
J
H
E
P
0
6
(
2
0
1
1
)
1
0
0

Published for SISSA by Springer

Received: May 6, 2011

Accepted: May 29, 2011

Published: June 22, 2011

The one-loop six-dimensional hexagon integral and its

relation to MHV amplitudes in N = 4 SYM

Lance J. Dixon,a,b James M. Drummonda,c and Johannes M. Hennd

aPH-TH Division, CERN,

Geneva, Switzerland
bSLAC National Accelerator Laboratory, Stanford University,

Stanford, CA 94309, U.S.A.
cLAPTH, Université de Savoie, CNRS,
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1 Introduction and outline

Recent years have seen dramatic progress in the understanding of multi-loop and multi-leg

scattering amplitudes in N = 4 super Yang-Mills theory (SYM), especially in the planar

limit. The planar amplitudes have a hidden dual conformal symmetry [1–3] that leads to

powerful constraints. There is also a surprising correspondence between scattering ampli-

tudes and Wilson loops [4–6]; see refs. [7–10] for recent developments. A dual conformal

Ward identity [11], derived for Wilson loops, can be used to fix the functional form of

multi-loop scattering amplitudes, up to a priori undetermined functions of dual conformal

cross-ratios. For example, the functional form of the four- and five-point amplitudes is

uniquely fixed to all orders in the coupling constant, in agreement with explicit compu-

tations in field theory [2, 12–19] and string theory [4]. For maximally-helicity-violating

(MHV) amplitudes, the difference between the (logarithms of the) particular solution to

the Ward identity (the BDS ansatz [13]) and the amplitude is called the remainder func-

tion [16, 20]. For six external particles, this remainder function can depend only on three

dual conformal cross ratios u1, u2 and u3.

Another important consequence of dual conformal symmetry is a powerful restriction

on the planar loop integrand, which had been observed in dimensional regularization [1, 2,

21], and can be made rigorous on the Coulomb branch of N = 4 SYM [22–25].

The six-point remainder function at two loops is known analytically [26–28], thanks

to the correspondence between scattering amplitudes and Wilson loops. On the amplitude

– 1 –



J
H
E
P
0
6
(
2
0
1
1
)
1
0
0

side, so far results are available numerically [16] and analytically in certain kinematical

limits [29–31]. Recently, iterative differential equations were used to directly evaluate

integrals that contribute to the scattering amplitudes [32].

The motivation of the present paper is to show how to derive analytical results for

loop integrals relevant for multi-leg scattering amplitudes, using differential equations. We

concentrate on the six-point case, but our method is also applicable to more external legs.

The “even” part of the planar six-particle MHV scattering amplitude at two loops

was first given in ref. [16] in terms of fifteen separate integrals with simple dual conformal

properties. It can be represented alternatively [31, 33] in terms of six dual conformal two-

loop integrals, five of which are infrared divergent and one of which is finite. The finite

integral, denoted by Ω(2), depends on the three dual conformal cross-ratios u1, u2, u3. It is

reasonable to believe that it contains an essential part of the two-loop six-point remainder

function. In ref. [32] it was found that Ω(2) satisfies several simple second-order differential

equations, one of which relates it to an analogous one-loop integral, called Ω(1).

In this paper we observe that the one-loop scalar hexagon integral in six space-time

dimensions is related to the aforementioned four-dimensional integrals via first-order dif-

ferential equations. The relations that we find are (schematically)

Ω(2)(u1, u2, u3) −→ Φ̃6(u1, u2, u3) −→ Ω(1)(u1, u2, u3) , (1.1)

where the arrows denote certain first-order differential operators in the ui. (See figure 1.)

Here Φ̃6 stands for the six-dimensional scalar hexagon integral, after two simple rescalings.

The first (to Φ6) makes it invariant under dual conformal transformations. The second

removes an algebraic prefactor. It is natural to consider Φ̃6 as an intermediate step between

Ω(1) and Ω(2). Thanks to the high degree of symmetry of the hexagon integral, the first-

order differential equation relating Φ̃6 (or Φ6) and Ω(1) in fact leads to a system of three

inequivalent equations. Together with a simple boundary condition, the latter completely

determines the three-variable function Φ6(u1, u2, u3).

From a practical viewpoint, the intermediate step between Ω(2) and Ω(1) in eq. (1.1)

is very useful. It is also very natural, since the Ω(i) functions are expected to be given by

linear combinations of functions defined through iterated (poly)logarithmic integrals, such

as logn, Lin, and generalizations thereof. If we associate a “degree of transcendentality”

with the number of iterated integrals, then Ω(1), Φ̃6 and Ω(2) are pure functions of degree

2, 3 and 4, respectively. In some sense, Φ̃6 represents a “one-and-a-half” loop function.

We find that the solution for Φ6 is given by a simple formula in terms of degree

three functions, eq. (2.24) below. It is remarkably similar in structure to the two-loop

remainder function.

The six-dimensional hexagon integral Φ6 also is of inherent interest for a number of

reasons. In dimensional regularization with 4 − 2ǫ dimensions, it appears in the O(ǫ)

part of the one-loop six-particle MHV amplitude [34]. It is generated because a term in the

numerator of the one-loop integrand contains a factor of ℓ2
[−2ǫ] ≡ µ2, where ℓ[−2ǫ] denotes the

components of the loop momenta that lie outside of four dimensions. The integral of such a

term yields −ǫ times the scalar integral in six dimensions. Moreover, in order to determine

the remainder function at higher loops, one has to take the logarithm of the amplitude, in
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Figure 1. Three dual conformal integrals which are related to each other by the action of first-order

differential operators, as discussed in the text. The labels i, j, 1, 2, . . . , 6 are indices k for dual (or

region) coordinates xk. Solid lines indicate propagators; dashed lines indicate numerator factors of

x2

ai
or x2

bi
, as explained in the text. The central integral Φ̃6 has no such numerator factors, but

is evaluated in dimension D = 6 instead of D = 4. The standard hexagon integral H is rescaled

to obtain a dual conformal invariant integral Φ6, which is rescaled once again to obtain the pure

degree 3 function Φ̃6.

which case O(ǫi) terms at lower loops get multiplied by pole terms ǫ−j (with j ≤ 2L, where

L is the loop order.) The O(ǫ) terms must be kept in order to obtain a consistent result

at O(1). As an example, when computing the two-loop remainder function in this way, Φ6

participates in a cancellation involving certain two-loop “hexabox” integrals [16], where

again there is a factor of µ2 in the numerator for the hexagon loop. This link between

higher-order terms in the ǫ expansion and higher-loop integrals also motivates the idea

that Φ6 should already know about some of the structure of the two-loop answer, and our

result supports this expectation.

Another motivation for considering six-dimensional integrals in general is the known

connection between scalar integrals in (D + 2) dimensions and tensor integrals in D di-

mensions (see e.g. ref. [35].) In particular, many of the finite tensor integrals introduced

in ref. [33] can be viewed as higher-dimensional scalar integrals, or are related to them

via differential equations. This relation does not depend on dual conformal symmetry. As

an example, we will show a six-dimensional integral, and equivalently, a four-dimensional

tensor integral, that computes the finite part of the two-mass-easy box integral.

The hexagon integral Φ6 is a function of three dual conformally invariant cross-ratios

u1, u2, u3. Like the two-loop remainder function, it is conveniently expressed in terms of a

set of redundant variables xi± = uix±, where

x± =
−1 + u1 + u2 + u3 ±

√
∆

2u1u2u3
, ∆ = (−1 + u1 + u2 + u3)

2 − 4u1u2u3 . (1.2)

Later we will give a change of variables from ui to a set of variables v0, v±. Although these

variables do not manifest the cyclic symmetry, they have the feature that the arguments

of the polylogarithms in the result for the hexagon integral, and also all terms in the

differential equations, are rational functions of v0, v±, with no square roots. This is very

convenient for verifying the differential equations. Analogous transformations may be also

useful when considering other six-point integrals.
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Recently, the notion of symbols was advocated as a tool to think about iterated inte-

grals appearing in N = 4 SYM [28]. We compute the symbol of the hexagon integral and

find that it is given by a very simple expression. Its simplicity follows from the differential

equations that Φ6 satisfies.

This paper is organized as follows. We begin by defining the hexagon integral Φ6

and discussing its symmetry properties in section 2.1. We also explain how dual conformal

symmetry helps in obtaining a simple Feynman parametrization, which is a general feature.

Another example is given in appendix C. We then point out the relation between Φ6 and

integrals appearing in the two-loop six-point MHV amplitude in N = 4 SYM, in the

representation of ref. [33]. This relation takes the form of first-order differential equations.

We present the analytic solution to the equations for Φ6 in section 2.3. In section 2.4

we introduce a convenient set of variables that renders the arguments of the functions

appearing in Φ6 rational, and directly verify the differential equations. In section 2.5 we

discuss the symbol of Φ6. We conclude and give an outlook in section 3.

2 Six-dimensional hexagon integral

2.1 Preliminaries

We consider the on-shell six-dimensional scalar hexagon integral H in D = 6 dimensions,

with external momenta pµ
j satisfying momentum conservation,

∑6
j=1 pµ

j = 0, and massless-

ness, p2
j = 0 for j = 1, 2, . . . , 6. In terms of dual (or region) coordinates pµ

j = xµ
j − xµ

j+1, it

is defined by

H =

∫

d6xi

iπ3

1
∏6

j=1 x2
ij

, (2.1)

where xµ
ij = xµ

i − xµ
j , and xµ

i is the dual coordinate corresponding to the loop momentum

(see figure 1 for the labeling). The integral is both ultraviolet (UV) and infrared (IR) finite.

As a scalar integral, H is a function of the external Lorentz invariants x2
j,j+2 = sj,j+1 and

x2
j,j+3 = sj,j+1,j+2. Here sj,j+1 = (pj + pj+1)

2 and sj,j+1,j+2 = (pj + pj+1 + pj+2)
2, and

external indices are defined modulo 6. We work in signature (−+++), so that the Euclidean

region has all sj,j+1 and sj,j+1,j+2 positive. The on-shell conditions, p2
j = 0, are expressed

in dual coordinates as x2
j,j+1 = 0. Momentum conservation translates to xµ

j+6 ≡ xµ
j in the

dual space.

Covariance of H under dual conformal symmetry [1, 36], in particular under the in-

version of all dual coordinates, xµ → xµ/x2, allows us to write

s123s234s345H(si,i+1, si,i+1,i+2) ≡ Φ6(u1, u2, u3) , (2.2)

where the cross-ratios

u1 =
x2

13x
2
46

x2
14x

2
36

=
s12s45

s123s345
, u2 =

x2
24x

2
51

x2
25x

2
41

=
s23s56

s234s123
, u3 =

x2
35x

2
62

x2
36x

2
52

=
s34s61

s345s234
, (2.3)

are invariant under dual conformal transformations.
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We observe that Φ6 has both cyclic and reflection symmetries. This leads to a full

permutation symmetry in the {u1, u2, u3}, i.e.

Φ6(u1, u2, u3) = Φ6(u3, u1, u2) = Φ6(u2, u3, u1) , Φ6(u1, u2, u3) = Φ6(u2, u1, u3) . (2.4)

We will compute Φ6 in the Euclidean region, i.e. where sj,j+1 > 0, sj,j+1,j+2 > 0. Al-

though we will eventually compute Φ6 from differential equations, it is useful to have a

simple parametric representation for Φ6, for example for numerical checks. Here we give

an instructive example that highlights technical simplifications brought about by dual con-

formal symmetry that may be of more general interest.

Introducing Feynman parameters in the standard way [37], we have

Φ6(u1, u2, u3) = 2x2
14x

2
25x

2
36

∫ ∞

0

6
∏

i=1

dαi
δ(

∑6
i=1 ciαi − 1)

[

∑

i<j x2
ijαiαj

]3 . (2.5)

Note that we can choose the ci arbitrarily, as long as at least one of them is different from

zero [37]. It is often convenient to choose them all to be either 0 or 1.

We have already seen that dual conformal symmetry leads to the simplified variable

dependence (2.2). Moreover, dual conformal symmetry often leads to further simplifications

in the evaluation of loop integrals. For example, it is well known [36] that in the off-shell

case, a combination of a translation and an inversion in the dual space of the xi can be used

to send one of the dual points to infinity, thereby reducing the number of propagators by

one. In this way, Broadhurst demonstrated the equivalence of an infinite class of off-shell

three- and four-point ladder integrals.

In the present case, we cannot immediately use the same idea, due to the light-like

constraints p2
j = x2

j,j+1 = 0, which would make the above-mentioned inversion singular.

However, we can nevertheless exploit technical simplifications that dual conformal symme-

try entails.

For a generic one-loop integral, a factor of (
∑

i αi)
a−D, where a is the number of

propagators, would be present under the integral sign on the right-hand side of eq. (2.5).

Here, this factor is absent since a = D = 6, which is precisely the condition for dual

conformal symmetry. In this case it is often convenient to choose one or more ci = 0,

because the resulting integrals from 0 to ∞ in eq. (2.5) are easy to carry out. We will set

c6 = c1 = c2 = 0, c3 = c4 = c5 = 1. We will also use the redundancy in eq. (2.3) to set

x2
46 = u1, x

2
24 = u2, x

2
26 = u3. (All other x2

jk appearing in eq. (2.3) are set to 1.)

Performing the α6, α1, α2 integrations, we readily obtain

Φ6(u1, u2, u3) =

∫ 1

0
dα3,4,5 log

(

ad

bc

)

δ(
∑5

i=3 αi − 1)

ad − bc
, (2.6)

where ad = α3α5u3, b = α4u2 + α5 and c = α4u1 + α3. In this form, it is easy to see that

the answer will be built from degree three functions.

2.2 Relation to integrals appearing in the six-point MHV amplitude

As was mentioned in the introduction, Φ6 appears in the O(ǫ) part of the one-loop six-

particle MHV amplitude in dimensional regularization [34]. Moreover, when computing

– 5 –
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the logarithm of that amplitude to two loops, Φ6 participates in a cancellation involving

certain two-loop hexabox integrals [16]. It is therefore not unreasonable to think that Φ6

already contains some of the structure of the two-loop result.

In fact, one can find a very direct relation between integrals relevant for MHV scattering

amplitudes and Φ6. In refs. [33, 38], dual conformal integrals with a tensor structure in

the numerator were introduced for the description of scattering amplitudes in N = 4 SYM.

One of them is given by

Ω(1)(u1, u2, u3) = −x2
35x

2
26x

2
14

x2
ab

∫

d4xi

iπ2

x2
aix

2
bi

∏6
j=1 x2

ji

, (2.7)

where xµ
a is a solution to the four-cut condition x2

1a = x2
2a = x2

3a = x2
4a = 0, and xµ

b is

obtained from xµ
a by a rotation by 3 units (see figure 1). The two choices for xa are related

by parity. For the finite integrals we consider here the result is independent of the choice.

The numerator factor x2
aix

2
bi is crucial in order to make the integral IR finite [33, 38]. The

definition of the numerator and the normalization in eq. (2.7) are easy to write out explicitly

in twistor-space notation. We refer the interested reader to refs. [32, 33] for further details.

One might think that Ω(1) would be a rather complicated hexagon integral. However,

dual conformal symmetry and the specific choice of the numerator in eq. (2.7) allow it to

be given by a remarkably simple formula,

Ω(1)(u1, u2, u3) = log u1 log u2 + Li2(1 − u1) + Li2(1 − u2) + Li2(1 − u3) − 2ζ2 . (2.8)

The integral Ω(1) also plays an important role as the source term for a second-order

differential equation for Ω(2), an integral appearing in the two-loop six-particle MHV am-

plitude [32]. The latter integral is defined by

Ω(2)(u1, u2, u3) = −x2
35x

2
26(x

2
14)

2

x2
ab

∫

d4xi

iπ2

∫

d4xj

iπ2

x2
aix

2
bj

x2
1ix

2
2ix

2
3ix

2
4ix

2
ijx

2
4jx

2
5jx

2
6jx

2
1j

, (2.9)

where the definition of xµ
a and xµ

b is the same as for Ω(1) in eq. (2.7). This integral is also

depicted in figure 1.

The differential equation obeyed by Ω(2) is [32]

u3∂u3
D̃(1)Ω(2) = Ω(1) , (2.10)

where D̃(1) is the first-order differential operator

D̃(1) = −u1(1 − u1)∂u1
− u2(1 − u2)∂u2

+ (1 − u1 − u2)(1 − u3)∂u3
. (2.11)

Given the factorized structure of the second-order differential operator in eq. (2.10), it is

natural to search for an object which sits “between” Ω(2) and Ω(1). The D = 6 scalar

hexagon integral, with transcendentality degree 3, is a particularly good candidate for such

an object.
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Inspecting the Feynman parametrization1 of Ω(1), it is easy to see that it is related to

Φ6 in the following way,

D(1)Φ6 = Ω(1) , (2.12)

where D(1) is the first-order differential operator

D(1) =
u3

u1u2
[u1(1 − u1)∂u1

+ u2(1 − u2)∂u2
− (1 − u1 − u2)(1 − u3)∂u3

− 1]u1u2 . (2.13)

This relation is not particularly surprising, since it is well known that tensor integrals in D

dimensions are often related to scalar integrals in (D+2) dimensions [35]. We give a further

example in appendix B. Relation (2.12) is easy to understand: when acting on the scalar

integrand of Φ6 in Feynman parameter form, see eq. (2.1), the differential operator (2.13)

creates terms that are equivalent to those coming from the numerator of Ω(1). Further, the

increase in the power of the denominator due to the differentiation can be absorbed by a

shift in the dimension from 6 to 4.

Let us comment further on the remarkable link between Φ6 and Ω(2). We can commute

the two first-order operators in eq. (2.10). Using
[

u3∂u3
, D̃(1)

]

= −(1 − u1 − u2)∂u3
, (2.14)

D(1) = −D̃(1)u3 + (1 − u1 − u2) , (2.15)

we have

D(1)∂u3
Ω(2) = −Ω(1) . (2.16)

Comparing eq. (2.16) with eq. (2.12), we find that

∂u3
Ω(2) = −Φ6 + K , (2.17)

where K satisfies D(1)K = 0. In fact we find numerically that K = 0. Thus Φ6 can be

considered as an intermediate step between Ω(1) and Ω(2). Only one more integration of

Φ6 is required to obtain Ω(2). Consistent with these differential equations, the degree of

transcendentality increases from Ω(1) to Φ6 to Ω(2) in steps of one. Considering its links to

the six-particle MHV amplitudes in N = 4 super Yang-Mills, it is of interest to understand

better the function Φ6.

Let us proceed to evaluate the hexagon integral. The idea is to use eq. (2.12) in order

to determine Φ6. We will first put the equation into a more useful form. The zeroth-order

piece in eq. (2.13) suggests that Φ6 has some algebraic prefactor. Indeed, let us define

Φ̃6 :=
√

∆ Φ6 , (2.18)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3. Then, thanks to D(1)(1/
√

∆) = 0, it is

straightforward to commute the first-order part of D(1) around u1u2/
√

∆, and one obtains

− u3√
∆

D̃(1)Φ̃6 = Ω(1) , (2.19)

1J. M. Henn thanks N. Arkani-Hamed and J. Bourjaily for collaboration on Feynman parametrizations

of twistor integrals.
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where the operator D̃(1) given in eq. (2.11) no longer contains zeroth-order terms. Due to

the permutation symmetry (2.4) in the arguments of Φ6, eq. (2.19) leads to two further

non-trivial first-order differential equations. This set of differential equations determines

Φ6 up to one integration constant. The latter can be fixed by the requirement that Φ6

should be non-singular at ∆ = 0, which implies the vanishing of Φ̃6 on that locus.

Diagonalizing the set of differential equations generated by eq. (2.19), we have

∂u1
Φ̃6(u1, u2, u3) = − 1 − u1 + u2 − u3

(1 − u1)
√

∆
Ω(1)(u1, u2, u3) (2.20)

− 1 − u1 − u2 − u3

u1

√
∆

Ω(1)(u2, u3, u1) −
1 − u1 − u2 + u3

(1 − u1)
√

∆
Ω(1)(u3, u1, u2) ,

plus the two cyclically related equations. In the next subsection, we will present the full

solution for Φ6(u1, u2, u3).

2.3 Result for Φ6(u1, u2, u3)

Here we present the solution to the differential equations (2.19), or equivalently (2.20). We

first define the variables

xi± = uix± , (2.21)

where x± and ∆ are given in eq. (1.2). The appearance of the xi± should not come as a

surprise, since they played a prominent role in the two-loop remainder function [28], and

we have already argued that Φ6 should capture some of its structure.

Further, we define

L3(x+, x−) =

2
∑

m=0

(−1)m

(2m)!!
logm(x+x−) [ℓ3−m(x+) − ℓ3−m(x−)] , (2.22)

ℓm(x) =
1

2
(Lim(x) − (−1)mLim(1/x)) , (2.23)

which is very similar to the function L4 defined in ref. [28]. As in ref. [28], the branch cuts

of Lin(x+) and Lin(1/x−) are taken to lie below the real axis, i.e. Lin(x+) := Lin(x+ + iǫ),

etc., and the branch cuts of Lin(x−) and Lin(1/x+) are taken to lie above the real axis.2

By using a change of variables to v0,+,−, which are discussed in the following subsection,

and which rationalize the square roots of ∆ appearing in the differential equations (2.20),

we integrated one of the differential equations in terms of polylogarithms. In this way, we

found the following formula for Φ6,

Φ6(u1, u2, u3) =
Φ̃6(u1, u2, u3)√

∆
=

1√
∆

[

−2

3
∑

i=1

L3(xi+, xi−) + 2ζ2J +
1

3
J3

]

, (2.24)

where

J =
3

∑

i=1

[ℓ1(xi+) − ℓ1(xi−)] . (2.25)

2We are grateful to M. Spradlin and C. Vergu for discussions and correspondence on the branch cut

structure of L4 in ref. [28].
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Although individual terms in eq. (2.24) can be complex, their sum is always real in the

Euclidean region ui > 0.

In the next section, we prove directly that eq. (2.24) satisfies the differential equa-

tions (2.19). In section 2.5, we will see another way to justify eq. (2.24) based on the

differential equations for its symbol.

2.4 Direct verification of the differential equations

We found the following change of variables to be convenient,

u1 =
v0 − v+v−

1 + v0 − v+ − v−
, u2 =

v0 − v+v−
(1 + v0 − v+ − v−)v0

, u3 =
v+v−

v0
. (2.26)

This definition is symmetric in v+ and v−. Choosing v+ > v− without loss of generality,

the inverse transformation is given by

v+ = u1u3x+ , v− = u1u3x− , v0 =
u1

u2
. (2.27)

We also have the following useful expressions for the xi±,

x1± =
v0

v∓
, x2± =

1

v∓
, x3± =

v±(1 + v0 − v+ − v−)

v0 − v+v−
. (2.28)

In terms of the variables v0,+,−, ∆ is a perfect square,

∆ =
(v+ − v−)2(v0 − v+v−)2

(1 + v0 − v+ − v−)2v2
0

. (2.29)

In the Euclidean region ui > 0 that we are considering, we can take the square root
√

∆

without sign ambiguities, see eq. (2.26).

In the remainder of this section, we will assume ∆ > 0 for simplicity, so that the v±
are real. Note that the factor J defined in eq. (2.25) becomes simply

J = −1

2
log

v+

v−
. (2.30)

The differential equations (2.20) are easily expressed in the new variables, using Jaco-

bian factors such as

∂u1

∂v+
=

(v0 − v−)(1 − v−)

(1 + v0 − v+ − v−)2
. (2.31)

The differential equation in v0 turns out to be the simplest one, namely

∂v0
Φ̃6(v±, v0) =

v+ − v−
(v0 − v−)(v0 − v+)

log
(v0 − v+v−)

(1 + v0 − v+ − v−)v0
log

(v0 − v+v−)v0

(1 + v0 − v+ − v−)v+v−
.

(2.32)
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Using eqs. (2.28) and (2.30), it is easy to show that

∂v0
L3(x1+, x1−) =

1

8

v+ − v−
(v0 − v−)(v0 − v+)

log2

(

v+v−
v2
0

)

, (2.33)

∂v0
L3(x3+, x3−) = −1

8

v+ − v−
(v0 − v−)(v0 − v+)

log2

(

v+v−(1 + v0 − v+ − v−)2

(v0 − v+v−)2

)

, (2.34)

∂v0
L3(x2+, x2−) = 0 , (2.35)

∂v0
J = 0 . (2.36)

Hence Φ̃6 as defined in eq. (2.24) satisfies eq. (2.32). We have checked numerically that

the differential equations with respect to v+ and v− are satisfied as well.

2.5 Symbol of Φ̃6(u1, u2, u3)

The notion of symbols has proven to be a useful tool for thinking about transcendental

functions appearing in N = 4 SYM; see ref. [28] and references therein.

The symbol [Φ̃6] of Φ̃6 is very simple, namely,

[Φ̃6(u1, u2, u3)] = −[Ω(1)(u1, u2, u3)] ⊗
x+(1 − x3−)

x−(1 − x3+)
+ cyclic , (2.37)

where

[Ω(1)(u1, u2, u3)] = u1 ⊗ u2 + u2 ⊗ u1 −
3

∑

i=1

ui ⊗ (1 − ui) . (2.38)

Note that the first of the three entries in [Φ̃6] is always either u1, u2 or u3. Because the

ui are ratios of the distances x2
ij, using standard properties of the symbol the first entry

can always be expressed as a distance. This property has been argued to follow from the

branch-cut structure of loop integrals [10].

In order to see directly that eq. (2.37) is the symbol of eq. (2.24) it is helpful to

introduce some projective variables wi ∈ CP
1 for i = 1, . . . , 6. Choosing homogeneous

coordinates wi = (1, zi), they coincide with the zi variables of [28]. We can represent the

three cross-ratios as follows,

u1 =
(23)(56)

(25)(36)
, u2 =

(34)(61)

(36)(41)
, u3 =

(45)(12)

(41)(52)
, (2.39)

where (ij) = −(ji) = ǫabw
a
i wb

j . In terms of these variables ∆ is a perfect square,

∆ =

[

(12)(34)(56) + (23)(45)(61)

(14)(25)(36)

]2

(2.40)

and all entries of the symbol factorize into two-brackets (ij). Thus one can canonically

represent the symbol as a sum of terms of the form

(ab) ⊗ (cd) ⊗ (ef) . (2.41)
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Performing this on the symbol (2.37) and the symbol of (2.24) one finds immediately the

same expression.

One can easily check that the symbol of Φ̃6 is consistent with the differential equa-

tion (2.20) for Φ̃6. We simply replace the functions Φ̃6 and Ω(1) in eq. (2.20) by their

symbols, and use the following simple identities,

∂u1
log

x+(1 − x1−)

x−(1 − x1+)
=

1 − u1 − u2 − u3

u1

√
∆

, (2.42)

∂u1
log

x+(1 − x2−)

x−(1 − x2+)
=

1 − u1 − u2 + u3

(1 − u1)
√

∆
, (2.43)

∂u1
log

x+(1 − x3−)

x−(1 − x3+)
=

1 − u1 + u2 − u3

(1 − u1)
√

∆
, (2.44)

and the differentiation rule for symbols,

∂x (a1 ⊗ . . . ⊗ an−1 ⊗ an) = ∂x log(an) × a1 ⊗ . . . ⊗ an−1 . (2.45)

This analysis can be used to justify the solution (2.24), following ref. [28]: We have already

seen that eq. (2.24) has the correct symbol. This leaves two ambiguities in Φ6, firstly

where to place the branch cuts, and secondly the freedom to add constants multiplied

by functions of lower transcendentality than three. The first ambiguity is resolved by

requiring that Φ6 be real-valued and smooth in the entire Euclidean region ui > 0. We

have numerical evidence that this is the case for Φ6 in eq. (2.24). The second ambiguity has

to be fixed by other means. The ζ2 term in eq. (2.8) for Ω(1), which enters the differential

equation (2.12), suggests the corresponding term in eq. (2.24). We have also checked that

the resulting formula is in agreement with the parametric representation (2.6) for several

numerical values, which cover different regions according to the signs of ∆, ui − 1 and

u1 + u2 + u3 − 1.

3 Conclusions and outlook

In this paper, we have computed the six-dimensional one-loop on-shell scalar hexagon

integral Φ6, giving its full kinematical dependence in the Euclidean region. The result is

a remarkably simple formula, eq. (2.24). Interestingly, its structure is almost identical to

that of the two-loop remainder function in planar N = 4 SYM [28], although the latter is

of transcendentality degree 4, while Φ6 is of degree 3.

Our calculation was based on the observation that Φ6 is related to a known four-

dimensional one-loop tensor hexagon integral through first-order differential equations.

The latter uniquely determine the answer. It is interesting to note that both the two-loop

remainder function and Φ6 are best expressed in terms of a set of (redundant) variables xi±.

For Φ6, one is led to these variables in a very natural way when solving the aforementioned

differential equations. This approach should be very helpful when computing other integrals

of this kind. In particular an extension to degree five and six functions should provide

valuable insight into the structure of the remainder function at higher loops. Another

interesting extension of this work could be to consider the hexagon integral with massive
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corners, which may give hints about good sets of kinematic variables for amplitudes with

n > 6 external legs.

The procedure for finding a relation between Ω(2) and Ω(1) in ref. [32] was based on a

Laplace equation, which is second-order in nature, as are typical field equations for bosonic

fields. On the other hand, fermionic field equations are typically first order. One might

speculate that the first-order relations (1.1) between Ω(1),Φ6 and Ω(2) found in the present

paper could have an explanation based on supersymmetry. What is somewhat mysterious

from this point of view is why the function Φ6 which sits between Ω(1) and Ω(2) should

have a full cyclic symmetry, when neither Ω(1) nor Ω(2) do.

Finally, we comment that the fully off-shell version of H has a conventional conformal

symmetry in addition to its dual conformal symmetry. This is the case simply because it

is built from φ3 vertices, and φ3 theory in D = 6 dimensions is classically conformal. By

Fourier transforming the coordinate space conformal generators d, kµ, and accounting for a

change in conformal dimension coming from the amputation of external legs, we find their

form in momentum space, acting on H,

d =
n

∑

i=1

[

pν
i ∂iν + 2

]

, kµ =
n

∑

i=1

[

− 1

2
pµ

i ∂ν
i ∂iν + 2∂µ

i + pν
i ∂iν∂µ

i

]

. (3.1)

Invariance under these operators then implies homogeneous second-order differential equa-

tions. If one takes some or all external legs on shell, as in the case of H (or Φ6), it can

happen that the action of the conformal generators becomes anomalous.

Acknowledgments
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Note added. After this calculation was completed, we were informed by V. Del Duca,

C. Duhr and V. Smirnov of an independent computation of the hexagon integral presented

here, using a different method [39].

A A special case of Φ6

The differential equations simplify considerably in the special case u3 = 1, for which
√

∆ =

u1 − u2. (This is true for u1 > u2, which we can assume without loss of generality since

Φ6 is symmetric under u1 ↔ u2.) Starting from eq. (2.20), and using Ω(1)(u2, 1, u1) =

Ω(1)(1, u1, u2), we find

∂u1
Φ̃6(u1, u2, 1) =

Ω(1)(u1, u2, 1)

1 − u1
− Ω(1)(1, u1, u2)

u1(1 − u1)
. (A.1)

One can easily find the solution

Φ6(u1, u2, 1) =
Φ̃6(u1, u2, 1)

u1 − u2
=

h(u1, u2) − h(u2, u1)

u1 − u2
, (A.2)

where

h(u1, u2) = log u1 (ζ2 − Li2(u1) − Li2(1 − u2)) + 2Li3(u1) . (A.3)
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B Relations between D = 6 integrals and D = 4 tensor integrals

Here we give another example of a relation between a four-dimensional tensor integral and

a six-dimensional scalar integral. While the relation in the main text involved a first-order

differential operator, the relation we present here is simply an equality of two integrals.

Let us consider the finite, dual conformal pentagon integral Ψ̃ [32, 33] that appears in

the representation of [33] of one-loop MHV amplitudes in N = 4 SYM. Up to a normal-

ization factor, it is given by

Ψ̃ ∝
∫

d4xi

iπ2

x2
ia

x2
2ix

2
3ix

2
5ix

2
6ix

2
8i

, (B.1)

where xµ
a is defined as one of the two solutions to the four-cut conditions x2

2a = x2
3a =

x2
5a = x2

6a = 0. As in the case of Ω(1), the numerator factor makes the integral IR finite.

We remark that dual conformal transformations can be used to remove the 1/x2
8i

propagator, by letting xµ
8 → ∞, as in ref. [36]. This is possible in this case because there

are no light-like constraints between xµ
8 and the neighboring xµ

2 and xµ
6 . In this way we

obtain the equivalent integral

I =

∫

d4xi

iπ2

x2
ia

x2
2ix

2
3ix

2
5ix

2
6i

. (B.2)

This integral is not dual conformally invariant, and is a function of x2
25, x

2
26, x

2
35, x

2
36. Up to

a normalization factor, it equals the finite part of the two-mass easy box integral [35, 40]

I =
−1

x2
26+x2

35−x2
25−x2

36

[

Li2(1−ξx2
26)+Li2(1−ξx2

35)−Li2(1−ξx2
25)−Li2(1−ξx2

36)
]

, (B.3)

where ξ = (x2
26 + x2

35 − x2
25 − x2

36)/(x
2
26x

2
35 − x2

25x
2
36). Since the finite part of the one-

loop MHV amplitude in N = 4 SYM is governed by this function (the divergent parts

correspond to one-mass and two-mass triangle integrals), this gives a very direct relation

between six-dimensional integrals and four-dimensional amplitudes.

In order to see the relation of I to a scalar integral in D = 6 dimensions, one can intro-

duce Feynman parameters, treating the numerator x2
ia as an inverse propagator 1/(x2

ia)
−1+δ

with some auxiliary analytic regularization δ. Integrating out the Feynman parameter cor-

responding to this inverse propagator and letting δ → 0, one readily obtains

I =

∫ 1

0
dα2,3,5,6

δ(1 − ∑

i=2,3,5,6 αi)

α2α5x2
25 + α3α5x2

35 + α2α6x2
26 + α3α6x2

36

, (B.4)

which is nothing else than the Feynman parametrization of the following scalar integral in

D = 6 dimensions,

I =

∫

d6xi

iπ3

1

x2
2ix

2
3ix

2
5ix

2
6i

. (B.5)

We remark that by combining propagators pairwise (see appendix C) and integrating

out the resulting finite bubble integral, one obtains a Wilson-loop type of representation

for this integral [6, 41].
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Figure 2. Interpretation of the hexagon integral as a line integral, according to eqs. (C.3) and (C.4).

C Wilson-loop representation of Φ6

In section 2.1, we explained how dual conformal symmetry helps to obtain a convenient

Feynman parametrization for H, where in particular the number of parameter integrals is

equal to the degree of the function. Here, we present a second way of exploiting dual confor-

mal symmetry, which in addition allows for an interpretation of H as a Wilson-loop integral.

Let us start from the definition of H given in eq. (2.1). It is well known that for on-shell

integrals it is often desirable to introduce Feynman parameters in steps, i.e. to combine

two adjacent propagators at a time, using the formula

1

x2
1ix

2
2i

=

∫ 1

0
dξ1

1

[(y1 − xi)2]2
, x2

12 = 0 , (C.1)

where

yµ
1 (ξ1) = xµ

1 (1 − ξ1) + xµ
2ξ1 . (C.2)

For example, the two-mass easy box integral is “easy” precisely because it contains two

pairs of propagators separated by a massless leg; eq. (C.1) can be applied to each pair.

Repeating this procedure for the other two pairs of adjacent propagators leads to

H =

∫ 1

0
dξ1,3,5

∫

d6xi

iπ3

1

[(y1 − xi)2]2[(y3 − xi)2]2[(y5 − xi)2]2
, (C.3)

where yµ
3 (yµ

5 ) is defined like yµ
1 in eq. (C.2), but with i → i + 2 (i → i + 4). At the

cost of having introduced three parameter integrals, the innermost integral now depends

on three “effective propagators” only, see figure 2(a). For a triangle integral, however,

dual conformal symmetry fixes the answer uniquely to be a constant multiple of 1/[(y1 −
y3)

2(y1 − y5)
2(y3 − y5)

2]. The constant can be determined from a boundary condition,

e.g. y5 → ∞. This is nothing else than the star-triangle (or uniqueness) relation [42], of

course. Hence the answer is simply

H =

∫ 1

0
dξ1,3,5

1

(y1 − y3)2(y1 − y5)2(y3 − y5)2
, (C.4)
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which is depicted in figure 2(b). More explicitly, we have (y1 − y3)
2 = x2

13ξ̄1ξ̄3 + x2
14ξ3ξ̄1 +

x2
24ξ1ξ3, where ξ̄1 := 1 − ξ1, etc. In this form, the Feynman loop integral is reminiscent of

a Wilson-loop integral in the dual space of the xi. See ref. [41] for a similar discussion of

related integrals.
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