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ABSTRACT

We present a pseudoclassical description
of a massless spinning particle belonging to
the representation (%,0) of si(2,0). We
discuss the path integral quantization of the
theory and the coupling with Yang ~Mills and
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spin %+ massless particle. Whereas a massless Dirac particle has been already

2)

described in the literature “7, such a description has not been given for a

In this letter we present a "pseudoclassical description of a

Weyl particle, that is, for a particle belonging to the (%,O) representation

of SL{2,C¢).

A Weyl particle is described by the following wave equation
~ :
P(1-¥)¥ =0 (1)

The wave equation corresponds to a constraint in the pseudoclassical des-

cription. A convenient form for such a constraint is

Pf"‘ El’ + _:%_ ét‘VN‘Prfy Eg Eq_ x O (2)

where the §u are Grassmann variables. Equation (2), plus the mass—shell

condition p?=0, can be derived as first class constraints from the follow—

ing Lagrangian
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Here X and A are Lagrangian multipliers, with Ao being an odd quantity,
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and the conjugate momentum pLL ig given by
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Purthermore, we get the following second class constraints
x’*: Tr”*—ié-g*kzt)
b4 .
o (5)
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Defining in the usual way the Dirac brackets with respect to Eg. (5), we

{f“, gv}*= ¢ 8”
Ixr, pri* = -o™ (6)

obtain
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The quantization of the theory gives

CE ¥li=-e» O

I+ follows that su can be represented as

¥ Loyt (s)
~ vz
By inserting this expression in Eg. (2), we get the condition (1) on the

vhysical states.

The descriptions of a Weyl particle and of a massless Dirac particle
are closgely related. To be more precise, it is easy tc show that the two
theories coincide at the classical lewvel, Indeed,-perfofming:the following

canonical transfermation in the Lagrangian (3)

Ef= OF - £ ST B, B B (%)

we get
L(§)= L(B) - 4 F
de (10)
F = f-z- €rST B, B B B
where
L(B)= - & B, 8" + 4 x* + Az x,B% (1)
‘ 2 LA 2A4
is the Lagrangian describing a massless Dirac particle 2). Furthermore,

the transformation (9) is an isomorphism of Grassmann algebras :
E{” ?"2. ia!*zav

" 5V ES = 9%9° 6% o

(12)

We see that the two theories are completely equivalent at the classical level.
However, it is mnot so in the quantum case. In fact, the transformation (9)

does not preserve the spectrum because it gives




"= '“"Ji Y* (4-¥s) (13)

from whiéh .Q2:=0. This situation is typical for non—linear transformations
because they can'giﬁéﬁ#igéﬁtd'quéntum'ordering'prdblemé. In facﬁ,:in the
present case, the origiﬁ of the phenomencn is that the classical generator
F of the transformation satisfies F2==O, whereas thé quantumigenerator
E=—(1/2)Y‘5' sasisfies “F° == | -

i -
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The path integral quantizatiorn of this model presents some interest
due to the trlllnear .terms in the Dagrangian. The functlonal integral can
be ea811y performed 1f we take the arbitrary functlons— Ay and k2 to be
~?constant. In faet, in such a case, kz plays the role of a coupling
constant and we can evaluate the functional integral by making a perturbative
expansion. However, AS::O and therefore only the zero and the first order
terms contribute to the final result. This allows us to make the calculation

exactly.

3)

As usual it is convenient to intreduce complex combinations

My A (E°« ) , A, oo 4 (§o-§)
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Then ithe amplitude will be given by

$Xp, Fp Gl Xe, M, 2> =

_ thﬂ!# - ‘ A ‘
- S; " f)(x)‘@‘(q,ﬁi)-exp {.;_ 5 dgﬂg(tgh%fﬁ.;c&}ﬂpﬁ-*

2 e
+cjm[_;.g(«1.m.a "1«"14)—21)4532.*&4'— (15)

-2 5 (kR e Fien 94‘“1« SE]E



Y -

where X, is defined in terms of the four-vector Xu in the way given by
Eq. (14). '

ATter performing the integral over  we get
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Evalusting the generating funetionsl and doing the functionsl derivatives,

we get
<Xp, Mpazpl X, M, 20> = - ¢ - .
16 A, (4222
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It is interesting to notice that the functional integral is Talmost™
saturated by the classical solution. In fact, the argument of the exponential
in (18) is the clasgical action [ilus the surface ferms in (15j] apart from
the linear term E(na,fza_na,iza B
to the fact that the contraction E(T)Q(T) igs not zero for the particular

. The origin of this term can be traced back

—

| SESSSCENES B .
boundary conditions defining the integral (15)9

Therefore, the only effect of the interaction is to perform the shifs
- - 1 P .
na,fna,i - na,fna,i-'a in the trilinear terms contained in the classical
action.

In order to get the physical kernmel we must integrate Eq. (18) over

R1AT and AQAT 3); furthermore, going to the momentum space and to a
spinor basis 3), we get '
B (4-dF) §“ (19)
KP“‘_‘;‘-(P" p)} = "J—:E:' _P__.E'._.__i ST (¥-p) ?
p? +¢é

where we have used the representation (8) for the QE operators.

After the discussion of the quantum mechanical aspects of the model,
let us go back to some pseudoclassical considerations. The presence of two
first class constraints implies that the theory must be invariant under two
local transformations. Indeed, we have invariance under reparametrization
in the T wvariable and under "local supersymmetry. In particular, by
using the results of Ref. 2) for the Lagrangian (11) we find that the
Lagrangian (3) is invariant under

Seriez e [ 4 (XRemER) - L2 €T R R

- L erveT g A
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where €({T) is an odd parameter.

Let us discuss now the possible couplings with Yang-Mills and gravi-
tational fields. The intermal degrees of freedom are described in terms of

Grassmann variables Oa [éee Ref. 4E]. The coupling with Yang-Mills fields
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‘isvthen obtained by the minimal substitution. However, in order to preserve

“ithe first class character .of the constraints, we must also insert a non-’

4y

‘minimal-coubling. . The correct Lagrangian gatisfying this requirement

© turns out to be-

L= Lo, + -‘z-i (86, - & 8) -

ol=4
(21)
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where Lfree is the Lagrangian (3), the secend term is the kinetic term for
the internal degrees of freedom, and
Ta = D% . ©
<
- 3¢ : 22
[zh,'tb]_ =L Tap . - (22)

Y = - - v
ST e =LY 8]
The Ta'S are the generators of the gauge group in the representation
defined by the Qa'so_

In the case of a gravitational field, it is convenient to introduce

5)

vierbein fields Gi and their inverses Hi . Then, the interacting

Tagrangian is given by

N TS A8 AT LA
A e [BF e A (¥ L €% g T

BRGNS IR R B N B

wheTe (A )A. is the spin connection which, in the absence of tor51on, can

be expressed in terms of the Christoffel symbols

(A% g = HB (Gg T, - GIL) (28)

T O P
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From (23) we get the equations of motion

2— @r\ '%z" x” ( va)“.ﬂ -9-‘3-:8n (25)
Dz

D BF = - 1 Ou q® HE | (26)
5 S . .

where

Cn = - ‘21; Ipv (XY+ 2 HRBR) (e

The reletion between & ana gA is given in Eq. (9), (R v)A°B is the.
Riemann tensor and D/DT means the covériant derivafive. %quatioh (25) is
completely independent of the choice of the arbifrary functions k1 and
Az; therefore, the four-momentum dces not undergo a parallel transport.

Orn the contrary, the equations of motion for x  are gauge dependent

KPP+ TR X¥%5 = 02 gPY XS (Ryg)® g BB By -

- 2 A; 9F 6, - A, Hh BT (29)
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As shown by Galvao and Teitelboim , due to the particular kinematics of
the massless case, it is possible to choose a gauge fixing and a particular

co—ordinate system, in such a way that satisfies the geodesic equation
.-’& T".\ ] ") g — o

However, due to our previous observation about Eg. (25), it should be clear
that in the massless case also there is an intrinsic coupling between spin
and curvature of space-time. In fact, although such a coupling can be
minimized by a clever choice of the gauge, it will always manifest itself

by forbidding the parallel transport for the four-momentum.
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