron collision, i.e., including MPI, at the parton level, equivalent to a res-
olution scale of about one GeV. The system of coloured partons emerging from the short-distance
phase (primary parton-parton interaction plus parton-level underlying event plus beam-remnant par-
tons) must now undergo the transition to colourless hadrons. Infrared sensitive observables, such as
individual hadron multiplicities and spectra are crucially dependent on the parton-parton correlations
in colour space, and on the properties and parameters of the hadronization model used. Here, we
concentrate on the specific issues connected with the structure of the event in colour space.

Keeping the short-distance parts unchanged, the colour structure inside each of the MPI systems
is normally still described using just the ordinary leading-colour matrix-element and parton-shower
machinery described in sections 2.3 and 2.4. The crucial question, in the context of MPI, is then how
colour is neutralized between different MPI systems, including also the remnants. Since these systems
can lie at very different rapidities (the extreme case being the two opposite beam remnants), the strings
spanned between them can have very large invariant masses (though normally low p⊥), and give rise
to large amounts of (soft) particle production. Indeed, in the context of soft-inclusive physics, it is
precisely these “inter-system” strings which furnish the dominant particle production mechanism, and
hence their modeling is an essential part of the infrared physics description.

As discussed more fully in [41], there is a large amount of ambiguity concerning how to ad-
dress this, and a substantial amount of variation between current models. Experimental investigations
of colour reconnections at LEP [83–86] were only able to exclude some fairly extreme models, with
comparatively moderate ones still allowed. Furthermore, in hadron collisions the initial state con-
tains soft colour fields with wavelengths of order the confinement scale. The presence of such fields,
unconstrained by LEP measurements, could impact in a non-trivial way the process of colour neu-
tralization [87, 88]. And finally, the MPI produce an additional amount of displaced colour charges,
translating to a larger density of hadronizing systems. It is not known to what extent the collective
hadronization of such a system differs from a simple sum of independent systems.

A new generation of colour-reconnection toy models have therefore been developed specifically
with soft-inclusive and underlying-event physics in mind [89–91], and also the cluster-based [92] and
Generalized-Area-Law [93] models have been revisited in that context. Although still quite crude,
these models do appear to be able to describe significant features of the Tevatron and LHC data, such
as the 〈p⊥〉(Nch) distribution in minimum-bias data, which appears to be quite sensitive to this effect.
It is nonetheless clear that the details of the full fragmentation process in hadron-hadron collisions are
still far from completely understood.

4.6 Tuning
The main virtue of general-purpose Monte Carlo event generators is their ability to provide a complete
and fully differential picture of collider final states, down to the level of individual particles. This
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allows them to be used as detailed — albeit approximate — theoretical references for measurements
performed at accelerators like the LHC, against which models of both known and ‘new’ physics can
be tested. As has been emphasized in these lectures, the achievable accuracy depends both on the
inclusiveness of the chosen observable and on the sophistication of the simulation itself. An important
driver for the latter is obviously the development of improved theoretical models, e.g., by including
matching to higher-order matrix elements, more accurate resummations, or better non-perturbative
models, as discussed in the previous sections; but it also depends crucially on the available constraints
on the remaining free parameters of the model. Using existing data to constrain these is referred to as
generator tuning.

Although Monte Carlo models may appear to have a bewildering array of independently ad-
justable parameters, it is worth keeping at the front of one’s mind that most of these parameters only
control relatively small (exclusive) details of the event generation. The majority of the (inclusive)
physics is determined by only a few, very important ones, such as, e.g., the value of the strong cou-
pling, in the perturbative domain, and the form of the fragmentation function for massless partons, in
the non-perturbative one.

Armed with a good understanding of the underlying model, an expert would therefore normally
take a highly factorized approach to constraining the parameters, first constraining the perturbative
ones and thereafter the non-perturbative ones, each ordered in a measure of their relative significance
to the overall modeling. This factorization, and carefully chosen experimental distributions corre-
sponding to each step, allows one to concentrate on just a few parameters and distributions at a time,
reducing the full parameter space to manageable-sized chunks. Still, each step will often involve more
than one single parameter, and non-factorizable corrections still imply that changes made in subse-
quent steps can change the agreement obtained in previous ones by a non-negligible amount, requiring
additional iterations from the beginning to properly tune the entire generator framework.

Recent years have seen the emergence of automated tools that attempt to reduce the amount of
both computer and manpower required for this task, for instance by making full generator runs only
for a limited set of parameter points, and then interpolating between these to obtain approximations
to what the true generator result would have been for any intermediate parameter point, as, e.g., in
the Professor tool [94, 95]. Automating the human expert input is of course more difficult. In the
tools currently on the market, this question is addressed by a combination of input solicited from
the generator authors (e.g., which parameters and ranges to consider, which observables constitute a
complete set, etc) and the elaborate construction of non-trivial weighting functions that determine how
much weight is assigned to each individual bin and to each distribution. The field is still burgeoning,
however, and future sophistications are to be expected. Nevertheless, at this point the overall quality
of the tunes obtained with automated methods appear to at least be competitive with the manual ones.

A sketch of a reasonably complete tuning procedure, without going into details about the pa-
rameters that control each of these sectors in individual Monte Carlo models, would be the following:

1) Keep in mind that inabilities of models to describe data is a vital part of the feedback cycle
between theory and experiment. Also keep in mind that perturbation theory at LO×LL is doing very
well if it gets within 10% of a given IR safe measurement. An agreement of 5% should be considered
the absolute sanity limit, beyond which it does not make any sense whatsoever to tune further. The
advent of NLO Monte Carlos may reduce these numbers slightly, but only for quantities for which
one expects NLO precision to hold. However, the sanity limit should be taken to be at least twice as
large for quantities governed by non-perturbative physics. For some quantities, e.g., ones for which
the underlying modeling is known to be poor, an order-of-magnitude agreement or worse may have
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to be accepted. Attempting to force Monte Carlo models to describe data far outside their domains
of validity must be expected to produce similar side effects as attempting to turn a Fiat into a Ferrari
merely by cranking up the engine revolutions.

2) Final-State Radiation and Hadronization: mainly using LEP and other e+e− collider data.
On the IR safe side, there are event shapes and jet observables, the latter including rates, resolutions,
masses, shapes, and jet-jet correlations. On the IR sensitive side, special attention should be paid to
the high-z tail of the fragmentation spectra, where a single hadron carries a large fraction of an entire
jet’s momentum, since this is the tail that is most likely to give “fake jets”. Depending on the focus
of the tuning, attention should also be paid to identified-particle rates and ratios, and to fragmentation
in events containing heavy quarks and/or gluon jets. Usually, more weight is given to those particles
that are most copiously produced, though this again depends on the focus. Finally, particle-particle
correlations and baryon production are typically some of the least well constrained components of the
overall modeling. The scaling properties of IR safe vs. IR sensitive contributions can be tested by
comparing data at several different e+e− collider energies.

3) Initial-State Radiation, and so-called “Primordial24 kT ”: here, one would in principle
like to use data from DIS reactions, which are less complicated to interpret than full hadron-hadron
collisions. However, due to difficulties in translating between the ep and pp environments, this is
normally not what is done in practice. Instead, the main constraining distribution is the dilepton
p⊥distribution in Drell-Yan events in hadron-hadron collisions. For any observables containing ex-
plicit jets, be aware that the underlying event can produce small horizontal shifts in jet p⊥ distribu-
tions, which may in turn result in seemingly larger-than-expected vertical changes if the distributions
are falling sharply. Also note that the ISR evolution is sensitive to the choice of PDFs, with caveats as
discussed in section 3.1.

4) Initial-Final Connections: e.g., radiation from colour lines connected to the initial state
and jet broadening in hadron collider environments. This is one of the most poorly controlled parts
of most MC models. Keep in mind that it is not directly constrained by pure final-state observables,
such as LEP fragmentation, nor by pure initial-state observables, such as the Drell-Yan p⊥ spectrum,
which is why we list it as a separate item here. In principle, DIS would again be a prime territory for
placing constraints on this aspect at least for quark jets, but in practice more often inclusive-jet and
other multi-jet processes (such as W/Z+ jets) in hadron colliders are used.

5) Underlying Event: Good constraints on the overall level of the underlying event can be
obtained by counting the summed transverse energy (more IR safe) and/or particle multiplicities and
average transverse momenta (more IR sensitive) in regions transverse to a hard trigger jet (more IR
safe) or particle (more IR sensitive). Constraints on the fluctuations of the underlying event are also
important, and can be obtained, e.g., by comparing to measurements of the RMS of such distributions.
Again, note that the UE is sensitive to the choice of PDFs.

6) Colour (Re-)Connections and other Final-State Interactions: By Final-State Interactions,
we intend a broad spectrum of possible collective effects that may be included to a greater or lesser
extent in various models. These effects include: Bose-Einstein correlations, colour reconnections,
hydrodynamics, string interactions, Cronin effect, etc. As a rule, these effects are non-perturbative
and hence should not modify IR safe observables appreciably. They can, however, have drastic effects
on IR sensitive ones, such as particle multiplicities, and particle momentum distributions, wherefore
useful constraints are typically furnished by particle-particle correlations, by measurements of particle

24Primordial kT : an additional soft p⊥ component that is injected on top of the p⊥ generated by the initial-state shower
itself, see [41, Section 7.1].
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momentum spectra as functions of quantities believed to serve as indicators of the strength of these
phenomena (such as event multiplicity), and/or by collective-flow-type measurements. Finally, if the
model includes a universal description of underlying event and soft-inclusive QCD, as many MPI-
based models do, then minimum-bias data can also be used as a control sample, though one must
then be careful either to address diffractive contributions properly or to include only data samples that
minimize their impact.

7) Beam Remnants: Constraints on beam remnant fragmentation are most easily obtained in
the forward region, but, e.g., the amount of baryon transport from the remnant to a given rapidity re-
gion can also be used to probe how much the colour structure of the remnant was effectively disturbed,
with more baryon transport indicating a larger amount of “beam baryon blowup”.

We round off by emphasizing that comparisons of specific models and tunes to data can be
useful both as immediate tests of commonly used models, and to illustrate the current amount of
theoretical uncertainty surrounding a particular distribution. Independently of how well the models fit
the data, such comparisons also provide a set of well-defined theoretical reference curves that serve
as useful guidelines for future studies. However, the conclusions that can be drawn from comparisons
of individual tunes of specific models on single distributions are necessarily limited. In order to
obtain more general conclusions, a strategy for a more coherent and over-arching look at both the
data and the models was recently proposed in [96]. Specifically, rather than performing one global
tune to all the data, as is usually done, a more systematic check on the validity of the underlying
physics model can be obtained by instead performing several independent optimizations of the model
parameters for a range of different phase space windows and/or collider environments. In regions in
which consistent parameter sets are obtained, with predictions that are acceptably close to the data, the
underlying model can then be considered as interpolating well, i.e., it is universal. If not, a breakdown
in the ability of the model ability to span different physical regimes has been identified, and can be
addressed, with the nature of the deviations giving clues as to the nature of the breakdown. With
the advent of automated tools making it easier to run several optimizations without much additional
computing overhead, such systematic studies are now becoming feasible, with a first example given
in [96].
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