

Ronan McNulty (UCD Dublin) On behalf of the LHCb collaboration

SM@LHC, Durham, 11th-14th April 2011

Ronan McNulty, SM@LHC, Durham 11-14 April 2011

Motivation

Usually proton collisions produce very many final state particle because the gluon is a coloured object.

But if a **colourless** object is exchanged.....

- Results can be related to HERA and Tevatron
- Understand QCD in a clean environment
- Unambiguous evidence for pomeron. Search for odderon
- Constrain unintegrated parton distributions at very small x (2x10⁻⁶)
- Search for saturation effects

Central Exclusive Production

Elastic Scattering

Single Diffraction

Double Diffraction

Central Exclusive Production (elastic)

Central Exclusive Production (inelastic)

Use of backwards tracks

Trigger on two muons and <20 SPD hits

Requiring a gap, there is evidence for central exclusive production decaying to two muons.

Simple Selection Criteria

- No backward tracks (gap of ~2 units of rapidity)
 Precisely two forward muons
- No photons (for J/psi and diphoton process)
- One photon (for ChiC analysis)
- p_T of dimuon <900 MeV (<100MeV for $p\mu\mu p$).

Dimuon Mass Spectrum

- No backward tracks
- Precisely two forward muons
- No photons

J/ψ and ψ ': Number of Photons

J/ψ and ψ ': Number of Tracks

Tempting to fit the background under the peak using straight line/exponential. Better if we can understand the physics giving background.

Inelastic backgrounds

Fit elastic and inelastic components

J/4 Non-resonant background & misid

This is not background subtracted !

ψ': Non-resonant backgrounds & misid

No backward tracks

• Precisely two forward muons. $m_{\mu\mu}$ >2.5 GeV

No photons

Fit elastic and inelastic components

Shape for inelastic events

Note: this time we have simulation that predicts the shape for the three contributions.

Fit to signal events

Background shape from data Signal shape from simulation.

χ_{c}

No backward tracks

Precisely two forward muons

Precisely one photon

χ_c: DiMuon Invariant Mass

About half the background that was observed in the exclusive J/ψ analysis (since no continuum process).

(Caveat: Inelastic contribution appears to be much larger than for J/ψ)

Cross-section calculations

■ σ=(pN/ε) / L

- ε: Trigger, tracking, photon & selection efficiencies are estimated from simulation, with size of systematics taken from data/simulation agreement.
- **p:** Feed-down for ψ ', χ_c subtracted. Uncertainty on fit to p_T spectrum taken as systematic on inelastic contribution.
- L: Analysis only uses single-interaction events. Need to know average number of pile-up interactions. Currently translates into 20% uncertainty on L.

<u>Summary</u>

	J/ψ	ψ'	χ_{c0}	χ_{c1}	χ_{c2}	diphoton
ϵ_{track}	0.97 ± 0.03	0.97 ± 0.03	0.97 ± 0.03	0.97 ± 0.03	0.97 ± 0.03	0.96 ± 0.03
$\epsilon_{\mu id}$	0.89 ± 0.03	0.89 ± 0.03	0.89 ± 0.03	0.89 ± 0.03	0.89 ± 0.03	0.89 ± 0.03
ϵ_{γ}			0.61 ± 0.08	0.75 ± 0.05	0.78 ± 0.04	
ϵ_{sel}	0.95	0.95	0.76	0.76	0.76	0.35
Efficiency	0.71 ± 0.06	0.71 ± 0.06	0.34 ± 0.06	0.43 ± 0.05	0.44 ± 0.04	0.25 ± 0.02
# Events	1468 ± 38	40 ± 6	25 ± 6	56 ± 18	99 ± 29	40 ± 6
Purity	0.71 ± 0.03	0.67 ± 0.03	0.39 ± 0.13	0.39 ± 0.13	0.39 ± 0.13	0.97 ± 0.01
L_{eff} (pb ⁻¹)	3.1 ± 0.6	3.1 ± 0.6	3.1 ± 0.6	3.1 ± 0.6	3.1 ± 0.6	2.3 ± 0.5
Cross-section	474 ± 12	12.2 ± 1.8	9.3 ± 2.2	16.4 ± 5.3	28.0 ± 5.4	67 ± 10
$\times BR$ (pb)	$\pm 45 \pm 92$	$\pm 1.2 \pm 2.4$	$\pm 3.5 \pm 1.8$	$\pm 5.8 \pm 3.2$	$\pm 9.7 \pm 5.4$	$\pm 5 \pm 15$

 $\sigma_{J\psi\to\mu^+\mu^-} (2 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 474 \pm 12 \pm 45 \pm 92 \text{ pb}$

$$\begin{split} \sigma_{\psi' \to \mu^+ \mu^-} (2 < \eta_{\mu+}, \eta_{\mu-} < 4.5) &= 12.2 \pm 1.8 \pm 1.2 \pm 2.4 \text{ pb} \\ \sigma_{\chi_0 \to J \psi \gamma \to \mu^+ \mu^- \gamma} (2 < \eta_{\mu+}, \eta_{\mu-}, \eta_{\gamma} < 4.5) &= 9.3 \pm 2.2 \pm 3.5 \pm 1.8 \text{ pb} \\ \sigma_{\chi_1 \to J \psi \gamma \to \mu^+ \mu^- \gamma} (2 < \eta_{\mu+}, \eta_{\mu-}, \eta_{\gamma} < 4.5) &= 16.4 \pm 5.3 \pm 5.8 \pm 3.2 \text{ pb} \\ \sigma_{\chi_2 \to J \psi \gamma \to \mu^+ \mu^- \gamma} (2 < \eta_{\mu+}, \eta_{\mu-}, \eta_{\gamma} < 4.5) &= 28.0 \pm 5.4 \pm 9.7 \pm 5.4 \text{ pb} \\ \sigma_{pp \to p\mu^+ \mu^- p} (2 < \eta_{\mu+}, \eta_{\mu-} < 4.5; m_{\mu+\mu-} > 2.5 \text{GeV}) &= 67 \pm 10 \pm 5 \pm 15 \text{ pb} \end{split}$$

Comparison to Theory

J/ψ: 474 +-103 pb	Starlight (Klein & SuperChic (Harlan Motyka & Watt 33 Schäfer & Szczure	Nystrand) 292 p id-Lang, Khoze, 0 pb ik 710 pb	b Ryskin, Stirlin) 330 pb			
ψ': 12.2 +- 3.2 pb	Starlight (Klein & Schäfer & Szczur	₄ Nystrand) 6 pb ek ~ 17 pb				
χ ₀ : 9.3	3 +- 4.5 pb χ ₁ :	16.4 +- 7.1 pb	χ ₂ : 28.0 +-12.3 pb			
SuperChic: 14	pb	10 pb	3 pb			
pµµp: 67 +- 19 pb LPAIR (J. Vermaseren) 42 pb						

- First Observation of CEP at LHC
- First separation of χ_c spin states in CEP
- Good agreement with theory predictions
- Consistency with HERA and CDF results.