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Abstract
These lectures are directed at a level suitable for graduate students in experi-
mental and theoretical high-energy physics. They are intended to give an intro-
duction to the theory and phenomenology of quantum chromodynamics (QCD)
as used in collider physics applications. The aim is to bring the reader to a
level where informed decisions can be made concerning different approaches
and their uncertainties. The material is divided into four main areas: funda-
mentals, perturbative QCD, soft QCD, and Monte Carlo event generators.

1 Introduction
Outside of particle physics, “QCD” used to stand for Quick Come Distress, the standard emergency call
used before SOS. This older meaning is still partially true in particle physics. When probed at very short
wavelengths, QCD is essentially a theory of free ‘partons’ — quarks and gluons — which only scatter
off one another through relatively small quantum corrections, that can be systematically calculated. At
longer wavelengths, of order the size of the proton ∼ 1 fm = 10−15 m, however, we see strongly bound
towers of hadron resonances emerge, with string-like potentials building up if we try to separate their
partonic constituents. Owing to our inability to solve strongly coupled field theories, QCD is therefore
still only partially solved. Nonetheless, all its features, across all distance scales, are believed to be
encoded in a single one-line formula of alluring simplicity: the Lagrangian of QCD.

The consequence for collider physics is that some parts of QCD can be calculated in terms of
the fundamental parameters of the Lagrangian, whereas others must be expressed through models or
functions whose effective parameters are not a priori calculable but which can be constrained by fits to
data. However, even in the absence of a perturbative expansion, there are still several strong theorems
which hold, and which can be used to give relations between seemingly different processes. (This is, for
example, the reason it makes sense to constrain parton distribution functions in ep collisions and then
re-use the same ones for pp collisions.) Thus in the sections dealing with phenomenological models we
shall emphasize that the loss of a factorized perturbative expansion is not equivalent to a total loss of
predictivity.

An alternative approach would be to give up on calculating QCD altogether and use leptons in-
stead. Formally, this amounts to summing inclusively over strong-interaction phenomena, when such are
present. While such a strategy might succeed in replacing what we do know about QCD by ‘unity’, how-
ever, even the most adamant ‘chromophobe’ must acknowledge a few basic facts of collider physics for
the next decade(s): 1) at the Tevatron and the LHC, the initial states are unavoidably hadrons, and hence,
at the very least, well-understood and precise parton distribution functions (PDFs) will be required; 2)
high precision will mandate calculations to higher orders in perturbation theory, which in turn will in-
volve more QCD; 3) the requirement of lepton isolation makes the very definition of a lepton depend
implicitly on QCD, and 4) the rate of jets that are misreconstructed as leptons in the experiment depends
explicitly on it. Finally, 5) though many new-physics signals do give observable signals in the lepton
sector, this is far from guaranteed. It would therefore be unwise not to attempt to solve QCD to the best
of our ability, the better to prepare ourselves for both the largest possible discovery reach and the highest
attainable subsequent precision.

In the following, we shall focus squarely on QCD for mainstream collider physics. This includes
factorization, hard processes, infrared safety, parton showers and matching, event generators, hadroniza-
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“[...] It is concluded that the apparently anomalous features of the scattering can be interpreted to be
an indication of a resonant meson-nucleon interaction corresponding to a nucleon isobar with spin
3
2 , isotopic spin 3

2 , and with an excitation energy of 277 MeV.”

Fig. 1: The title and part of the abstract of the 1951 paper [1] (published in 1952) in which the discovery of the
∆++ baryon was announced

tion, and the so-called underlying event. While not covering everything, it is hoped that these topics can
also serve at least as stepping stones to more specialized issues that have been left out, such as heavy
flavours or forward physics, or to topics more tangential to other fields, such as lattice QCD or heavy-ion
physics.

1.1 A first hint of colour
Looking for new physics, as we do now at the LHC, it is instructive to consider the story of the discovery
of colour. The first hint was arguably the ∆++ baryon, found in 1951 [1]. The title and part of the
abstract from this historical paper are reproduced in Fig. 1. In the context of the quark model — which
first had to be developed, successively joining together the notions of spin, isospin, strangeness, and the
eightfold way — the flavour and spin content of the ∆++ baryon is

∣∣∆++
〉

= |u↑ u↑ u↑〉 , (1)

clearly a highly symmetric configuration. However, since the ∆++ is a fermion, it must have an overall
antisymmetric wave function. In 1965, fourteen years after its discovery, this was finally understood by
the introduction of colour as a new quantum number associated with the group SU(3) [2, 3]. The ∆++

wave function can now be made antisymmetric by arranging its three quarks antisymmetrically in this
new degree of freedom, ∣∣∆++

〉
= εijk |ui↑ uj↑ uk↑〉 , (2)

hence solving the mystery.

More direct experimental tests of the number of colours were provided first by measurements of
the decay width of π0 → γγ decays, which is proportional to N2

C , and later by the famous “R” ratio in
e+e− collisions. Below, in Section 1.2 we shall see how to calculate such colour factors.

1.2 The Lagrangian of QCD
Quantum chromodynamics is based on the gauge group SU(3), the Special Unitary group in 3 (complex)
dimensions. In the context of QCD, we represent this group as a set of unitary 3 × 3 matrices with
determinant one. This is called the adjoint representation and can be used to represent gluons in colour
space. Since there are nine linearly independent unitary complex matrices, one of which has determinant
−1, there are a total of eight independent directions in the adjoint colour space, i.e., the gluons are octets.
In QCD, these matrices can operate both on each other (gluon self-interactions) and on a set of complex
3-vectors (the fundamental representation), the latter of which represent quarks in colour space. The
fundamental representation has one linearly independent basis vector per degree of SU(3), and hence the
quarks are triplets.
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Fig. 2: Illustration of a qqg vertex in QCD, before summing/averaging over colours: a gluon in a state represented
by λ1 interacts with quarks in the states ψqR and ψqG

The Lagrangian of QCD is

L = ψ̄iq(iγ
µ)(Dµ)ijψ

j
q −mqψ̄

i
qψqi −

1

4
F aµνF

aµν , (3)

where ψiq denotes a quark field with colour index i, ψq = (ψqR, ψqG, ψqB)T , γµ is a Dirac matrix that
expresses the vector nature of the strong interaction, with µ being a Lorentz vector index, mq allows
for the possibility of non-zero quark masses (induced by the standard Higgs mechanism or similar),
F aµν is the gluon field strength tensor for a gluon with colour index a (in the adjoint representation, i.e.,
a ∈ [1, . . . , 8]), and Dµ is the covariant derivative in QCD,

(Dµ)ij = δij∂µ − igstaijAaµ , (4)

with gs the strong coupling (related to αs by g2
s = 4παs; we return to the strong coupling in more

detail below), Aaµ the gluon field with (adjoint-representation) colour index a, and taij proportional to the
Hermitian and traceless Gell-Mann matrices of SU(3),

QCD lecture 1 (p. 5)

What is QCD Lagrangian + colour
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. (5)

These generators are just the SU(3) analogs of the Pauli matrices in SU(2). By convention, the constant
of proportionality is normally taken to be1

taij =
1

2
λaij . (6)

This choice in turn determines the normalization of the coupling gs, via Eq. (4), and fixes the values of
the SU(3) Casimirs and structure constants, to which we return below.

An example of the colour flow for a quark-gluon interaction in colour space is given in Fig. 2.
Typically, however, we do not measure colour in the final state — instead we average over all possi-
ble incoming colours and sum over all possible outgoing ones, wherefore QCD scattering amplitudes
(squared) in practice always contain sums over quark fields contracted with Gell-Mann matrices. These

1Another choice that is occasionally (though rarely) seen in the literature is t = λ/
√

2. This gives a more intuitive colour
counting, but since it also implies a different normalization for the coupling and since most text material uses the convention
defined by Eq. (6), we shall stick to that choice for the remainder of these lectures.
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contractions in turn produce traces which yield the colour factors that are associated to each QCD pro-
cess, and which basically count the number of ‘paths through colour space’ that the process at hand can
take, modulo that the convention choice represented by Eq. (6) introduces a ‘spurious’ factor of 2 for
each power of the coupling αs, as we shall see2.

A very simple example of a colour factor is given by the decay process Z → qq̄. This vertex
contains a simple δij in colour space; the outgoing quark and antiquark must have identical (anti-)col-
ours. Squaring the corresponding matrix element and summing over final-state colours yields a colour
factor of

Z → qq̄ :
∑

colours

|M |2 ∝ δijδ∗ji = Tr{δ} = NC = 3 , (7)

since i and j are quark (i.e., 3-dimensional fundamental-representation) indices.

A next-to-simplest example is given by the Drell-Yan process, qq̄ → γ∗/Z, i.e., just a crossing
of the previous one. By crossing symmetry, the squared matrix element, including the colour factor, is
exactly the same as before, but since the quarks are here incoming, we must average rather than sum
over their colours, leading to

qq̄ → Z :
1

9

∑

colours

|M |2 ∝ 1

9
δijδ

∗
ji =

1

9
Tr{δ} =

1

3
, (8)

where the colour factor now expresses a suppression which can be interpreted as due to the fact that only
quarks of matching colours are able to collide and produce a Z boson, effectively reducing the incoming
quark–antiquark flux by a factor 1/NC .

To illustrate what happens when we insert (and sum over) quark–gluon vertices, such as the one
depicted in Fig. 2, we take the process Z → 3 jets. The colour factor for this process can be computed
as follows, with the accompanying illustration showing a corresponding diagram (squared) with explicit
colour-space indices on each vertex:

Z → qgq̄ :
∑

colours

|M |2 ∝ δijt
a
jk (ta`kδ

∗
i`)
∗

= Tr{tata}

=
1

2
Tr{δ} = 4 ,

δij

tajk taℓk

δiℓ

qi qi

qj

qk qk

qℓ

gajk gaℓk (9)

where the last Tr{δ} = 8, since the trace runs over indices in the 8-dimensional adjoint representation.

The tedious task of taking traces over SU(3) matrices can be greatly alleviated by use of the
relations given in Table 1. In the standard normalization convention for the SU(3) generators, Eq. (6),
the Casimirs of SU(3) appearing in Table 1 are3

TR =
1

2
CF =

4

3
CA = NC = 3 . (10)

In addition, the gluon self-coupling on the third line in Table 1 involves factors of fabc. These are called
the structure constants of QCD and they enter due to the non-Abelian term in the gluon field strength
tensor appearing in Eq. (3),

F aµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (11)

2Again, although one could in principle absorb that factor into a redefinition of the coupling, effectively redefining the
normalization of ‘unit colour charge’, the standard definition of αs is now so entrenched that alternative choices would be
counter-productive, at least in the context of a supposedly pedagogical review.

3See, for example, Ref. [5, Appendix A.3] for how to obtain the Casimirs in other normalization conventions.
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Table 1: Trace relations for t matrices. These relations are convention-independent as they stand. Relations for a
specific normalization convention for the t matrices are obtained by inserting the specific values of TR, CF , and
CA pertaining to that convention choice, as discussed in the text. More relations can be found in Ref. [4, Section
1.2] and in Ref. [5, Appendix A.3].

Trace relation Indices Occurs in diagram squared

Tr{tatb} = TR δ
ab a, b ∈ [1, . . . , 8]

a b

∑
a t
a
ijt

a
jk = CF δik

a ∈ [1, . . . , 8]
i, j, k ∈ [1, . . . , 3]

i kj

a

∑
c,d f

acdf bcd = CA δ
ab a, b, c, d ∈ [1, . . . , 8]

a b

taijt
a
k` = TR

(
δjkδi` − 1

NC
δijδk`

)
i, j, k, ` ∈ [1, . . . , 3] ∝ −1

NC

j

k ℓ

i

(Fierz)

A4
ν(k2)

A6
ρ(k1) A2

µ(k3)

∝ −gs f246 [(k3 − k2)ρgµν

+(k2 − k1)µgνρ

+(k1 − k3)νgρµ]

Fig. 3: Illustration of a ggg vertex in QCD, before summing/averaging over colours: interaction between gluons
in the states λ2, λ4, and λ6 is represented by the structure constant f246

The structure constants of SU(3) are listed in
the table to the right. Expanding the FµνFµν

term of the Lagrangian using Eq. (11), we see
that there is a 3-gluon and a 4-gluon vertex that
involve fabc, the latter of which has two powers
of f and two powers of the coupling.
Finally, the last line of Table 1 is not really a
trace relation but instead a useful so-called Fierz
transformation. It is often used, for instance,
in shower Monte Carlo applications, to assist in
mapping between colour flows in NC = 3, in
which cross-sections and splitting probabilities
are calculated, and those in NC → ∞, used to
represent colour flow in the MC ‘event record’.

Structure Constants of SU(3)

f123 = 1 (12)

f147 = f246 = f257 = f345 =
1

2
(13)

f156 = f367 = −1

2
(14)

f458 = f678 =

√
3

2
(15)

Antisymmetric in all indices
All other fijk = 0

(valid for the convention t = λ
2

)

(for the alternative convention t = λ√
2

, multiply all fijk by
√

2)

A gluon self-interaction vertex is illustrated in Fig. 3, to be compared with the quark–gluon one in
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Fig. 2. We remind the reader that gauge boson self-interactions are a hallmark of non-Abelian theories
and that their presence leads to some of the main differences between QED and QCD. One should also
keep in mind that the colour factor for the vertex in Fig. 3, CA, is roughly twice as large as that for a
quark, CF .

1.3 The strong coupling
To first approximation, QCD is scale invariant. That is, if one ‘zooms in’ on a QCD jet, one will find
a repeated self-similar pattern of jets within jets within jets, reminiscent of fractals such as the famous
Mandelbrot set in mathematics, or the formation of frost crystals in physics. In the context of QCD, this
property was originally called light-cone scaling, or Bjorken scaling after the famous physicist James
D. Bjorken. It has since been rebranded by a new generation as conformal invariance, a mathematical
property of several QCD-‘like’ theories which are now being studied. It is also closely related to the
physics of so-called ‘unparticles’, though that is a relation that goes beyond the scope of these lectures.

Regardless of the labelling, if the strong coupling did not run (we shall return to the running of
the coupling below), Bjorken scaling would be absolutely true. QCD would be a theory with a fixed
coupling, the same at all scales. This simplified picture already captures some of the most important
properties of QCD, as we shall discuss presently.

In the limit of exact Bjorken scaling — QCD at fixed coupling — properties of high-energy in-
teractions are determined only by dimensionless kinematic quantities, such as scattering angles (pseu-
dorapidities) and ratios of energy scales4. For applications of QCD to high-energy collider physics,
an important consequence of Bjorken scaling is thus that the rate of bremsstrahlung jets with a given
transverse momentum scales in direct proportion to the hardness of the fundamental partonic scattering
process in association with which they are produced. For instance, in the limit of exact scaling, a mea-
surement of the rate of 5-GeV jets produced in association with an ordinary Z boson could be used as
a direct prediction of the rate of 50-GeV jets that would be produced in association with a 900-GeV Z ′

boson, and so forth. Our intuition about how many bremsstrahlung jets a given type of process is likely to
have should therefore be governed first and foremost by the ratios of scales that appear in that particular
process, as has been highlighted in a number of studies focusing on the mass and p⊥ scales appearing,
for example, in Beyond-the-Standard-Model (BSM) physics processes [6–10]. Bjorken scaling is also
fundamental to the understanding of jet substructure in QCD, see, for example, Ref. [11].

In real QCD, the coupling runs logarithmically with the energy,

Q2 ∂αs
∂Q2

=
∂αs

∂ lnQ2
= β(αs) , (16)

where the function driving the energy dependence, the beta function, is defined as

β(αs) = −α2
s(b0 + b1αs + b2α

2
s + . . .) , (17)

with LO (1-loop) and NLO (2-loop) coefficients

b0 =
11CA − 4TRnf

12π
, (18)

b1 =
17C2

A − 10TRCAnf − 6TRCFnf
24π2

=
153− 19nf

24π2
. (19)

4Originally, the observed approximate agreement with this was used as a powerful argument for pointlike substructure in
hadrons; since measurements at different energies are sensitive to different resolution scales, independence of the absolute
energy scale is indicative of the absence of other fundamental scales in the problem and hence of pointlike constituents.
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Numerically, the value of the strong coupling is usually specified by giving its value at the specific
reference scale Q2 = M2

Z , from which we can obtain its value at any other scale by solving Eq. (16),

αs(Q
2) = αs(M

2
Z)

1

1 + b0αs(M2
Z) ln Q2

M2
Z

+O(α2
s)
, (20)

with relations including the O(α2
s) terms available, for example, in Ref. [4]. Relations between scales

not involving M2
Z can obviously be obtained by just replacing M2

Z by some other scale Q′2 everywhere
in Eq. (20). As an application, let us prove that the logarithmic running of the coupling implies that an
intrinsically multi-scale problem can be converted to a single-scale one, up to corrections suppressed by
two powers of αs, by taking the geometric mean of the scales involved. This follows from expanding an
arbitrary product of individual αs factors around an arbitrary scale µ, using Eq. (20),

αs(µ1)αs(µ2) · · ·αs(µn) =
n∏

i=1

αs(µ)

(
1 + b0 αs ln

(
µ2

Q2
i

)
+O(α2

s)

)

= αns (µ)

(
1 + b0 αs ln

(
µ2n

µ2
1µ

2
2 · · ·µ2

n

)
+O(α2

s)

)
, (21)

whereby the specific single-scale choice µn = µ1µ2 · · ·µn (the geometric mean) can be seen to push the
difference between the two sides of the equation one order higher than would be the case for any other
combination of scales5.

The appearance of the number of flavours, nf , in b0 implies that the slope of the running depends
on the number of contributing flavours. Since full QCD is best approximated by nf = 3 below the charm
threshold, by nf = 4 from there to the b threshold, and by nf = 5 above that, it is therefore important
to be aware that the running changes slope across quark flavour thresholds. Likewise, it would change
across the threshold for top or for any coloured new-physics particles that might exist, with a magnitude
depending on the particles’ colour and spin quantum numbers.

The negative overall sign of Eq. (17), combined with the fact that b0 > 0, leads to the famous
result6 that the QCD coupling effectively decreases with energy, called asymptotic freedom, for the
discovery of which the Nobel prize in physics was awarded to D. Gross, H. Politzer, and F. Wilczek in
2004. An extract of the prize announcement runs as follows:

What this year’s Laureates discovered was something that, at first sight, seemed com-
pletely contradictory. The interpretation of their mathematical result was that the closer
the quarks are to each other, the weaker is the “colour charge”. When the quarks are
really close to each other, the force is so weak that they behave almost as free particles.
This phenomenon is called “asymptotic freedom”. The converse is true when the quarks
move apart: the force becomes stronger when the distance increases.

Among the consequences of asymptotic freedom is that perturbation theory becomes better be-
haved at higher absolute energies, owing to the effectively decreasing coupling. Perturbative calculations
for our 900-GeV Z ′ boson from before should therefore be slightly faster converging than equivalent cal-
culations for the 90-GeV one. Furthermore, since the running of αs explicitly breaks Bjorken scaling,
we also expect to see small changes in jet shapes and in jet production ratios as we vary the energy. For
instance, since high-p⊥ jets start out with a smaller effective coupling, their intrinsic shape (irrespective
of boost effects) is somewhat narrower than for low-p⊥ jets, an issue which can be important for jet

5In a fixed-order calculation, the individual scales µi, would correspond, for example, to the n hardest scales appearing in
an infrared safe sequential clustering algorithm applied to the given momentum configuration.

6Perhaps the highest pinnacle of fame for Eq. (17) was reached when the sign of it ‘starred’ in an episode of the TV series
“Big Bang Theory”.
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Fig. 4: Illustration of the running of αs in a theoretical calculation (yellow shaded band) and in physical processes
at different characteristic scales, from Ref. [12]

calibration. Our current understanding of the running of the QCD coupling is summarized by the plot in
Fig. 4, taken from a recent comprehensive review by S. Bethke [12].

As a final remark on asymptotic freedom, note that the decreasing value of the strong coupling
with energy must eventually cause it to become comparable to the electromagnetic and weak ones, at
some energy scale. Beyond that point, which may lie at energies of order 1015–1017 GeV (though it may
be lower if as yet undiscovered particles generate large corrections to the running), we do not know what
the further evolution of the combined theory will actually look like, or whether it will continue to exhibit
asymptotic freedom.

Now consider what happens when we run the coupling in the other direction, towards smaller
energies. Taken at face value, the numerical value of the coupling diverges rapidly at scales below
1 GeV, as illustrated by the curves disappearing off the left-hand edge of the plot in Fig. 4. To make this
divergence explicit, one can rewrite Eq. (20) in the following form,

αs(Q
2) =

1

b0 ln Q2

Λ2

, (22)

where
Λ ∼ 200 GeV (23)

specifies the energy scale at which the perturbative coupling would nominally become infinite, called
the Landau pole. (Note, however, that this only parametrizes the purely perturbative result, which is not
reliable at strong coupling, so Eq. (22) should not be taken to imply that the physical behaviour of full
QCD should exhibit a divergence for Q→ Λ.)

Finally, one should be aware that there is a multitude of different ways of defining both Λ and
αs(MZ). At the very least, the numerical value one obtains depends both on the renormalization scheme
used (with the dimensional-regularization-based ‘modified minimal subtraction’ scheme, MS, being the
most common one) and on the perturbative order of the calculations used to extract them. As a rule of
thumb, fits to experimental data typically yield smaller values for αs(MZ) the higher the order of the cal-
culation used to extract it (see, e.g., Refs. [12,13]), with αs(MZ)|LO ∼> αs(MZ)|NLO ∼> αs(MZ)|NNLO.
Further, since the number of flavours changes the slope of the running, the location of the Landau pole for
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fixed αs(MZ) depends explicitly on the number of flavours used in the running. Thus each value of nf is
associated with its own value of Λ, with the following matching relations across thresholds guaranteeing
continuity of the coupling at one loop,

nf = 4↔ 5 : Λ5 = Λ4

(
Λ4

mb

) 2
23

Λ4 = Λ5

(
mb

Λ5

) 2
25

, (24)

nf = 3↔ 4 : Λ4 = Λ3

(
Λ3

mc

) 2
25

Λ3 = Λ4

(
mc

Λ4

) 2
27

. (25)

It is sometimes stated that QCD only has a single free parameter, the strong coupling. Appealing
as this may be, it is a bit of an overstatement. Even in the perturbative region, the beta function depends
explicitly on the number of quark flavours, as we have seen, and thereby also on the quark masses. Fur-
thermore, in the non-perturbative region around or below ΛQCD, the value of the perturbative coupling,
as obtained, for example, from Eq. (22), gives little or no insight into the behaviour of the full theory. In-
stead, universal functions (such as parton densities, form factors, fragmentation functions, etc.), effective
theories (such as the Operator Product Expansion, Chiral Perturbation Theory, or Heavy Quark Effective
Theory), or phenomenological models (such as Regge Theory or the String and Cluster Hadronization
Models) must be used, which in turn depend on additional non-perturbative parameters whose relation
to, for example, αs(MZ) is not a priori known. For some of these questions, such as hadron masses,
lattice QCD can furnish important additional insight, but for multi-scale and/or time-evolution problems,
the applicability of lattice methods is still severely restricted.

2 Perturbative QCD
Our main tool for solving QCD for high-energy collider physics is perturbative quantum field theory,
the starting point for which is Matrix Elements (MEs) which can be calculated systematically at fixed
orders in the strong coupling αs. At least at lowest order (LO), the procedure is standard textbook
material [5] and it has also by now been highly automated, by the advent of tools like CALCHEP [14],
COMPHEP [15], MADGRAPH [16], and others [17–21]. Here, we require only that the reader has a basic
familiarity with the methods involved from graduate-level particle physics courses based, for example,
on Refs. [5,22]. Our main concern are the uses to which these calculations are put, their limitations, and
ways to improve on the results obtained with them.

For illustration, take one of the most commonly occurring processes in hadron collisions —
Rutherford scattering of two quarks via a t-channel gluon exchange — which has the differential cross-
section

qq′ → qq′ :
dσ

dt̂
=

π

ŝ2

4

9
α2
s

ŝ2 + û2

t̂2
, (26)

with the 2→ 2 Mandelstam variables (‘hatted’ to emphasize that they refer to a partonic 2→ 2 scattering
rather than the full pp→ jets process)

ŝ = (p1 + p2)2 , (27)

t̂ = (p3 − p1)2 = −ŝ(1− cos θ̂)

2
, (28)

û = (p4 − p1)2 = −ŝ(1 + cos θ̂)

2
. (29)

This process is illustrated in the left-hand pane of Fig. 5, including a rough (formally leading-NC)
representation of the ‘colour transfer’ mediated by the gluon (as was discussed in Section 1.2).

Reality, however, is more complicated; the picture on the right-hand pane of Fig. 5 shows a real di-
jet event, as recorded by the ATLAS experiment. The complications to be addressed when going from left
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p1 p3

High	  transverse-‐
momentum	  
interac2on	  

p2 p4

Fig. 5: Left: Rutherford scattering of quarks in QCD, exemplifying the type of process that dominates the short-
distance interaction cross-section at hadron colliders. Right: an example of what such a reaction may look like in
a detector, in this case the ATLAS experiment.

to right in Fig. 5 are: firstly, additional jets, a.k.a. real-emission corrections, which significantly change
the topology of the final state, potentially shifting jets in or out of an experimentally defined acceptance
region. Secondly, loop factors, a.k.a. virtual corrections, change the number of available quantum paths
through phase space, and hence modify the normalization of the cross-section (total and differential).
And finally, additional corrections to the simple factorized perturbative picture are generated by compo-
nents such as hadronization and the underlying event. These corrections must be taken into account to
complete our understanding of QCD and connect the short-distance physics with macroscopic experi-
ments. Apart from the perturbative expansion itself, the most powerful tool we have to organize this vast
calculation is factorization.

2.1 Factorization
When applicable, factorization allows us to subdivide the calculation of an observable into a perturba-
tively calculable short-distance part and an approximately universal long-distance part; the latter may be
modelled and constrained by fits to data. Factorization can also be applied multiple times, to break up
a complicated calculation into simpler pieces that can be treated as approximately independent, such as
when dealing with successive emissions in a parton shower, or when factoring off decays of long-lived
particles from a hard production process.

Using collinear factorization (see, e.g., Refs. [4, 23]), the differential cross-section for an observ-
able O in hadron-hadron collisions can be computed as

dσ

dO =
∑

a,b

∫ 1

0
dxa dxb

∑

F

∫
dΦF fh1a (xa, µF )fh2b (xb, µF )

dσ̂ab→F
dÔ

DF (Ô → O, µF ) (30)

where the outer sum runs over all partonic constituents, a and b of the colliding hadrons, h1,2, respec-
tively, and the inner sum runs over all possible final states, ab→ F (with the standard final-state phase-
space differential denoted dΦF ).

Before we discuss the integrand — composed of the factors fa,b, dσ̂ , and DF — let us first
re-emphasize the crucial feature of Eq. (30); it separates the calculation of the cross-section into two in-
dependent pieces, one of which is the perturbatively calculable short-distance cross-section, dσ̂ , and the
other of which is the product of parton distribution functions (PDFs), fafb, with a fragmentation function
(FF), DF , with the latter components being universal functions7 whose forms are a priori unknown but

7At least, they are universal within the framework of collinear factorization. In full QCD, there are several types of cor-
rections, including also some perturbative ones, that go beyond this framework, such as small-x effects and multiple parton
interactions, both of which mandate the introduction of objects that go beyond the scope of collinear-factorized PDFs. In the
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which can be constrained in one process and then reused in another. The dividing line between the two
is drawn at an arbitrary (‘user-defined’) scale µF , called the factorization scale.

Returning now to the integrand, the parton density functions, fhij (xj , µF ), parametrize the distri-
bution of partons of type j carrying momentum fraction xj inside a hadron of type hi when probing the
latter at the factorization scale µF . (Note: issues specific to PDFs in the context of Monte Carlo event
generators will be covered in Section 3.1.) The partonic scattering cross section dσ̂ab→F is calculable in
fixed-order perturbation theory as

dσ̂ab→F =
1

2ŝab
|Mab→F |2(ΦF ;µF , µR) , (31)

with |M|2 the matrix element squared for the process ab → F , appropriately summed and averaged
over helicities and/or colours, and evaluated at the factorization and renormalization scales µF and µR,
respectively. The fragmentation functions (FFs), DF (Ô → O, µF ) parametrize the transition from
partonic final state to the hadronic observable (bremsstrahlung, hadronization, jet definition, etc.).

There is some arbitrariness involved in this division of the calculation into a short-distance and
a long-distance part. Firstly, one has to choose a value for the dividing scale, µF . Some heuristic
arguments to guide one in the choice of factorization scale are the following. On the long-distance side,
the PDFs include a (re)summation of multiple emissions (bremsstrahlung) all the way up to the scale
µF . It would therefore not make much sense to take µF significantly larger than the scales characterizing
resolved particles on the short-distance side of the calculation (i.e., the particles appearing explicitly
in Φn); otherwise the PDFs would be including sums over radiations as hard as or harder than those
included explicitly in the matrix element which would result in double-counting. On the other hand, it
should not be taken much lower than the scales appearing in the matrix element either, since, as we shall
see in subsequent sections, fixed-order matrix elements are at most able to include part of such multiple-
bremsstrahlung emissions, and hence a low choice of factorization scale would lead to problems with
‘undercounting’ of such corrections.

For matrix elements characterized by a single well-defined scale, such as the Q2 scale in deeply
inelastic scattering (DIS) or the invariant-mass scale ŝ in Drell-Yan production (qq̄ → Z/γ∗ → `+`−),
such arguments essentially fix the preferred scale choice, which may then be varied by a factor of 2 (or
larger) around the nominal value in order to estimate uncertainties. For multi-scale problems, however,
such as pp → Z/W + n jets, there are several a priori equally good choices available, from the lowest
to the highest QCD scales that can be constructed from the final-state momenta, usually with several
dissenting groups of theorists arguing over which particular choice is best. Suggesting that one might
simply measure the scale would not really be an improvement, as the factorization scale is fundamentally
unphysical and therefore unobservable (similarly to gauge or convention choices). One plausible strategy
is to look at higher-order (NLO or NNLO) calculations, in which correction terms appear that explicitly
remove the over- or undercounting introduced by the initial scale choice up to the given order, thus
reducing the overall dependence on it and stabilizing the final result. From such comparisons, a ‘most
stable’ initial scale choice can in principle be determined, which then furnishes a reasonable starting
point, but we emphasize that the question is intrinsically ambiguous, and no ‘golden recipe’ is likely
to magically give all the right answers. The best we can do is to vary the value of µF not only by
an overall factor, but also by exploring different possible forms for its functional dependence on the
momenta appearing in Φn. In this way, one could hope to provide a more complete uncertainty estimate
for multi-scale problems.

Secondly, and more technically, at NLO and beyond one also has to settle on a factorization scheme
in which to do the calculations. For all practical purposes, students focusing on LHC physics are only

case of small-x evolution, these more general objects are so-called unintegrated PDFs, which have an explicit dependence on the
parton transverse momentum in addition to the factorization scale, while multi-parton interactions require explicit multi-parton
and/or generalized (impact-parameter-dependent) PDFs.
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likely to encounter one such scheme, the modified minimal subtraction (MS) one already mentioned in
the discussion of the definition of the strong coupling in Section 1.3. At the level of these lectures, we
shall therefore not elaborate further on this choice here.

2.2 Infrared safety
The second perturbative tool, infrared safety, provides us with a special class of observables which have
minimal sensitivity to long-distance physics, and which can be consistently computed in perturbative
QCD (pQCD). By ‘infrared’, we here mean any limit that involves a low scale (i.e., any non-UV limit),
without regard to whether it is collinear or soft8. An observable is infrared safe if:

1. (Safety against soft radiation): Adding any number of infinitely soft particles would not change
the value of the observable.

2. (Safety against collinear radiation): Splitting an existing particle up into two comoving particles,
with arbitrary fractions z and 1− z, respectively, of the original momentum, would not change the
value of the observable.

If both of these conditions are satisfied, any long-distance non-perturbative corrections will be suppressed
by the ratio of the long-distance scale to the short-distance one to some (observable-dependent) power,
typically

IR Safe Observables: IR corrections ∝ Q2
IR

Q2
UV

(32)

where QUV denotes a generic hard scale in the problem, and QIR ∼ ΛQCD ∼ O(1 GeV).

On account of this power suppression, IR safe observables are not so sensitive to our lack of
ability to solve the strongly coupled IR physics, unless of course we go to processes for which the
relevant hard scale QUV is small (such as minimum-bias, soft jets, or small-scale jet substructure). Even
when a high scale is present, however, as in resonance decays, jet fragmentation, or underlying-event-
type studies, infrared safety only guarantees us that infrared corrections are small, not that they are zero.
Thus, ultimately, we run into a precision barrier even for IR safe observables, which only a reliable
understanding of the long-distance physics itself can address.

To constrain models of long-distance physics, one needs infrared sensitive observables9. Instead
of the suppressed corrections above, the perturbative prediction for such observables contains logarithms

IR Sensitive Observables: IR Corrections ∝ αns logm
(
Q2

UV

Q2
IR

)
, m ≤ 2n , (33)

which grow increasingly large as QIR/QUV → 0. As an example, consider such a fundamental quantity
as particle multiplicities; in the absence of nontrivial infrared effects, the number of partons that would
be mapped to hadrons in a naïve local-parton-hadron-duality [24] picture would tend logarithmically to
infinity as the IR cutoff is lowered. Similarly, the distinction between a charged and a neutral pion only
occurs in the very last phase of hadronization, and hence observables that only include charged tracks,
for instance, are always IR sensitive10.

Two important categories of infrared safe observables that are widely used are event shapes and
jet algorithms. Jet algorithms are perhaps nowhere as pedagogically described as in last year’s ESHEP
lectures by Salam [25, Section 5]. Event shapes in the context of hadron colliders have not yet been as
widely explored, but the basic phenomenology is introduced also by Salam and collaborators in Ref. [26],

8This distinction will be discussed further in Section 2.4.
9Hence it is not always the case that infrared safe observables are preferable — the purpose decides the tool.

10This remains true in principle even if the tracks are clustered into jets, although the energy clustered in this way does
provide a lower bound on QUV in the given event, since ‘charged + neutral > charged-only’.
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with a first measurement reported by CMS [27] and a proposal to use them also for the characterization
of minimum-bias events put forth in Ref. [28].

Let us here merely emphasize that the real reason to prefer infrared safe jet algorithms over unsafe
ones is not that they necessarily give very different or ‘better’ answers in the experiment — experiments
are infrared safe by definition, and the difference between infrared safe and unsafe algorithms may not
even be visible when running the algorithm on experimental data — but that it is only possible to compute
perturbative QCD predictions for the infrared safe ones. Any measurement performed with an infrared
unsafe algorithm can only be compared to calculations that include a detailed hadronization model. This
both limits the number of calculations that can be compared and also adds an a priori unknown sensitivity
to the details of the hadronization description, details which one would rather investigate and constrain
separately, in the framework of more dedicated fragmentation studies.

2.3 Fixed-order QCD: matrix elements
Schematically, we express the all-orders differential cross-section for an observableO, in the production
of F + anything (≡ inclusive F production, with F an arbitrary final state), in the following way:

dσF
dO

∣∣∣∣
ME

=

∞∑

k=0

∫
dΦF+k

︸ ︷︷ ︸
Σ legs

∣∣∣
∞∑

`=0

M(`)
F+k

︸ ︷︷ ︸
Σ loops

∣∣∣
2
δ
(
O −O(ΦF+k)

)
, (34)

where, for compactness, we have suppressed all PDF and luminosity normalization factors. The sum over
k represents a sum over additional ‘real-emission’ corrections, called legs, and the sum over ` runs over
additional virtual corrections, loops. Without the δ function, the formula would give the total integrated
cross-section, instead of the cross-section differentially in O. The purpose of the δ function is thus to
project out hypersurfaces of constant O in the full dΦF+k phase space, with O(ΦF+k) a function that
defines O evaluated on each specific momentum configuration, ΦF+k.

We recover the various fixed-order truncations of pQCD by limiting the nested sums in Eq. (34)
to include only specific values of k + `. Thus

k = 0, ` = 0 =⇒ Leading Order (usually tree-level) for inclusive F production
k = n, ` = 0 =⇒ Leading Order for F + n jets
k + ` ≤ n, =⇒ NnLO for F (includes Nn−1LO for F + 1 jet, Nn−2LO for F +

2 jets, and so on up to LO for F + n jets) .

Already at this stage, before entering into the details of the calculations, we can make several obser-
vations on how numerical values of cross-sections and decay widths must be computed in fixed-order
perturbation theory.

Firstly, the dimensionality of the phase space to be integrated increases by d = 3 for each leg we
add. In dimensions higher than 5, the fastest converging numerical integration algorithm is Monte Carlo
integration [29], whose purely stochastic error ∝ O(1/

√
N ), with N the number of generated points,

is independent of dimension, while all other algorithms scale with powers of the dimension. Therefore,
virtually all numerical cross-section calculations are based on Monte Carlo techniques in one form or
another, the simplest being the RAMBO algorithm [30] which can be expressed in about half a page of
code and generates a flat scan over n-body phase space11.

Secondly, due to the infrared singularities in perturbative QCD, the functions to be integrated,
|M|2, are highly non-uniform for large k, which implies that we will have to be clever in the way we
sample phase space if we want the integration to converge in any reasonable amount of time — simple

11Strictly speaking, RAMBO is only truly uniform for massless particles. Its massive variant makes up for phase-space biases
by returning weighted momentum configurations.
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algorithms like RAMBO quickly become inefficient for k greater than a few. To address this bottleneck,
the simplest step up from RAMBO is to introduce generic (i.e., automated) importance-sampling methods,
such as offered by the VEGAS algorithm [31, 32]. This is still the dominant basic technique, although
most modern codes do employ several additional refinements, such as several different copies of VEGAS

running in parallel (multi-channel integration), to further optimize the sampling. Alternatively, a few
algorithms incorporate the singularity structure of QCD explicitly in their phase-space sampling, either
by directly generating momenta distributed according to the leading-order QCD singularities, in a sort
of ‘QCD-preweighted’ analog of RAMBO, called SARGE [33], or by using all-orders Markovian parton
showers to generate them (VINCIA [34]).

Thirdly, for k ≥ 1, ` = 0, we are really not considering inclusive F production anymore; instead,
we are considering the LO contribution to the process F+k jets. However, if we simply integrate over all
momenta, as implied by the integration over dΦF+n in Eq. (34), we would be including configurations
in which one or more of the k partons become collinear or soft, leading to singularities in the integration
region. At the LO level, this problem can only be mitigated by restricting the integration region to only
include ‘hard, well-separated’ momenta. As discussed above, owing to the approximate Bjorken scaling
of QCD, it would be meaningless to express this requirement in dimensionful terms, as an absolute scale.
Instead, it is the ratios of scales present in any given process that determine whether such enhancements
are present or absent: a 50-GeV jet would be considered hard and well-separated if produced in asso-
ciation with an ordinary Z boson, while it would be considered soft if produced in association with a
900-GeV Z ′ boson [6–8]. Thus, for example, it would be a complete disaster to use the same dimen-
sionful phase-space cuts for Z ′+jets as one uses for Z+jets (unless of course the Z ′ happens to have
a mass scale very close to the Z one). A good rule of thumb is that if σk+1 ≈ σk (at whatever order
you are calculating), then you are integrating over a region in which the perturbative series is no longer
converging, or is converging too slowly for a fixed-order truncation of it to be reliable. For fixed-order
perturbation theory to be applicable, you must have σk+1 � σk. In the discussion of parton showers and
resummations in Section 2.4, we shall see how the region of applicability of perturbation theory can be
extended.

And finally, the virtual amplitudes, for ` ≥ 1, are divergent for any point in phase space. However,
as encapsulated by the famous KLN theorem [35, 36], unitarity (which essentially expresses probability
conservation) puts a powerful constraint on the IR divergences12, forcing them to cancel exactly against
those coming from the unresolved emissions that we had to cut out above, order by order, making the
complete answer for fixed k+ ` = n finite. Nonetheless, since this cancellation happens between contri-
butions that formally live in different phase spaces, a main aspect of loop-level higher-order calculations
is how to arrange for this cancellation in practice, either analytically or numerically, with many different
methods currently on the market.

A convenient way of illustrating the terms of the perturbative series that a given matrix-element-
based calculation includes is given in Fig. 6. In the left-hand pane, the shaded box corresponds to the
lowest-order ‘Born-level’13 matrix element squared. This coefficient is non-singular and hence can be
integrated over all of phase space, which we illustrate by letting the shaded area fill all of the relevant
box. A different kind of leading-order calculation is illustrated in the right-hand pane of Fig. 6, where
the shaded box corresponds to the lowest-order matrix element squared for F + 2 jets. This coefficient
diverges in the part of phase space where one or both of the jets are unresolved (i.e., soft or collinear),
and hence integrations can only cover the hard part of phase space, which we reflect by only shading the
upper half of the relevant box.

Fig. 7 illustrates the inclusion of NLO virtual corrections. To prevent confusion, first a point on
12The loop integrals also exhibit UV divergences, but these are dealt with by renormalization.
13Photo from nobelprize.org

14

P.Z. SKANDS

64



F @ LO

`
(l

oo
ps

)
2 σ

(2)
0 σ

(2)
1

. . .

1 σ
(1)
0 σ

(1)
1 σ

(1)
2

. . .

0 σ
(0)
0 σ

(0)
1 σ

(0)
2 σ

(0)
3

. . .

0 1 2 3 . . .
k (legs)

Max Born, 1882-1970
Nobel 1954

F + 2 @ LO

`
(l

oo
ps

)

2 σ
(2)
0 σ

(2)
1

. . .
LO for F + 2
→ ∞ for F + 1
→ ∞ for F + 0

1 σ
(1)
0 σ

(1)
1 σ

(1)
2

. . .

0 σ
(0)
0 σ

(0)
1 σ

(0)
2 σ

(0)
3

. . .

0 1 2 3 . . .
k (legs)

Fig. 6: Coefficients of the perturbative series covered by LO calculations. Left: F production at lowest order.
Right: F + 2 jets at LO, with the half-shaded box illustrating the restriction to the region of phase space with
exactly 2 resolved jets. The total power of αs for each coefficient is n = k + `.
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Fig. 7: Coefficients of the perturbative series covered by NLO calculations. Left: F production at NLO. Right:
F + 1 jet at NLO, with half-shaded boxes illustrating the restriction to the region of phase space with exactly 1
resolved jet. The total power of αs for each coefficient is n = k + `.

notation: by σ(1)
0 , we intend

σ
(1)
0 =

∫
dΦ0 2Re[M(1)

0 M
(0)∗
0 ] , (35)

which is of order αs relative to the Born level. Compare, for example, with the expansion of Eq. (34)
to order k + ` = 1. In particular, σ(1)

0 should not be confused with the integral over the 1-loop matrix
element squared (which would be of relative order α2

s and hence forms part of the NNLO coefficient
σ

(2)
0 ). Returning to Fig. 7, the unitary cancellations between real and virtual singularities imply that we

can now extend the integration of the real correction in the left-hand pane over all of phase space, while
retaining a finite total cross-section,

σNLO
0 =

∫
dΦ0 |M(0)

0 |2 +

∫
dΦ0 2Re[M(1)

0 M
(0)∗
0 ] +

∫
dΦ1 |M(0)

1 |2

= σ
(0)
0 + σ

(1)
0 + σ

(0)
1 ,

(36)

where the divergence caused by integrating the second term over all of phase space is cancelled by that
coming from the integration over loop momenta in the third term. However, if our starting point for the
NLO calculation is a process which already has a non-zero number of hard jets, we must continue to
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Fig. 8: Coefficients of the perturbative series covered by an NNLO calculation. The total power of αs for each
coefficient is n = k + `. Green shading represents the full perturbative coefficient at the respective k and `.

impose that at least that number of jets must still be resolved in the final-state integrations,

σNLO
1 (p⊥min) =

∫

p⊥>p⊥min

dΦ1 |M(0)
1 |2 +

∫

p⊥>p⊥min

dΦ1 2Re[M(1)
1 M

(0)∗
1 ] +

∫

p⊥1>p⊥min

dΦ2 |M(0)
2 |2

= σ
(0)
1 (p⊥ > p⊥min) + σ

(1)
1 (p⊥ > p⊥min) + σ

(0)
2 (p⊥1 > p⊥min) ,

(37)
where the restriction to at least one jet having p⊥ > p⊥min has been illustrated in the right-hand pane of
Fig. 7 by shading only the upper part of the relevant boxes. In the last term in Eq. (37), the notation p⊥1

is used to denote that the integral runs over the phase space in which at least one ‘jet’ (which may consist
of one or two partons) must be resolved with respect to p⊥min. Here, therefore, an explicit dependence
on the algorithm used to define ‘a jet’ enters for the first time. This is discussed in more details in the
ESHEP lectures by Salam [25].

To extend the integration to cover also the case of 2 unresolved jets, we must combine the left- and
right-hand parts of Fig. 7 and add the new coefficient

σ
(2)
0 = |M(1)

0 |2 + 2Re[M(2)
0 M

(0)∗
0 ] , (38)

as illustrated by the diagram in Fig. 8.

2.4 Infinite-order QCD: parton showers
In the preceding section, we noted two conditions that had to be valid for fixed-order truncations of the
perturbative series to be valid: firstly, the strong coupling αs must be small for perturbation theory to
be valid at all. This restricts us to the region in which all scales Qi � ΛQCD. We shall maintain this
restriction in this section, i.e., we are still considering perturbative QCD. Secondly, however, in order to
be allowed to truncate the perturbative series, we had to require σk+1 � σk, i.e., the corrections at suc-
cessive orders must become successively smaller, which — due to the enhancements from soft/collinear
singular (conformal) dynamics — effectively restricted us to consider only the phase-space region in
which all jets are ‘hard and well-separated’, equivalent to requiring all Qi/Qj ≈ 1. In this section, we
shall see how to lift this restriction, extending the applicability of perturbation theory into regions that
include scale hierarchies, Qi � Qj � ΛQCD, such as occur for soft jets, jet substructure, etc.

In fact, the simultaneous restriction to all resolved scales being larger than ΛQCD and no large
hierarchies is extremely severe, if taken at face value. Since we collide and observe hadrons (→ low
scales) while simultaneously wishing to study short-distance physics processes (→ high scales), it would
appear trivial to conclude that fixed-order pQCD is not applicable to collider physics at all. So why do
we still use it?
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Fig. 9: a) and b) Illustration of the QCD singularities induced by on-shell propagators. c) The approximation
obtained in the first step can be iterated to add additional legs.

The answer lies in the fact that we actually never truly perform a fixed-order calculation in QCD.
Let us repeat the factorized formula for the cross-section, Eq. (30),

dσ

dO =
∑

a,b

∫ 1

0
dxa dxb

∑

F

∫
dΦF fh1a (xa, µF )fh2b (xb, µF )

dσ̂ab→F
dÔ

DF (Ô → O, µF ) . (39)

Although dσab→F does represent a fixed-order calculation, the parton densities, fh1a and fh2b , include
so-called resummations of perturbative corrections to all orders from the initial scale of order the mass
of the proton, up to the factorization scale, µF . Note that the oft-stated mantra that the PDFs are purely
non-perturbative functions is therefore misleading. True, they are defined as essentially non-perturbative
functions at some very low scale, but, if µF is taken large, they necessarily incorporate a significant
amount of perturbative physics as well. On the ‘fixed-order side’, all we have left to ensure in dσab→F is
then that there are no large hierarchies remaining between µF and the QCD scales appearing in the fixed-
order matrix elements. Likewise, in the final state, the fragmentation functions, DF , include infinite-
order resummations of perturbative corrections all the way from µF down to some low scale, with similar
caveats concerning mantras about their non-perturbative nature as for the PDFs.

2.4.1 Step one: infinite legs
The infinite-order resummations that are included in objects such as the PDFs and FFs in Eq. (39) (and
in their parton-shower equivalents) rely on some very simple and powerful properties of gauge field
theories. One way to arrive at them is the following; assume we have computed the Born-level cross-
section for some process, F , and that this process contains some number of coloured partons14. For each
pair of (massless) colour-anticolour charges A and B in F , it is then a universal property of QCD that
the cross-sections for F + 1 partons, dσ

(0)
F+1 will include a factor

dσ
(0)
F+1 = g2

s

(
NAB→a1b

dsa1

sa1

ds1b

s1b
+ less singular terms

)
× dσ

(0)
F , (40)

where, for compactness, we have lumped some uninteresting normalization factors15 into NAB→a1b,
g2
s = 4παs is the strong coupling, a and b represent partons A and B after the branching (i.e., they

include possible recoil effects), and si1 is the invariant between parton i and the emitted “+1” parton.
Intuitively, this structure follows from the simple observations illustrated by the left and middle panes
of Fig. 9; the Feynman diagram in which parton “1” is emitted from the “a” (or “b”) leg has a pole for
sa1 → 0 (s1b → 0), corresponding to the intermediate propagator “a∗” (“b∗”) going on shell (middle

14Assume further that octet colour charges (gluons) may be represented as the sum of a colour triplet and an antitriplet
charge — compare, for example, with the illustrations of gluon colour flow, Figs. 2 and 3. This picture of octets is correct up to
corrections of order 1/N2

C , which will be good enough for our purposes here.
15That is, NAB→a1b contains colour and phase-space normalization factors. Up to mildly non-universal corrections of order

1/N2
C (which depend on whether the emitting particles are quarks or gluons), it is NAB→a1b = 2CA/(16π2).
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pane). Summing the two and squaring them, i.e., including their mutual interference, one obtains the
structure in Eq. (40), which is called the eikonal factor.

The leading part of the singularity structure to which we have already referred many times is
clearly visible here: if we integrate over the entire phase space including the region sa1 → 0, s1b → 0,
we end up with a double pole. If we instead regulate the divergence by cutting off the integration at
some minimal perturbative cutoff scale µ2

IR, we end up with a logarithm squared of that scale16. This is
a classic example of ‘large logs’ being generated by the presence of scale hierarchies.

Before we continue, it is worth noting that Eq. (40) is often rewritten in other forms to emphasize
specific aspects of it. One such rewriting is thus to reformulate the invariants si1 appearing in Eq. (40) in
terms of energies and angles,

sij = 2EiEj (1− cos θij) . (41)

Rewritten in this way, the differentials in Eq. (40) become

dsa1

sa1

ds1b

s1b
∝ dE1

E1

dθa1

θa1
+

dE1

E1

dθ1b

θ1b
. (42)

This kind of rewriting enables an intuitively appealing categorization of the singularities as related to
vanishing energies and angles, called soft and collinear limits, respectively. Although such formulations
have undeniably been helpful in obtaining many important results in QCD, one should still keep in
mind that Lorentz non-invariant formulations come with similar caveats and warnings as do gauge non-
invariant formulations of quantum field theory: while they can be practical to work with at intermediate
stages of a calculation, one should be careful with any physical conclusions that rely explicitly on them.
We shall therefore here restrict ourselves to a Lorentz-invariant formalism based directly on Eq. (40).
The collinear limit is then replaced by a more general single-pole limit in which a single parton-parton
invariant vanishes (as, for instance, when a pair of partons become collinear), while the soft limit is
replaced by one in which two (or more) invariants involving the same parton vanish simultaneously (as,
for instance by that parton becoming soft in a frame defined by two or more hard partons). This avoids
frame-dependent ambiguities from entering into the language, at the price of a slight reinterpretation of
what is meant by collinear and soft.

Independently of rewritings and philosophy, the real power of Eq. (40) lies in the fact that it is
universal. Thus, for any process F , we can apply Eq. (40) in order to get an approximation for dσF+1 .
We may then, for instance, take our newly obtained expression forF+1 as our arbitrary process and crank
Eq. (40) again, to obtain an approximation for dσF+2 , and so forth. What we have here is therefore a
very simple recursion relation that can be used to generate approximations to leading-order cross-sections
with arbitrary numbers of additional legs. The quality of this approximation is governed by how many
terms besides the leading one shown in Eq. (40) are included in the game. Including all possible terms,
the most general form for the cross-section at F +n jets, restricted to the phase-space region above some
infrared cutoff scale µIR, has the following algebraic structure,

σ
(0)
F+n = αns

(
ln2n + ln2n−1 + ln2n−2 + . . .+ ln +R

)
(43)

where we use the notation lnλ without an argument to denote generic functions of transcendentality λ
(the logarithmic function to the power λ being a ‘typical’ example of a function with transcendentality
λ appearing in cross-section expressions, but also dilogarithms and higher logarithmic functions17 of
transcendentality > 1 should be implicitly understood to belong to our notation lnλ). The last term, R,

16The precise definition of µ2
IR is not unique. Any scale choice that properly isolates the singularities from the rest of phase

space will do, with some typical choices being, for example, invariant-mass and/or transverse-momentum scales.
17Note: owing to the theorems that allow us, for instance, to rewrite dilogarithms in different ways with logarithmic and

lower ‘spillover’ terms, the coefficients at each λ are only well defined up to reparametrization ambiguities involving the terms
with transcendentality greater than λ.
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Fig. 10: Coefficients of the perturbative series covered by LO + LL calculations, Left: without imposing unitarity,
and Right: imposing unitarity order by order for each n = k + `. Green (darker) shading represents the full
perturbative coefficient at the respective k and `. Yellow (lighter) shading represents an LL approximation to it.
Half-shaded boxes indicate phase spaces in which we are prohibited from integrating over the IR singular region,
as discussed in Sections 2.3 and 4.2.

represents a rational function of transcendentality 0. We shall also use the nomenclature singular and
finite for the lnλ andR terms, respectively, a terminology which reflects their respective behaviour in the
limit µIR → 0.

The simplest approximation one can build on Eq. (43), dropping all but the leading ln2n term
in the parenthesis, is thus the leading transcendentality approximation. This approximation is better
known as the DLA (double logarithmic approximation), since it generates the correct coefficient for terms
which have two powers of logarithms for each power of αs, while terms of lower transcendentalities are
not guaranteed to have the correct coefficients. In so-called LL (leading-logarithmic) parton shower
algorithms, one generally expects to reproduce the correct coefficients for the ln2n and ln2n−1 terms.
In addition, several formally subleading improvements are normally also introduced in such algorithms
(such as explicit momentum conservation, gluon polarization and other spin-correlation effects [37],
higher-order coherence effects, renormalization scale choices [38], finite-width effects [39], etc.), as a
means to improve the agreement with some of the more subleading coefficients as well, if not in every
phase-space point then at least on average. Though LL showers do not magically acquire NLL (next-
to-leading-log) precision from such procedures, one therefore still expects a significantly better average
performance from them than from corresponding ‘strict’ LL analytical resummations. A side effect of
this is that it is often possible to ‘tune’ shower algorithms to give better-than-nominal agreement with
experimental distributions, by adjusting the parameters controlling the treatment of subleading effects.
One should remember, however, that there is a limit to how much can be accomplished in this way — at
some point, agreement with one process will only come at the price of disagreement with another, and at
this point further tuning would be meaningless.

Applying such an iterative process on a Born-level cross-section, one obtains the description of the
full perturbative series illustrated in Fig. 10. The yellow (lighter) shades used here for k ≥ 1 indicate that
the coefficient obtained is not the exact one, but rather an approximation to it that only gets its leading
singularities right. However, since this is still only an approximation to infinite-order tree-level cross-
sections (we have not yet included any virtual corrections), we cannot yet integrate this approximation
over all of phase space, as illustrated by the yellow boxes being only half filled in Fig. 10; the summed
total cross-section would still be infinite. This particular approximation would therefore still appear to be
very useless indeed — on one hand, it is only guaranteed to get the singular terms right, but on the other,
it does not actually allow us to integrate over the singular region. In order to obtain a truly all-orders
calculation, the constraint of unitarity must also be explicitly imposed, which furnishes an approximation
to all-orders loop corrections as well. Let us therefore emphasize that Fig. 10 is included for pedagogical
purposes only; all resummation calculations, whether analytical or parton-shower based, include virtual
corrections as well and consequently yield finite total cross-sections, as will now be described.
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2.4.2 Step two: infinite loops
Order-by-order unitarity, such as used in the KLN theorem, implies that the singularities caused by
integration over unresolved radiation in the tree-level matrix elements must be cancelled, order by order,
by equal but opposite-sign singularities in the virtual corrections at the same order. That is, from Eq. (40),
we immediately know that the 1-loop correction to dσF must contain a term,

dσ
(1)
F = −g2

s NAB→a1b dσ
(0)
F

∫
dsa1

sa1

ds1b

s1b
+ less singular terms, (44)

that cancels the divergence coming from Eq. (40) itself. Further, since this is universally true, we may
apply Eq. (44) again to get an approximation to the corrections generated by Eq. (40) at the next order
and so on. By adding such terms explicitly, order by order, we may now bootstrap our way around the
entire perturbative series, using Eq. (40) to move horizontally and Eq. (44) to move along diagonals of
constant n = k + `. Since real-virtual cancellations are now explicitly restored, we may finally extend
the integrations over all of phase space, resulting in the picture shown on the right-hand pane of Fig. 10.

The right-hand pane, not the left-hand one, corresponds to what is actually done in resummation
calculations, both of the analytic and parton-shower types18. Physically, there is a significant and intuitive
meaning to the imposition of unitarity, as follows.

Take a jet algorithm, with some measure of jet resolution, Q, and apply it to an arbitrary sample
of events, say dijets. At a very crude resolution scale, corresponding to a high value for Q, you find
that everything is clustered back to a dijet configuration, and the 2-jet cross-section is equal to the total
inclusive cross-section,

σtot = σF ;incl . (45)

At finer resolutions, decreasingQ, you see that some events that were previously classified as 2-jet events
contain additional, lower-scale jets, that you can now resolve, and hence those events now migrate to the
3-jet bin, while the total inclusive cross-section of course remains unchanged,

σtot = σF ;incl = σF ;excl(Q) + σF+1;incl(Q) , (46)

where “incl” and “excl” stands for inclusive and exclusive cross sections19, respectively, and the Q-
dependence in the two terms on the right-hand side must cancel so that the total inclusive cross-section
is independent of Q. Later, some 3-jet events now migrate further, to 4 and higher jets, while still more
2-jet events migrate into the 3-jet bin, etc. For arbitrary n and Q, we have

σF+n;incl(Q) = σF ;incl −
n−1∑

m=0

σF+m;excl(Q) . (47)

This equation expresses the trivial fact that the cross-section for n or more jets can be computed as the
total inclusive cross-section for F minus a sum over the cross-sections for F + exactly m jets for all
m < n. On the theoretical side, it is these negative terms which must be included in the calculation, for
each order n = k + `, to restore unitarity. Physically, they express that, at a given scale Q, a given event
will be classified as having either 0, 1, 2, or whatever jets. Or, equivalently, for each event we gain in the
3-jet bin as Q is lowered, we must lose one event in the 2-jet one; the negative contribution to the 2-jet
bin is exactly minus the integral of the positive contribution to the 3-jet one, and so on. We may perceive
of this detailed balance as an evolution of the event structure with Q, for each event, which is effectively
what is done in parton-shower algorithms, to which we shall return in Section 4.1.

18In the way these calculations are formulated in practice, they in fact rely on one additional property, called exponentiation,
that allows us to move along straight vertical lines in the loops-and-legs diagrams. However, since the two different directions
furnished by Eqs. (40) and (44) are already sufficient to move freely in the full 2D coefficient space, we shall use exponentiation
without extensively justifying it here.

19F inclusive = F plus anything. F exclusive = F and only F . Thus, σF ;incl =
∑∞

k=0 σF+k;excl .
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Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

u
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fi(x,Q
2) = number density of partons i

at momentum fraction x and probing scale Q2.
Linguistics (example):

F2(x,Q
2) =

∑

i

e2i xfi(x,Q
2)

structure function parton distributions

Fig. 11: Illustration (from Ref. [41]) of partonic fluctuations inside a proton beam

3 Soft QCD
In a complete high-energy collision, many different physics (sub-)processes contribute to the total ob-
served activity. We here give a very brief overview of the main aspects of soft QCD that are relevant
for hadron-hadron collisions, such as parton distribution functions, minimum-bias and soft-inclusive
physics, and the so-called ‘underlying event’. This will be kept at a strictly pedestrian level and is largely
based on the review in Ref. [40]. A discussion of the modelling of these components, as well as a discus-
sion of the process of hadronization, is deferred to the relevant parts of Section 4 on Monte Carlo event
generators.

3.1 Parton densities
Physically, parton densities express the fact that hadrons are composite, with a time-dependent struc-
ture, illustrated in Fig. 11. More formally, they are defined by the factorization theorem discussed in
Section 2.1. Occasionally, the words structure functions and parton densities are used interchange-
ably. However, there is a very important distinction between the two, which we find often in (quantum)
physics: one is a physical observable, the other is a ‘fundamental’ quantity extracted from it.

Structure functions, such as F2, are completely unambiguous physical observables, which can be
measured, for instance, in DIS processes. (For a definition, see, for example, Ref. [42].) From these, and
other observables, a set of more fundamental and theoretically useful objects, parton density functions
(PDFs), can be extracted, but there is a price; since the parton densities are not, themselves, physically
observable, they can only be defined within a specific factorization scheme, order by order in perturbation
theory. The only exception is at leading order, at which they have a very simple physical interpretation,
as the probability of finding a quark of a given flavour and carrying a given momentum fraction, x, inside
a hadron of a given type, probed at a specific scale, Q2. They are then related to the structure function
F2 by their charge-weighted momentum sum,

F2(x,Q2)︸ ︷︷ ︸
Physical Observable

=
∑

i

e2
ix fi(x,Q

2)︸ ︷︷ ︸
Extracted Quantity

, (48)

where fi denotes the parton density for a parton of flavour/type i. When going to higher orders, we
tend to keep the simple intuitive picture from leading order in mind, but one should be aware that the
fundamental relationship is now more complicated, and that the parton densities no longer have a clear
probabilistic interpretation.

The reader should also be aware that there is currently a significant amount of debate concerning
many aspects of PDF definitions and usage:

– The ‘initial condition’ for the PDFs, i.e., their shape in x at some low value of Q2
F , and other

constraints imposed on their evolution, such as positivity, flavour symmetries, treatment of mass

21

QCD FOR COLLIDER PHYSICS

71



effects, and extrapolation beyond the fit region. Each PDF group has its own particular ideol-
ogy when it comes to these issues, and while the differences caused by these choices in well-
constrained regions may appear small, the user should be warned that large differences can occur
when extrapolating, for example, to small x, or for observables that are particularly sensitive, e.g.,
to flavour symmetries, etc.

– Using PDFs extracted using higher-order matrix elements in lower-order calculations, as, for ex-
ample, when using NLO PDFs as input to an LO calculation. In principle, the higher-order PDFs
are better constrained and the difference between, for example, an NLO and an LO set should
formally be beyond LO precision, so that one might be tempted to simply use the highest-order
available PDFs for any calculation. However, as described in Section 2.4, it is often possible to
partly absorb higher-order terms into lower-order coefficients. In the context of PDFs, the fit pa-
rameters of lower-order PDFs will effectively attempt to ‘compensate’ for missing higher-order
contributions in the matrix elements. To the extent those higher-order contributions are universal,
this is both desirable and self-consistent. However, this will only give an improvement when used
with matrix elements at the same order as those used to extract the PDFs. It is therefore quite
possible that NLO PDFs used in conjunction with LO matrix elements give a worse agreement
with data than LO PDFs do.

– PDF uncertainties. Uncertainty estimates for PDF determinations is a highly delicate procedure,
owing in part to the diversity of the data sets that enter into the fitting procedures (especially
since some data sets appear to have ‘tensions’, i.e., mutual incompatibilities, between them), but
also the differences in philosophy mentioned above (e.g., on parametrizations and evolution con-
straints) can cause apparent incompatibilities between different sets which are hard to give precise
uncertainty estimates for. Currently, a consensus on meaningful uncertainty estimates is slowly
building, though future years are likely to see continued active discussions on how best to address
this topic.

– How to use PDFs in conjunction with parton-shower Monte Carlo codes. The initial-state showers
in a Monte Carlo model are essentially supposed to mimic the evolution in the PDFs, and vice
versa. However, since PDF fits are not done with MC codes, but instead use analytical resumma-
tion models that are not identical to their MC counterparts, the PDF fits are essentially ‘tuned’ to
a slightly different resummation than that incorporated in a given MC model. Since both types of
calculation are supposed to be accurate at least to LL, any difference between them should in prin-
ciple be subleading. In practice, not much is known about the size and impact of this ambiguity, so
we mention it mostly to make sure the reader is aware that it exists. Known differences include: the
size of phase space (purely collinear massless PDF evolution vs. the finite-transverse-momentum
massive MC phase space), the treatment of momentum conservation and recoil effects, additional
higher-order effects explicitly or implicitly included in the MC evolution, choice of renormaliza-
tion scheme and scale, and, for those MC algorithms that do not rely on collinear (DGLAP, see
Ref. [22]) splitting kernels (e.g., the various kinds of dipole evolution algorithms, see Ref. [43]),
differences in the effective factorization scheme.

3.2 Elastic and inelastic components of σtot

Elastic scattering consists of all reactions of the type

A(pA)B(pB)→ A(p′A)B(p′B) , (49)

whereA andB are particles carrying momenta pA and pB , respectively. Specifically, the only exchanged
quantity is momentum; all quantum numbers and masses remain unaltered, and no new particles are
produced. Inelastic scattering covers everything else, i.e.,

AB → X 6= AB , (50)

22

P.Z. SKANDS

72



where X 6= AB signifies that one or more quantum numbers are changed, and/or more particles are
produced. The total hadron–hadron cross-section can thus be written as a sum of these two physically
distinguishable components,

σtot(s) = σel(s) + σinel(s) , (51)

where s = (pA + pB)2 is the beam–beam centre-of-mass energy squared.

If A and/or B are not elementary, the inelastic final states may be further divided into ‘diffractive’
and ‘non-diffractive’ topologies. This is a qualitative classification, usually based on whether the final
state looks like the decay of an excitation of the beam particles (diffractive20), or not (non-diffractive),
or upon the presence of a large rapidity gap somewhere in the final state which would separate such
excitations.

Given that an event has been labelled as diffractive, either within the context of a theoretical model,
or by a final-state observable, we may distinguish between three different classes of diffractive topolo-
gies, which it is possible to distinguish between physically, at least in principle. In double-diffractive
(DD) events, both of the beam particles are diffractively excited and hence none of them survives the
collision intact. In single-diffractive (SD) events, only one of the beam particles gets excited and the
other survives intact. The last diffractive topology is central diffraction (CD), in which both of the beam
particles survive intact, leaving an excited system in the central region between them. (This latter topol-
ogy includes ‘central exclusive production’ where a single particle is produced in the central region.)
That is,

σinel(s) = σSD(s) + σDD(s) + σCD(s) + σND(s) , (52)

where “ND” (non-diffractive, here understood not to include elastic scattering) contains no gaps in the
event consistent with the chosen definition of diffraction. Further, each of the diffractively excited sys-
tems in the events labeled SD, DD, and CD, respectively, may in principle consist of several subsystems
with gaps between them. Equation (52) may thus be defined to be exact, within a specific definition of
diffraction, even in the presence of multi-gap events. Note, however, that different theoretical models
almost always use different (model-dependent) definitions of diffraction, and therefore the individual
components in one model are in general not directly comparable to those of another. It is therefore im-
portant that data be presented at the level of physical observables if unambiguous conclusions are to be
drawn from them.

3.3 Minimum-bias and soft inclusive physics
The term ‘minimum-bias’ (MB) is an experimental term, used to define a certain class of events that
are selected with the minimum possible trigger bias, to ensure they are as inclusive as possible21. In
theoretical contexts, the term ‘minimum-bias’ is often used with a slightly different meaning; to denote
specific (classes of) inclusive soft-QCD subprocesses in a given model. Since these two usages are not
exactly identical, in these lectures we have chosen to reserve the term ‘minimum bias’ to pertain strictly
to definitions of experimental measurements, and instead use the term ‘soft inclusive’ physics as a generic
descriptor for the class of processes which generally dominate the various experimental ‘minimum-bias’
measurements in theoretical models. This parallels the terminology used in the review [40], from which

20An example of a process that would be labelled as diffractive would be if one the protons is excited to a ∆+ which then
decays back to p+ + π0, without anything else happening in the event. In general, a whole tower of possible diffractive
excitations are available, which in the continuum limit can be described by a mass spectrum falling roughly as dM2 /M2.

21A typical minimum-bias trigger would thus be the requirement of at least one measured particle in a given rapidity region,
so that all events which produce at least one observable particle would be included, which must, indeed, be considered the
minimal possible bias. In principle, everything is a subset of minimum-bias, including both hard and soft processes. However,
compared to the total minimum-bias cross-section, the fraction that is made up of hard processes is only a very small tail. Since
only a tiny fraction of the total minimum-bias rate can normally be stored, the minimum-bias sample would give quite poor
statistics if used for hard physics studies. Instead, separate dedicated hard-process triggers are typically included in addition to
the minimum-bias one, in order to ensure maximal statistics also for hard physics processes.

23

QCD FOR COLLIDER PHYSICS

73



most of the discussion here has been adapted. See Eq. (52) above for a compact overview of the types
of physical processes that contribute to minimum-bias data samples. For a more detailed description of
Monte Carlo models of this physics, in particular ones based on Multiple Parton Interactions (MPI), see
Section 4.4.

3.4 Underlying event and jet pedestals
In events containing a hard parton-parton interaction, the underlying event (UE) can be roughly conceived
of as the difference between QCD with and without including the remnants of the original beam hadrons.
Without such ‘beam remnants’, only the hard interaction itself, and its associated parton showers and
hadronization, would contribute to the observed particle production. In reality, after the partons that
participate in the hard interaction have been taken out, the remnants still contain whatever is left of
the incoming beam hadrons, including also a partonic substructure, which leads to the possibility of
‘multiple parton interactions’ (MPI), as will be discussed in Section 4.4. Owing to the simple fact that
the remnants are not empty, an ‘underlying event’ will always be there — but how much additional energy
does it deposit in a given measurement region? A quantifation of this can be obtained, for instance, by
comparing measurements of the UE to the average activity in minimum-bias events at the same

√
s.

Interestingly, it turns out that the underlying event is much more active, with larger fluctuations, than
the average MB event. This is called the jet pedestal effect (hard jets sit on top of a higher-than-average
‘pedestal’ of underlying activity), and is interpreted as follows. When two hadrons collide at non-zero
impact parameter, high-p⊥ interactions can only take place inside the overlapping region. Imposing a
hard trigger therefore statistically biases the event sample toward more central collisions, which will also
have more underlying activity. See Section 4.4 for a more detailed description of Monte Carlo models of
this physics, based on MPI.

4 Monte Carlo event generators
In this section, we discuss the physics of Monte Carlo generators and their mathematical foundations, at
an introductory level. We shall attempt to convey the main ideas as clearly as possible without burying
them in an avalanche of technical details. References to more detailed discussions are included where
applicable. We assume the reader is already familiar with the contents of the preceding sections of this
report, in particular Section 2.3 on matrix elements and Section 2.4 on parton showers. Several of the
discussions rely on material from the recent more comprehensive review in Ref. [40], which also contains
brief descriptions of the physics implementations of each of the main general-purpose event generators
on the market, together with a guide on how to use (and not use) generators in various connections, and
a collection of comparisons with important experimental distributions. We highly recommend readers to
obtain a copy of that review, as it is the most comprehensive and up-to-date review of event generators
currently available. Another useful and pedagogical review on event generators is contained in the 2006
ESHEP lectures by Sjöstrand [41], with a more recent update in Ref. [44].

4.1 Perturbation theory with Markov chains
Consider again the Born-level cross-section for an arbitrary hard process, F , differentially in an arbitrary
infrared-safe observable O, as obtained from Eq. (34):

dσ
(0)
F

dO

∣∣∣∣∣
Born

=

∫
dΦF |M(0)

F |2 δ(O −O(ΦF )) , (53)

where the integration runs over the full final-state on-shell phase space of F (this expression and those
below would also apply to hadron collisions were we to include integrations over the parton distribution
functions in the initial state), and the δ function projects out a 1-dimensional slice defined byO evaluated
on the set of final-state momenta which we denote ΦF .
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To make the connection to parton showers, we insert an operator, S, that acts on the Born-level
final state before the observable is evaluated, i.e.,

dσF
dO

∣∣∣∣S
=

∫
dΦF |M(0)

F |2 S(ΦF ,O) . (54)

Formally, this operator — the evolution operator — will be responsible for generating all (real and
virtual) higher-order corrections to the Born-level expression. The measurement δ function appearing
explicitly in Eq. (53) is now implicit in S.

Algorithmically, parton showers cast S as an iterative Markov (i.e., history-independent) chain,
with an evolution parameter, QE , that formally represents the factorization scale of the event, below
which all structure is summed over inclusively. Depending on the particular choice of shower algorithm,
QE may be defined as a parton virtuality (virtuality-order showers), as a transverse-momentum scale
(p⊥-ordered showers), or as a combination of energies times angles (angular ordering). Regardless of
the specific form of QE , the evolution parameter will go towards zero as the Markov chain develops, and
the event structure will become more and more exclusively resolved. A transition from a perturbative
evolution to a non-perturbative one can also be inserted, when the evolution reaches an appropriate scale,
typically around 1 GeV. This scale thus represents the lowest perturbative scale that can appear in the
calculations, with all perturbative corrections below it summed over inclusively.

Working out the precise form that S must have in order to give the correct expansions discussed in
Section 2.4 takes a bit of algebra, and is beyond the scope we aim to cover in these lectures. Heuristically,
the procedure is as follows. We noted that the singularity structure of QCD is universal and that at least
its first few terms are known to us. We also saw that we could iterate that singularity structure, using
universality and unitarity, thereby bootstrapping our way around the entire perturbative series. This was
illustrated by the right-hand pane of Fig. 10 in Section 2.4.

Skipping intermediate steps, the form of the all-orders pure-shower Markov chain, for the evolu-
tion of an event between two scales QE1 > QE2, is

S(ΦF , QE1, QE2,O) = ∆(ΦF , QE1, QE2) δ (O −O(ΦF ))︸ ︷︷ ︸
F + 0 exclusive above QE2

+
∑

r

∫ QE1

QE2

dΦr
F+1

dΦF

Sr(ΦF+1) ∆(ΦF , QE1, QF+1) S(ΦF+1, QF+1, QE2,O)

︸ ︷︷ ︸
F + 1 inclusive above QE2

,

(55)
with the so-called Sudakov factor

∆(ΦF , QE1, QE2) = exp

[
−
∑

r

∫ QE1

QE2

dΦr
F+1

dΦF

Sr(ΦF+1)

]
, (56)

defining the probability that there is no evolution (i.e., no emissions) between the scales QE1 and QE2,
according to the radiation functions Sr to which we shall return below. The term on the first line of
Eq. (55) thus represents all events that did not evolve as the resolution scale was lowered from QE1 to
QE2, while the second line contains a sum and phase-space integral over those events that did evolve —
including the insertion of S(ΦF+1) representing the possible further evolution of the event and complet-
ing the iterative definition of the Markov chain.

The factor dΦr
F+1 /dΦF defines the chosen phase space factorization. Our favourite is the so-

called dipole–antenna factorization, whose principal virtue is that it is the simplest Lorentz invariant
factorization which is simultaneously exact over all of phase space while only involving on-shell mo-
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Fig. 12: Illustration of the double-counting problem caused by naively adding cross-sections involving matrix
elements with different numbers of legs

menta. For completeness, its form is

dΦr
F+1

dΦF

=
dΦr

3

dΦ2

= dsa1 ds1b
dφ

2π

1

16π2sr
, (57)

which involves just one colour-anticolour pair for each r, with invariant mass squared sr = (pa +
p1 + pb)

2. Other choices, such as purely collinear ones (only exact in the collinear limit or involving
explicitly off-shell momenta), more global ones involving all partons in the event (more complicated,
in our opinion), or less global ones with a single parton playing the dominant role as emitter, are also
possible, again depending on the specific algorithm considered.

The radiation functions Sr obviously play a crucial role in these equations, driving the emission
probabilities. For example, if Sr → 0, then ∆ → exp(0) = 1 and all events stay in the top line of
Eq. (55). Thus in regions of phase space where Sr is small, there is little or no evolution. Conversely,
for Sr → ∞, we have ∆ → 0, implying that all events evolve. One possible choice for the radia-
tion functions Sr was implicit in Eq. (40), in which we took them to include only the leading (double)
singularities, with r representing colour–anticolour pairs. In general, the shower may exponentiate the
entire set of universal singular terms, or only a subset of them (for example, the terms leading in the
number of colours NC), which is why we here let the explicit form of Sr be unspecified. Suffice it to
say that in traditional parton showers, Sr would simply be the DGLAP splitting kernels (see, for ex-
ample, Ref. [22]), while they would be so-called dipole or antenna radiation functions in the various
dipole-based approaches to QCD (see, for example, Refs. [34, 45–48]).

The procedure for how to technically ‘construct’ a shower algorithm of this kind, using random
numbers to generate scales distributed according to Eq. (55), is described more fully in Ref. [34], using
a notation that closely parallels the one used here. The procedure is also described at a more technical
level in the review [40], though using a slightly different notation. Finally, a pedagogical introduction to
Monte Carlo methods in general can be found in Ref. [29].

4.2 Matching
The essential problem that leads to matrix-element/parton-shower matching can be illustrated in a very
simple way. Assume we have computed the LO cross-section for some process, F , and that we have
added an LL shower to it, as in the left-hand pane of Fig. 12. We know that this only gives us an LL
description of F + 1. We now wish to improve this from LL to LO by adding the actual LO matrix
element for F + 1. Since we also want to be able to hadronize these events, etc., we again add an LL
shower off them. However, since the matrix element for F + 1 is divergent, we must restrict it to cover
only the phase-space region with at least one hard resolved jet, illustrated by the half-shaded boxes in
the middle pane of Fig. 12. Adding these two samples, however, we end up counting the LL terms of
the inclusive cross section for F + 1 twice, since we are now getting them once from the shower off F
and once from the matrix element for F + 1, illustrated by the dark shaded (red) areas of the right-hand
pane of Fig. 12. This double-counting problem would grow worse if we attempted to add more matrix
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Fig. 13: Illustration of the original matching scheme implemented in HERWIG [50, 51], in which the dead zone of
the HERWIG shower was used as an effective ‘matching scale’ for one emission beyond a basic hard process

elements, with more legs. The cause is very simple. Each such calculation corresponds to an inclusive
cross-section, and hence naive addition would give

σtot = σ0;incl + σ1;incl = σ0;excl + 2σ1;incl . (58)

Instead, we must match the coefficients calculated by the two parts of the full calculation — showers
and matrix elements — more systematically, for each order in perturbation theory, so that the nesting of
inclusive and exclusive cross-sections is respected without overcounting.

Given a parton shower and a matrix-element generator, there are fundamentally three different
ways in which we can consider matching the two [34]:

1. Slicing: The most commonly encountered matching type is currently based on separating
(slicing) phase space into two regions, one of which is supposed to be mainly described by hard matrix
elements and the other of which is supposed to be described by the shower. This type of approach was
first used in HERWIG [49], to include matrix-element corrections for one emission beyond the basic
hard process [50, 51]. This is illustrated in Fig. 13. The method has since been generalized by several
independent groups to include arbitrary numbers of additional legs [52–56]. Effectively, the shower
approximation is set to zero above some scale (either due to the presence of explicit dead zones in
the shower, as in HERWIG, or by vetoing any emissions above a certain matching scale, as in the (L)-
CKKW [52, 53, 55] and MLM [54, 56] approaches), causing the matched result to be identical to the
matrix element (ME) in that region, modulo higher-order corrections. We may sketch this as

Matched (above matching scale) =

ME︷ ︸︸ ︷
Exact ×

corrections︷ ︸︸ ︷
(1 +O(αs)) , (59)

where the ‘shower-corrections’ include approximate Sudakov factors and αs reweighting factors applied
to the matrix elements in order to obtain a smooth transition to the shower-dominated region. Below the
matching scale, the small difference between the matrix elements and the shower approximation can be
dropped (since their leading singularities are identical and this region by definition includes no hard jets),
yielding the pure shower answer in that region,

Matched (below matching scale) =

shower︷ ︸︸ ︷
Approximate +

correction︷ ︸︸ ︷
(Exact− Approximate)

= Approximate + non-singular

→ Approximate . (60)

This type of strategy is illustrated in Fig. 14. Since this strategy is discontinuous across phase space,
a main point here is to ensure that the behaviour across the matching scale be as smooth as possible.
CKKW showed [52] that it is possible to remove any dependence on the matching scale through NLL
precision by careful choices of all ingredients in the matching; technical details of the implementation
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Fig. 14: Illustration of slicing approaches to matching, with up to two additional emissions beyond the basic
process. The showers off F and F+1 are set to zero above a specific ‘matching scale’. (The number of coefficients
shown was reduced a bit in these plots to make them fit in one row.)
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Fig. 15: Illustration of the MC@NLO approach to matching. In the middle pane, cyan boxes denote non-singular
correction terms, while the egg-coloured ones denote showers off such corrections, which cannot lead to double-
counting at the LL level.

(affecting the O(αs) terms in Eq. (59)) are important, and the dependence on the unphysical match-
ing scale may be larger than NLL unless the implementation matches the theoretical algorithm pre-
cisely [53,55,57]. One should also be aware that all strategies of this type are quite computing intensive.
This is basically due to the fact that a separate phase-space generator is required for each of the n-parton
correction terms, with each such sample a priori consisting of weighted events such that a separate un-
weighting step (often with quite low efficiency) is needed before an unweighted sample can be produced.

2. Subtraction: Another way of matching two calculations is by subtracting one from the other
and correcting by the difference, schematically

Matched =

shower︷ ︸︸ ︷
Approximate +

correction︷ ︸︸ ︷
(Exact− Approximate) . (61)

This looks very much like the structure of an NLO fixed-order calculation, in which the shower approx-
imation plays the role of subtraction terms, and indeed this is what is used in strategies like MC@NLO

[58–60], illustrated in Fig. 15. In this type of approach, however, negative-weight events will generally
occur, for instance in phase-space points where the approximation is larger than the exact answer. This
motivated the development of the so-called POWHEG approach [61], illustrated in Fig. 16, which is con-
structed specifically to prevent negative-weight events from occurring and simultaneously to be more
independent of which parton-shower algorithm it is used with. The advantage of these methods is obvi-
ously that NLO corrections to the Born level can be systematically incorporated. However, a systematic
way of extending this strategy beyond the first additional emission is not available, save for combining
them with a slicing-based strategy for the additional legs, as in MENLOPS [62], illustrated in Fig. 17.
These issues are, however, no more severe than in ordinary fixed-order NLO approaches, and hence they
are not viewed as disadvantages if the point of reference is an NLO computation.

3. Unitarity: The oldest, and in our view most attractive, approach [63, 64] consists of working
out the shower approximation to a given fixed order, and correcting the shower splitting functions at that
order by a multiplicative factor given by the ratio of the matrix element to the shower approximation,
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Fig. 16: Illustration of the POWHEG approach to matching. In the middle pane, cyan boxes denote non-singular
correction terms, while the egg-coloured ones denote showers off such corrections, which cannot lead to double-
counting at the LL level.
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Fig. 17: Illustration of the MENLOPS approach to matching. Note that each of the POWHEG and CKKW samples
are composed of separate sub-samples, as illustrated in Figs. 14 and 16.
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Fig. 18: Illustration of the two purely unitarity-based approaches to matching discussed in the text. Only one event
sample is produced by each of these methods, and hence no sub-components are shown.

phase-space point by phase-space point. We may sketch this as

Matched =

shower︷ ︸︸ ︷
Approximate ×

correction︷ ︸︸ ︷
Exact

Approximate
. (62)

When these correction factors are inserted back into the shower evolution, they guarantee that the shower
evolution off n−1 partons correctly reproduces the n-parton matrix elements, without the need to gener-
ate a separate n-parton sample. That is, the shower approximation is essentially used as a pre-weighted
(stratified) all-orders phase-space generator, on which a more exact answer can subsequently be im-
printed order by order in perturbation theory. In the original approach [63,64], used by PYTHIA [65,66],
this was only worked out for one additional emission beyond the basic hard process. In POWHEG [61],
it was extended to include also virtual corrections to the Born-level matrix element. Finally, in VIN-
CIA [34], it has been extended to include arbitrary numbers of emissions at tree level, though that method
has so far only been applied to final-state showers. An illustration of the perturbative coefficients that can
be included in each of these approaches is illustrated in Fig. 18, as usual with green (darker shaded) boxes
representing exact coefficients and yellow (light shaded) boxes representing logarithmic approximations.
Finally, two more properties unique to this method deserve mention. Firstly, since the corrections modify
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1
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Fig. 19: Illustration of the transition between a Coulomb potential at short distances to the string-like one of
Eq. (63) at large qq̄ separations

the actual shower evolution kernels, the corrections are automatically resummed in the Sudakov expo-
nential, which should improve the logarithmic precision once k ≥ 2 is included, and secondly, since the
shower is unitary, an initially unweighted sample of (n− 1)-parton configurations remains unweighted,
with no need for a separate event-unweighting or event-rejection step.

4.3 The string model of hadronization
In the context of event generators, hadronization denotes the process by which a set of post-shower
partons is transformed into a set of primary hadrons, which may then subsequently decay further. This
non-perturbative transition takes place at the hadronization scale, which by construction is identical to
the infrared cutoff of the parton shower. In the absence of a first-principles solution to the relevant
dynamics, event generators use QCD-inspired phenomenological models to describe this transition.

Although non-perturbative QCD is not solved, we do have some knowledge of the properties that
such a solution must have. For instance, Poincaré invariance, unitarity, and causality are all concepts
that apply beyond perturbation theory. In addition, lattice QCD provides us a means of making explicit
quantitative studies in a genuinely non-perturbative setting, albeit only of certain questions.

An important result in ‘quenched’ lattice QCD22 is that the potential of the colour dipole field
between a charge and an anticharge appears to grow linearly with the separation of the charges, when
the separation is greater than about a femtometre.This is known as ‘linear confinement’, and it forms the
starting point for the string model of hadronization.

Starting from early concepts developed by Artru and Mennessier [67], several hadronization mod-
els based on strings were proposed in the late 1970s and early 1980s. Of these, the most sophisticated
and widely used today is the so-called Lund model, implemented in the PYTHIA code. We shall therefore
concentrate on that particular model here, though many of the overall concepts would be shared by any
string-inspired method. (A more extended discussion can be found in the very complete and pedagogical
review of the Lund model by Andersson [68].)

Consider the production of a qq̄ pair from vacuum, for instance in the process e+e− → γ∗/Z →
qq̄ → hadrons. As the quarks move apart, linear confinement implies that a potential

V (r) = κ r (63)

is asymptotically reached for large distances, r. (At short distances, there is a Coulomb term proportional
to 1/r as well, but this is neglected in the Lund model.) This potential describes a string with tension
(energy per unit length) κ. The physical picture is that of a colour flux tube being stretched between the
q and the q̄, Fig. 19. From hadron mass spectroscopy the string tension κ, is known to be

κ ∼ 1 GeV/fm ∼ 0.2 GeV2. (64)

A straightforward Lorentz-invariant description of this object is provided by the massless relativistic
string in 1+1 dimensions, with no transverse degrees of freedom. The mathematical, one-dimensional
string can be thought of as parametrizing the position of the axis of a cylindrically symmetric flux tube.

22Quenched QCD implies no ‘dynamical’ quarks, i.e., no g → qq̄ splittings allowed.
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Fig. 20: (a) Illustration of string breaking by quark pair creation in the string field. (b) Illustration of the algorithmic
choice to process the fragmentation from the outside-in, splitting off a single on-shell hadron in each step.

(Note that the expression ‘massless’ is somewhat of a misnomer, since κ effectively corresponds to a
‘mass density’ along the string.)

As the q and q̄ move apart, their kinetic energy is gradually converted to potential energy, stored in
the growing string spanned between them. In the ‘quenched’ approximation, in which g → qq̄ splittings
are not allowed, this process would continue until the endpoint quarks have lost all their momentum,
at which point they would reverse direction and be accelerated by the now shrinking string. In the real
world, quark-antiquark fluctuations inside the string field can make the transition to become real particles
by absorbing energy from the string, thereby screening the original endpoint charges from each other and
breaking the string into two separate colour-singlet pieces, (qq̄) → (qq̄′) + (q′q̄), illustrated in Fig. 20
(a). This process then continues until only ordinary hadrons remain. (We will give more details on the
individual string breaks below.) More complicated multi-parton topologies including gluons are treated
by representing gluons as transverse ‘kinks’. Thus soft gluons effectively ‘build up’ a transverse structure
in the originally one-dimensional object, with infinitely soft ones absorbed into the string without leading
to modifications. For strings with finite-energy kinks, the space-time evolution is then slightly more
involved [68], and modifications to the fragmentation model to handle stepping across gluon corners
have to be included, but the main point is that there are no separate free parameters for gluon jets.
Differences with respect to quark fragmentation arise simply because quarks are only connected to a
single string piece, while gluons have one on either side, increasing the energy loss per unit (invariant)
time from a gluon to the string by a factor of 2 relative to quarks, which can be compared to the ratio of
colour Casimirs CA/CF = 2.25.

Since the string breaks are causally disconnected (as can easily be realized from space-time dia-
grams [68]), they do not have to be considered in any specific time-ordered sequence. In the Lund model,
the string breaks are instead generated starting with the leading hadrons, containing the endpoint quarks,
and iterating inwards towards the centre of the string, alternating randomly between fragmentation off
the left- and right-hand sides, respectively, Fig. 20 (b). This has the advantage that a single on-shell
hadron can be split off in each step, making it straightforward to ensure that only states consistent with
the known spectrum of hadron resonances are produced, as will be discussed below.

The details of the individual string breaks are not known from first principles. The Lund model
invokes the idea of quantum mechanical tunnelling, which leads to a Gaussian suppression of the energies
and masses imparted to the produced quarks,

Prob(m2
q , p

2
⊥q) ∝ exp

(
−πm2

q

κ

)
exp

(
−πp2

⊥q
κ

)
, (65)

where mq is the mass of the produced quark and p⊥ is the transverse momentum imparted to it by the
breakup process (the antiquark obviously has the same mass and opposite p⊥).
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Owing to the factorization of the p⊥and m dependence implied by Eq. (65), the p⊥spectrum of
produced quarks in this model is independent of the quark flavour, with a universal average value of

〈
p2
⊥q
〉

= σ2 = κ/π ∼ (250 MeV)2 . (66)

Bear in mind that ‘transverse’ is here defined with respect to the string axis. Thus the p⊥in a frame where
the string is moving is modified by a Lorentz boost factor. Also bear in mind that σ2 is here a purely
non-perturbative parameter. In a Monte Carlo model with a fixed shower cutoff, the effective amount of
‘non-perturbative’ p⊥may be larger than this, due to effects of additional unresolved soft-gluon radiation
below the shower cutoff scale. In principle, the magnitude of this additional component should scale
with the cutoff, but in practice it is up to the user to enforce this by retuning the effective σ parameter
when changing the hadronization scale. Since hadrons receive p⊥ contributions from two breakups, one
on either side, their average transverse momentum squared will be twice as large,

〈
p2
⊥h
〉

= 2σ2 . (67)

The mass suppression implied by Eq. (65) is less straightforward to interpret. Since quark masses
are notoriously difficult to define for light quarks, the value of the strangeness suppression must effec-
tively be extracted from experimental measurements, e.g., of the K/π ratio, with a resulting suppression
of roughly s/u ∼ s/d ∼ 0.2–0.3. Inserting even comparatively low values for the charm quark mass
in Eq. (65), however, one obtains a relative suppression of charm of the order of 10−11. Heavy quarks
can therefore safely be considered to be produced only in the perturbative stages and not by the soft
fragmentation.

Baryon production can be incorporated in the same basic picture [69], by allowing string breaks
to occur also by the production of pairs of so-called diquarks, loosely bound states of two quarks in
an overall 3̄ representation (e.g., red + blue = antigreen). Again, the relative rate of diquark-to-quark
production is not known a priori and must be extracted from experimental measurements, e.g., of the
p/π ratio. More advanced scenarios for baryon production have also been proposed, in particular the
so-called popcorn model [70, 71], which is normally used in addition to the diquark picture and then
acts to decrease the correlations among neighbouring baryon-antibaryon pairs by allowing mesons to be
formed inbetween them. Within the PYTHIA framework, a fragmentation model including explicit string
junctions [72] has so far only been applied to baryon-number-violating new-physics processes and to the
description of beam remnants (and then acts to increase baryon stopping [73]).

This brings us to the next step of the algorithm, assignment of the produced quarks within hadron
multiplets. The fragmenting quark (antiquark) may combine with the antiquark (quark) from a newly
created breakup to produce either a vector or a pseudoscalar meson, or, if diquarks are involved, either
a spin-1/2 or spin-3/2 baryon. Unfortunately, the string model is entirely unpredictive in this respect,
and this is therefore the sector that contains the largest amount of free parameters. From spin counting
alone, one would expect the ratio V/S of vectors to pseudoscalars to be 3, but in practice this is only
approximately true for B∗/B. For lighter flavours, the difference in phase space caused by the V –
S mass splittings implies a suppression of vector production. Thus, for D∗/D, the effective ratio is
already reduced to about ∼ 1.0–2.0, while for K∗/K and ρ/π, extracted values range from 0.3–1.0.
Recall, as always, that these are production ratios of primary hadrons, hence feed-down complicates the
extraction of these parameters from experimental data, in particular for the lighter hadron species. The
production of higher meson resonances is assumed to be low in a string framework23. For diquarks,
separate parameters control the relative rates of spin-1 diquarks vs. spin-0 ones and, likewise, have to be
extracted from data, with resulting values of order (qq)1/(qq)0 ∼ 0.075–0.15.

With p2
⊥ and m2 now fixed, the final step is to select the fraction, z, of the fragmenting endpoint

quark’s longitudinal momentum that is carried by the created hadron. In this respect, the string picture
23The four L = 1 multiplets are implemented in PYTHIA, but are disabled by default, largely because several states are

poorly known and thus may result in a worse overall description when included.
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Fig. 21: Illustration of the iterative selection of flavours and momenta in the Lund string fragmentation model

is substantially more predictive than for the flavour selection. Firstly, the requirement that the fragmen-
tation be independent of the sequence in which breakups are considered (causality) imposes a ‘left–right
symmetry’ on the possible form of the fragmentation function, f(z), with the solution

f(z) ∝ 1

z
(1− z)a exp

(
−b (m2

h + p2
⊥h)

z

)
, (68)

which is known as the Lund symmetric fragmentation function (normalized to unit integral). As a by-
product, the probability distribution in invariant time τ of q′q̄ breakup vertices, or equivalently Γ =
(κτ)2, is also obtained, with dP/dΓ ∝ Γa exp(−bΓ) implying an area law for the colour flux, and
the average breakup time lying along a hyperbola of constant invariant time τ0 ∼ 10−23s [68]. The a
and b parameters are the only free parameters of the fragmentation function, though a may in principle
be flavour-dependent. Note that the explicit mass dependence in f(z) implies a harder fragmentation
function for heavier hadrons (in the rest frame of the string).

The iterative selection of flavours, p⊥, and z values is illustrated in Fig. 21. A parton produced
in a hard process at some high scale QUV emerges from the parton shower, at the hadronization scale
QIR, with 3-momentum ~p = (~p⊥0, p+), where the “+” on the third component denotes “light-cone”
momentum, p± = E±pz . Next, an adjacent dd̄ pair from the vacuum is created, with relative transverse
momenta ±p⊥1. The fragmenting quark combines with the d̄ from the breakup to form a π+, which
carries off a fraction z1 of the total light-cone momentum p+. The next hadron carries off a fraction z2

of the remaining momentum, etc.

For massive endpoints (e.g., c and b quarks, or hypothetical hadronizing new-physics particles,
generally called R-hadrons), which do not move along straight light-cone sections, the exponential sup-
pression with string area leads to modifications of the form [74], f(z) → f(z)/zbm

2
Q , with mQ the

mass of the heavy quark. Strictly speaking, this is the only fragmentation function that is consistent with
causality in the string model, though a few alternative forms are typically provided as well.

Note, however, that the term fragmentation function in the context of non-perturbative hadroniza-
tion models is used to denote only the corrections originating from scales below the infrared cutoff scale
of the parton shower. That is, the fragmentation functions introduced here are defined at an intrinsically
low scale of orderQ ∼ 1 GeV. It would therefore be highly inconsistent and misleading to compare them
directly to those that are used in fixed-order and/or analytical-resummation contexts, which are typically
defined at a factorization scale of order the scale of the hard process.
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4.4 Multiple parton interactions
In Monte Carlo modeling contexts, multiple parton interactions (MPI) denote the possibility of having
multiple partonic 2 → 2 interactions occurring within a single hadron–hadron collision. The most
striking and easily identifiable consequence of MPI is thus arguably the possibility of observing several
distinct (i.e., hard) parton–parton interactions in some fraction of hadron–hadron events. Additional jet
pairs produced in this way are sometimes referred to as ‘minijets’, but in the interest of maintaining a
compact terminology, we shall here just call them MPI jets. The main distinguishing feature of such jets
is that they tend to form back-to-back pairs, with little total p⊥. For comparison, jets from bremsstrahlung
tend to be aligned with the direction of their ‘parent’ partons. The fraction of multiple interactions that
give rise to additional reconstructible jets is, however, quite small (how small depends on the exact jet
definition used). Additional soft interactions, below the jet cutoff, are much more plentiful, and can give
significant corrections to the colour flow and total scattered energy of the event. This affects the final-state
activity in a more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnant in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed by Sjöstrand and van Zijl
in Ref. [75], and with some variation this still forms the basis for most modern implementations. Here,
we therefore focus on that model and on its more recent ‘interleaved’ version [76]. Some discussion
of alternative models as well as additional references to the history and development of the subject of
multiple interactions can be found in Ref. [40].

An intuitive way of arriving at the idea of multiple interactions is to view hadrons simply as
‘bunches’ of incoming partons. No physical law then prevents several distinct pairs of partons from
undergoing scattering processes within one and the same hadron–hadron collision. The other key idea
to bear in mind is that the exchanged QCD particles are coloured, and hence such multiple interactions
— even when soft — can cause non-trivial changes to the colour topology of the colliding system as a
whole, with potentially major consequences for the particle multiplicity in the final state.

To begin to construct a model for this, we first observe that, at low p⊥, t-channel propagators
almost go on shell (reminiscent of the case of bremsstrahlung, described in detail in Section 2.4), which
causes the differential QCD parton–parton scattering cross-sections (such as the Rutherford one illus-
trated in Section 2) to become very large, behaving roughly as

dσ̂2→2 ∝
dt̂

t̂2
∼ dp̂2

⊥
p̂4
⊥
. (69)

An integration of this cross-section from a lower cutoff p⊥min to
√
s, using the full (leading-order)

QCD 2 → 2 matrix elements folded with some recent parton-density sets, is shown in Fig. 22, for pp
collisions at 14 TeV [77]. The solid curves, representing the calculated cross-sections as functions of
p⊥min, are compared to a few different predictions for σtot (the total pp cross-section [78]), shown as
horizontal lines with different dashing styles on the same plot. Physically, the jet cross-section can of
course not exceed the total pp one, yet this is what appears to be happening at scales of order 4–5 GeV
in Fig. 22. How to interpret this behaviour?

Recall that the interaction cross section is an inclusive number. Thus if a single hadron–hadron
event contains two parton–parton interactions, it will count twice in σ2→2 but only once in σtot, and
so on for higher parton–parton interaction numbers. In the limit that all the individual parton–parton
interactions are independent and equivalent (to be improved on below), we have

σ2→2(p⊥min) = 〈n〉(p⊥min) σtot , (70)

with 〈n〉(p⊥min) giving the average of a Poisson distribution in the number of parton–parton interactions
above p⊥min per hadron–hadron collision,

Pn(p⊥min) = [〈n〉(p⊥min)]n
exp [−〈n〉(p⊥min)]

n!
, (71)
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Fig. 22: The inclusive jet cross-section calculated at LO for three different proton PDFs, compared to various
extrapolations of the non-perturbative fits to the total pp cross-section at 14 TeV centre-of-mass energy. From
Ref. [77].

and that number may well be above unity. This simple argument in fact expresses unitarity; instead of the
total interaction cross-section diverging as p⊥min → 0 (which would violate unitarity), we have restated
the problem so that it is now the number of interactions per collision that diverges.

Two important ingredients remain to be introduced in order to fully regulate the remaining di-
vergence. Firstly, the interactions cannot use up more momentum than is available in the parent hadron.
This will suppress the large-n tail of the naïve estimate above. Obviously, exact momentum conservation
is included in all Monte Carlo models currently on the market, although the details vary somewhat from
model to model. In the PYTHIA-based models [75, 76, 79], the multiple interactions are ordered in p⊥,
and the parton distributions for each successive interaction are explicitly constructed so that the sum of
x fractions can never be greater than unity. In the HERWIG models [80, 81], instead the uncorrelated es-
timate of 〈n〉 above is used directly as an initial guess, but the actual generation of interactions stop once
the energy-momentum conservation limit is exceeded (with the last ‘offending’ interaction also removed
from consideration).

The second ingredient suppressing the number of interactions, at low p⊥ and x, is colour screen-
ing; if the wavelength ∼ 1/p⊥ of an exchanged coloured parton becomes larger than a typical colour-
anticolour separation distance, it will only see an average colour charge that vanishes in the limit p⊥ → 0,
hence leading to suppressed interactions. This screening effectively provides an infrared cutoff for MPI
similar to that provided by the hadronization scale for parton showers. A first estimate of an effective
lower cutoff due to colour screening would be the proton size

p⊥min '
~
rp
≈ 0.2 GeV · fm

0.7 fm
≈ 0.3 GeV ' ΛQCD , (72)

but empirically this appears to be too low. In current models, one replaces the proton radius rp in the
above formula by a ‘typical colour screening distance’ d, i.e., an average size of a region within which
the net compensation of a given colour charge occurs. This number is not known from first principles, so
effectively this is simply a cutoff parameter, which can then just as well be put in transverse momentum
space. The simplest choice is to introduce a step function Θ(p⊥ − p⊥min), such that the perturbative
cross-section completely vanishes below the p⊥min scale. Alternatively, one may note that the jet cross-
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section is divergent like α2
s(p

2
⊥)/p4

⊥, cf. Eq. (69), and that therefore a factor

α2
s(p

2
⊥0 + p2

⊥)

α2
s(p

2
⊥)

p4
⊥

(p2
⊥0 + p2

⊥)2
(73)

would smoothly regularize the divergences, now with p⊥0 as the free parameter to be tuned to data.
Regardless of whether it is imposed as a smooth (PYTHIA and SHERPA) or steep (HERWIG ++) function,
this is one of the main ‘tuning’ parameters in such models. Note also that this parameter does not
have to be energy-independent. Higher energies imply that parton densities can be probed at smaller x
values, where the number of partons rapidly increases. Partons then become closer packed and the colour
screening distance d decreases. The uncertainty on the energy and/or x scaling of the cutoff is a major
concern when extrapolating between different collider energies.

We now turn to the origin of the so-called ‘pedestal effect’, the observational fact that hard jets
appear to sit on top of a higher ‘pedestal’ of underlying activity than events with no hard jets. This is
interpreted as a consequence of impact-parameter dependence, as follows. In peripheral collisions, only a
small fraction of events contain any high-p⊥ activity, whereas central collisions are more likely to contain
at least one hard scattering; a high-p⊥ triggered sample will therefore be biased towards small impact
parameters. The ability of a model to describe the shape of the pedestal (e.g., to describe both ‘minimum-
bias’ data and underlying-event distributions simultaneously) therefore depends upon its modelling of the
impact-parameter dependence, and correspondingly the impact-parameter shape constitutes another main
tuning parameter for models that include this dependence.

For each impact parameter, b, the number of interactions ñ can then still be assumed to be dis-
tributed according to a Poissonian, Eq. (71), again modulo momentum conservation, but now with the
mean value of the Poisson distribution depending on impact parameter, 〈ñ(b)〉. If the matter distribution
has a tail to infinity (as, for example, Gaussians do), one may nominally obtain events with arbitrarily
large b values. In order to obtain finite total cross-sections, it is therefore necessary to give a separate
interpretation to the ‘zero bin’ of the Poisson distribution, which corresponds to no-interaction events.
In models that attempt to describe the entire inelastic non-diffractive cross-section, this bin is simply
ignored, since the events in it can only represent elastic or diffractive scatterings, which are modelled
separately. Alternatively, in models that pertain only to hard inelastic events, it can be reinterpreted as
containing that fraction of the total inelastic cross-section which do not contain any hard interactions.

Finally, we should mention that there are two perturbative modelling aspects which go beyond the
introduction of MPI themselves. In particular, this concerns

1. Parton showers off the MPI.
2. Perturbative parton-rescattering effects.

Without showers, MPI models would generate very sharp peaks for back-to-back MPI jets, caused
by unshowered partons passed directly to the hadronization model. However, with the exception of the
oldest PYTHIA 6 model [75], all of the general-purpose event-generator models do include such showers,
and hence should exhibit more realistic (i.e., broader and more decorrelated) MPI jets. On the initial-state
side of the MPI shower issue, the main questions are whether and how correlated multi-parton densities
are taken into account, and, as discussed previously, how the showers are regulated at low p⊥ and/or
low x. Although none of the MC models currently impose a rigorous correlated multi-parton evolution,
all of them include some elementary aspects. The most significant for parton-level results is arguably
momentum conservation, which is enforced explicitly in all the models. The so-called ‘interleaved’
models [73,76] attempt to go a step further, generating an explicitly correlated multi-parton evolution in
which flavour sum rules can be imposed to conserve, for example, the total numbers of valence and sea
quarks across interaction chains.

Perturbative rescattering in the final state occurs if partons are allowed to undergo several distinct
interactions, with showering activity possibly taking place inbetween. This has so far not been studied
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extensively, but a first fairly complete model and exploratory study has been presented in the context of
PYTHIA 8 [79]. In the initial-state, parton rescattering effects have so far not been included in any of the
general-purpose Monte Carlo models.

4.5 Colour (re)-connections and beam remnants
Consider now a hadron–hadron collision, i.e., including MPI, at the parton level, equivalent to a resolu-
tion scale of about 1 GeV. The system of coloured partons emerging from the short-distance phase (pri-
mary parton–parton interaction plus parton-level underlying event plus beam-remnant partons) must now
undergo the transition to colourless hadrons. Infrared sensitive observables, such as individual hadron
multiplicities and spectra are crucially dependent on the parton–parton correlations in colour space, and
on the properties and parameters of the hadronization model used. Here, we concentrate on the specific
issues connected with the structure of the event in colour space.

Keeping the short-distance parts unchanged, the colour structure inside each of the MPI systems
is normally still described using just the ordinary leading-colour matrix-element and parton-shower ma-
chinery described in Sections 2.3 and 2.4. The crucial question, in the context of MPI, is then how
colour is neutralized between different MPI systems, including also the remnants. Since these systems
can lie at very different rapidities (the extreme case being the two opposite beam remnants), the strings
spanned between them can have very large invariant masses (though normally low p⊥), and give rise to
large amounts of (soft) particle production. Indeed, in the context of soft-inclusive physics, it is precisely
these ‘inter-system’ strings which furnish the dominant particle production mechanism, and hence their
modelling is an essential part of the infrared physics description.

As discussed more fully in Ref. [40], there is a large amount of ambiguity concerning how to
address this, and a substantial amount of variation between current models. Experimental investigations
of colour reconnections at LEP [82–85] were only able to exclude some fairly extreme models, with
comparatively moderate ones still allowed. Furthermore, in hadron collisions the initial state contains soft
colour fields with wavelengths of order the confinement scale. The presence of such fields, unconstrained
by LEP measurements, could impact in a non-trivial way the process of colour neutralization [86, 87].
And finally, the MPI produce an additional amount of displaced colour charges, translating to a larger
density of hadronizing systems. It is not known to what extent the collective hadronization of such a
system differs from a simple sum of independent systems.

A new generation of colour-reconnection toy models have therefore been developed specifically
with soft-inclusive and underlying-event physics in mind [88–90], and also the cluster-based [91] and
Generalized-Area-Law [92] models have been revisited in that context. Although still quite crude, these
models do appear to be able to describe significant features of the Tevatron and LHC data, such as the
〈p⊥〉(Nch) distribution in minimum-bias data, which appears to be quite sensitive to this effect. It is
nonetheless clear that the details of the full fragmentation process in hadron–hadron collisions are still
far from completely understood.

4.6 Tuning
The main virtue of general-purpose Monte Carlo event generators is their ability to provide a complete
and fully differential picture of collider final states, down to the level of individual particles. This allows
them to be used as detailed — albeit approximate — theoretical references for measurements performed
at accelerators like the LHC, against which models of both known and ‘new’ physics can be tested. As
has been emphasized in these lectures, the achievable accuracy depends both on the inclusiveness of
the chosen observable and on the sophistication of the simulation itself. An important driver for the
latter is obviously the development of improved theoretical models, for example, by including matching
to higher-order matrix elements, more accurate resummations, or better non-perturbative models, as dis-
cussed in the previous sections; but it also depends crucially on the available constraints on the remaining
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free parameters of the model. Using existing data to constrain these is referred to as generator tuning.

Although Monte Carlo models may appear to have a bewildering array of independently adjustable
parameters, it is worth bearing in mind that most of these parameters only control relatively small (ex-
clusive) details of the event generation. The majority of the (inclusive) physics is determined by only a
few, very important ones, such as the value of the strong coupling, in the perturbative domain, and the
form of the fragmentation function for massless partons, in the non-perturbative one.

Armed with a good understanding of the underlying model, an expert would therefore normally
take a highly factorized approach to constraining the parameters, first constraining the perturbative ones
and thereafter the non-perturbative ones, each ordered in a measure of their relative significance to the
overall modelling. This factorization, and carefully chosen experimental distributions corresponding
to each step, allows one to concentrate on just a few parameters and distributions at a time, reducing
the full parameter space to manageable chunks. Still, each step will often involve more than one single
parameter, and non-factorizable corrections still imply that changes made in subsequent steps can change
the agreement obtained in previous ones by a non-negligible amount, requiring additional iterations from
the beginning to properly tune the entire generator framework.

Recent years have seen the emergence of automated tools that attempt to reduce the amount of both
computing resources and manpower required for this task, for instance by making full generator runs only
for a limited set of parameter points, and then interpolating between these to obtain approximations to
what the true generator result would have been for any intermediate parameter point, as in the Professor
tool [93, 94], for example. Automating the human expert input is of course more difficult. In the tools
currently on the market, this question is addressed by a combination of input solicited from the generator
authors (e.g., which parameters and ranges to consider, which observables constitute a complete set,
etc.) and the elaborate construction of non-trivial weighting functions that determine how much weight
is assigned to each individual bin and to each distribution. The field is still burgeoning, however, and
future sophistications are to be expected. Nevertheless, at this point the overall quality of the tunes
obtained with automated methods appear to at least be competitive with the manual ones.

A sketch of a reasonably complete tuning procedure, without going into details about the parame-
ters that control each of these sectors in individual Monte Carlo models, would be the following:

1) Keep in mind that inabilities of models to describe data is a vital part of the feedback cycle
between theory and experiment. Also keep in mind that perturbation theory at LO×LL is doing very
well if it gets within 10% of a given IR safe measurement. An agreement of 5% should be considered
the absolute sanity limit, beyond which it does not make any sense whatsoever to tune further. The
advent of NLO Monte Carlos may reduce these numbers slightly, but only for quantities for which
one expects NLO precision to hold. However, the sanity limit should be taken to be at least twice as
large for quantities governed by non-perturbative physics. For some quantities, e.g., ones for which the
underlying modeling is known to be poor, an order-of-magnitude agreement or worse may have to be
accepted. Attempting to force Monte Carlo models to describe data far outside their domains of validity
must be expected to produce similar side effects as attempting to turn a Fiat into a Ferrari merely by
cranking up the engine revolutions.

2) Final-state radiation and hadronization: mainly using LEP and other e+e− collider data.
On the IR safe side, there are event shapes and jet observables, the latter including rates, resolutions,
masses, shapes, and jet–jet correlations. On the IR sensitive side, special attention should be paid to the
high-z tail of the fragmentation spectra, where a single hadron carries a large fraction of an entire jet’s
momentum, since this is the tail that is most likely to give ‘fake jets’. Depending on the focus of the
tuning, attention should also be paid to identified-particle rates and ratios, and to fragmentation in events
containing heavy quarks and/or gluon jets. Usually, more weight is given to those particles that are most
copiously produced, though this again depends on the focus. Finally, particle–particle correlations and
baryon production are typically some of the least well constrained components of the overall modelling.
The scaling properties of IR safe vs. IR sensitive contributions can be tested by comparing data at several
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different e+e− collider energies.

3) Initial-state radiation, and so-called primordial24 kT : here, one would in principle like to
use data from DIS reactions, which are less complicated to interpret than full hadron–hadron collisions.
However, owing to difficulties in translating between the ep and pp environments, this is normally not
what is done in practice. Instead, the main constraining distribution is the dilepton p⊥distribution in
Drell–Yan events in hadron–hadron collisions. For any observables containing explicit jets, be aware
that the underlying event can produce small horizontal shifts in jet p⊥ distributions, which may in turn
result in seemingly larger-than-expected vertical changes if the distributions are falling sharply. Also
note that the ISR evolution is sensitive to the choice of PDFs, with caveats as discussed in Section 3.1.

4) Initial–final connections: e.g., radiation from colour lines connected to the initial state and
jet broadening in hadron collider environments. This is one of the most poorly controlled parts of most
MC models. Keep in mind that it is not directly constrained by pure final-state observables, such as LEP
fragmentation, nor by pure initial-state observables, such as the Drell–Yan p⊥ spectrum, which is why
we list it as a separate item here. In principle, DIS would again be a prime territory for placing constraints
on this aspect at least for quark jets, but in practice more often inclusive-jet and other multi-jet processes
(such as W/Z+ jets) in hadron colliders are used.

5) Underlying event: Good constraints on the overall level of the underlying event can be obtained
by counting the summed transverse energy (more IR safe) and/or particle multiplicities and average
transverse momenta (more IR sensitive) in regions transverse to a hard trigger jet (more IR safe) or
particle (more IR sensitive). Constraints on the fluctuations of the underlying event are also important,
and can be obtained, for example, by comparing to measurements of the RMS of such distributions.
Again, note that the UE is sensitive to the choice of PDFs.

6) Colour (re-)connections and other final-state interactions: By final-state interactions, we
intend a broad spectrum of possible collective effects that may be included to a greater or lesser extent in
various models. These effects include Bose–Einstein correlations, colour reconnections, hydrodynam-
ics, string interactions, Cronin effect, etc. As a rule, these effects are non-perturbative and hence should
not modify IR safe observables appreciably. They can, however, have drastic effects on IR sensitive
ones, such as particle multiplicities, and particle momentum distributions, wherefore useful constraints
are typically furnished by particle–particle correlations, by measurements of particle momentum spec-
tra as functions of quantities believed to serve as indicators of the strength of these phenomena (such
as event multiplicity), and/or by collective-flow-type measurements. Finally, if the model includes a
universal description of underlying event and soft-inclusive QCD, as many MPI-based models do, then
minimum-bias data can also be used as a control sample, though one must then be careful either to
address diffractive contributions properly or to include only data samples that minimize their impact.

7) Beam remnants: Constraints on beam remnant fragmentation are most easily obtained in
the forward region, but the amount of baryon transport from the remnant to a given rapidity region,
for example, can also be used to probe how much the colour structure of the remnant was effectively
disturbed, with more baryon transport indicating a larger amount of ‘beam baryon blowup’.

We round off by emphasizing that comparisons of specific models and tunes to data can be useful
both as immediate tests of commonly used models, and to illustrate the current amount of theoretical
uncertainty surrounding a particular distribution. Independently of how well the models fit the data,
such comparisons also provide a set of well-defined theoretical reference curves that serve as useful
guidelines for future studies. However, the conclusions that can be drawn from comparisons of individual
tunes of specific models on single distributions are necessarily limited. In order to obtain more general
conclusions, a strategy for a more coherent and over-arching look at both the data and the models was
recently proposed in Ref. [95]. Specifically, rather than performing one global tune to all the data,

24Primordial kT : an additional soft p⊥ component that is injected on top of the p⊥ generated by the initial-state shower
itself, see Ref. [40, Section 7.1].
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as is usually done, a more systematic check on the validity of the underlying physics model can be
obtained by instead performing several independent optimizations of the model parameters for a range
of different phase space windows and/or collider environments. In regions in which consistent parameter
sets are obtained, with predictions that are acceptably close to the data, the underlying model can then be
considered as interpolating well, i.e., it is universal. If not, a breakdown in the ability of the model to span
different physical regimes has been identified, and can be addressed, with the nature of the deviations
giving clues as to the nature of the breakdown. With the advent of automated tools making it easier to
run several optimizations without much additional computing overhead, such systematic studies are now
becoming feasible, with a first example given in Ref. [95].
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