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We simplify and extend semiclassical methods in inflationary cosmology that capture leading IR

corrections to correlators. Such IR effects can be absorbed into a coordinate change when examining

sufficiently local observables, but not when comparing observations at large separation in scales, such as

seen by a late-time observer. The analysis is facilitated by definition of a scale-dependent metric and

physical momentum. These assist definition of ‘‘IR-safe’’ observables seen by a postinflationary observer,

which are contrasted to those based on the local geometry of the reheating surface. For the former

observables, the observer’s horizon provides an effective IR cutoff. IR growth of fluctuations contributes

to enhanced statistical inhomogeneities/anisotropies at short scales, observation of which by a present-day

observer might be sought in 21 cm measurements. Such IR corrections are argued to become large for a

very late-time observer.
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I. INTRODUCTION

While inflation has successfully resolved a number of
conceptual questions, and nicely matches existing cosmo-
logical data, it has raised some deeper puzzles. Notable
among these is the problem of large infrared (IR) effects.
The simplest of these arises from a very basic mechanism
(see, e.g., [1]): inflation produces fluctuations of a light
field outside the horizon; these fluctuations then ‘‘freeze’’
in amplitude, and the cosmological expansion causes them
to accumulate at long wavelength. This produces IR diver-
gences in correlation functions, and is suggestive of a
strongly fluctuating structure on the longest scales.

The spectrum of light fields depends on the model con-
sidered, but includes the inflaton, and certainly the modes
of the graviton. Indeed, one guise of this effect is self-
reproducing inflation, in which inflaton fluctuations pro-
duce a large-scale spacetime structure with regions of very
different effective cosmological constant. An important
question is how to define sensible observables in such a
situation, particularly in light of the IR growth. Specifically,
the massless tensor graviton modes are always present,
and are described by correlators that exhibit both IR diver-
gences and IR growth at long times. An important question
regards whether these have observable consequence.

Part of the problem is how to formulate gauge-invariant
observables, which is an outstanding issue in quantum
gravity; diffeomorphism invariance implies that local ob-
servables familiar from field theory are not gauge invariant.
This indicates that observables must take a more nonlocal
form. On the practical level, one would like to understand
formulation of such observables describing our actual
observations; on a more formal level one would like to

find, e.g., gauge-invariant observables that reduce to the
local observables of field theory in certain approximations
[2].
In fact, it seems useful to have language to distinguish

these two notions. If we imagine that there is a yet-
unknown complete quantum-mechanical description of
cosmology, then one of its basic features should be a set
of gauge-invariant quantum-mechanical observables; we
will refer to these as q-observables. These, however, may
or may not be observable by us given our limitations as
Earth-bound observers in a particular era of cosmology.
Thus, there is a much more restricted set of in-practice
observables. Of course, an important question is what
q-observables are actually observable. One possible way
to think of this is as requiring a portal,1 which is a mecha-
nism for the q observable to imprint its information in
physics visible to us.
Returning to metric fluctuations, then, there are two

questions: first, what are gauge-invariant q-observables,
for example sensitive to the large IR fluctuations, and
second, are there effects of these which are actually ob-
servable. This paper will advance positive arguments on
both fronts, and in the process propose an answer to the
question of how to formulate ‘‘IR-safe’’ observables free of
IR divergences.
Consider a perturbation of an inflating cosmological

metric, with flat spatial sections and scale factor aðtÞ,
ds2 ¼ �dt2 þ a2ðtÞðe�Þijdxidxj; (1.1)

where �ij parametrizes the perturbation, and can have both

scalar and traceless tensor parts. Such perturbations
redshift to long wavelengths, and are at least locally
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unobservable. Indeed, in the long-wavelength limit, �ij is a

constant, and can be removed by a change of coordinates:

~xi ¼ ðe�=2Þijxj: (1.2)

This is seen if one attempts to formulate observables in
terms of local scalar quantities, such as the curvature; the
curvature due to the perturbation vanishes in the limit of
large redshift.

However, the perturbation is nonetheless still present in
the geometry investigated at longer length scales, and one
question is how to describe this presence in terms of
suitable q-observables. We will present aspects of this
story in future work [3], and instead focus on the more
practical question—can such strong fluctuations manifest
themselves in quantities we actually observe?

Reference [4] outlined a story of this nature, understood
via a semiclassical picture. To summarize and extend this
story, scalar and tensor fluctuations can contribute to ob-
servable quantities such as the microwave background
fluctuations via their gravitational couplings to shorter-
wavelength fluctuations. At short distances compared to
the longer mode’s wavelength, its effect can be removed by
a transformation such as (1.2) and is thus invisible.
However, for the purposes of observations of a more global
nature, the fluctuation persists, and alters the spectrum
because of mismatches between the local metrics at points
separated by long distances, due to the effect of the long-
wavelength modes. The effect on the spectrum can be
understood by noting that the spectrum will be determined
in terms of the local proper momentum when the corre-
sponding perturbations leave the horizon scale. By com-
paring spectra over a sufficiently large hierarchy of scales,
the long-wavelength fluctuation can be detected, via its
distortion of this spectrum. This also indicates a resolution
of the IR divergence problem: we can transform away
fluctuations that have wavelengths long as compared to
the region we observe. But, a late-time observer sees more
and more fluctuating volume, and so can see an IR growth
of fluctuations, apparently leading to a breakdown of such
a perturbative treatment.

The present paper will further develop and clarify this
picture. The next section outlines a specific example frame-
work, single-field slow-roll inflation, although the conclu-
sions extend more broadly. The third section introduces the
notion of a scale-dependent metric perturbation and proper
momentum, and uses these to give a simple description of
the effect on the spectrum of fluctuations, extending [4].
The fourth section describes large-scale effects of metric
fluctuations, contrasting their description in terms of the
geometry of the reheating surface, to that in terms of
the observations of late-time observers such as ourselves.
In the process, we also give a prescription that eliminates
IR-cutoff-dependent effects due to presently unobservable
longer-wavelength fluctuations. But, tensor fluctuations can
lead to statistical inhomogeneities/anisotropies that one

might try to observe in 21 cmmeasurements, by comparing
scalar fluctuations at different observable locations and
scales. We conclude with general comments on relation to
renormalization group ideas, and to deeper questions in
quantum gravity.

II. ACTION AND PERTURBATION EXPANSION

For a simple example framework, consider single-field,
slow-roll inflation, with inflaton field � and potential V:

S ¼ 1

2

Z ffiffiffiffiffiffiffi�g
p �

R

8�G
� @��@��� 2Vð�Þ

�
: (2.1)

R is the Ricci scalar, and we choose units 8�G ¼ 1.
A perturbative description of the coupled metric and

matter fluctuations can be derived using the Arnowitt-
Deser-Misner [5] parametrization of the line element,

ds2 ¼ �N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; (2.2)

where N, Ni are the lapse and the shift functions. We
further decompose the metric as

hij ¼ a2ðtÞe2�ðx;tÞ½e��ij; (2.3)

where aðtÞ and � ¼ �0ðtÞ parametrize the classical, ho-
mogeneous slow-roll solution, and �ii � �ij�ij ¼ 0. The

physical tensor degrees of freedom are contained in
�ijðx; tÞ, and a scalar degree of freedom in a combination

of � and � depending on gauge.
The dynamics are found by expanding (2.1) in � , �ij, and

���0; the lapse and shift are determined by their equa-
tions of motion, the constraints. The quadratic action de-
termines a mode decomposition for the degrees of
freedom. For example, in the gauge @i�ij ¼ 0,

�ijðxÞ ¼
X

s¼þ;�

Z d3k

ð2�Þ3 ½b
s
k�

s
ijðkÞ�kðtÞ

þ bsy�k�
s�
ij ð�kÞ��

kðtÞ�eik�x

¼
Z d3k

ð2�Þ3 �ijðk; t; xÞ; (2.4)

where we defined the modes �ijðk; t; xÞ for later use, and
bsk is an annihilation operator, corresponding to helicity
s ¼ þ;�, and satisfying

½bsk; bsyk0 � ¼ ð2�Þ3�ss0�
3ðk� k0Þ: (2.5)

The polarization tensors �sij are chosen to satisfy transver-

sality and tracelessness conditions, along with the complete-

ness relation �sijðkÞ��s0ij ðkÞ ¼ 2�ss0 . The mode functions

�kðtÞ depend on the slow-roll potential and solution �0.
The two-point function gives an important measure of

the gravitational fluctuations; specifically, consider the
double trace,
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h�2ðx; x0Þi ¼ 1

4
h�ijðxÞ�ijðx0Þi ¼

Z d3k

ð2�Þ3 j�kðtÞj2eik�ðx�x0Þ:

(2.6)

The coincident limit x ¼ x0, which gives the variance [6],
is ultraviolet (UV) divergent, but may be regulated by
choosing a minimum physical separation aðtÞjx� x0j �
1=H, at the Hubble scale H ¼ _a=a, effectively providing a
UV cutoff at k � aðtÞH. Equation (2.6) can also be large in
the IR, for inflation of sufficient duration. For example, in
the case of de Sitter (dS) space, V ¼ � ¼ const, the mode
functions are easily written in terms of the conformal time
� ¼ R

dt=aðtÞ ¼ �1=ðHaÞ,

�kð�Þ ¼ Hffiffiffiffiffi
k3

p ð1þ ik�Þe�ik�: (2.7)

The variance (2.6) then has a logarithmic IR divergence.
We can artificially introduce a comoving IR cutoff L,
which we might imagine as parametrizing a finite begin-
ning of inflation, in which case

h�2ðxÞi ¼ 2

�
H

2�

�
2 Z aðtÞH

1=L

dk

k
ð1þ k2�2Þ

� 2

�
H

2�

�
2
log½aðtÞHL�: (2.8)

There can be similar growth in slow-roll, and also for the
variance of the scalar mode. One current goal will be to
improve understanding of the physical implications of this
growth, and of the physical framework necessary to elimi-
nate the artificial dependence on the IR cutoff L.

III. CONTRIBUTIONS OF IR MODES:
SEMICLASSICAL RELATIONS

We will be interested in the effects of buildup of IR
modes on cosmological observables such as the scalar
spectrum. These can be calculated in various frameworks
and gauges; for our discussion we will fix the time slicing
during inflation by working on slices of constant inflaton,

� ¼ �0ðtÞ: (3.1)

This comoving condition leaves gauge freedom corre-
sponding to choice of spatial coordinates. This can be
further fixed via the transversality condition, @i�ij ¼ 0.

One can then show that, in this gauge, the constraints are
consistent with N � 1 and Ni vanishing at first order in the
perturbations.

The two-point functions for � and � are then computed
at Gaussian (free-field) level by standard methods, as
described above. Our current focus is on one-loop correc-
tions to these correlators. These were computed by two
methods in [4] for de Sitter space: a direct one-loop
calculation, and via the semiclassical relations outlined
there. These were found to agree in some detail, and it
was argued (with additional supporting evidence) that the

latter method also applies to slow-roll. Further elaboration
and checks were given in [7–10].
Specifically, in the latter semiclassical method, the cor-

relators are obtained from a simple and intuitive physical
picture: when a given mode exits the horizon, the spectrum
is determined in terms of the physical momentum, com-
puted by treating the longer-wavelength modes as provid-
ing a background metric.
In order to formulate this condition more precisely, we

will define a notion of a scale-dependent metric fluctua-
tion, �ijðq; t; xÞ at scale q, via the formula

�ijðq;t;xÞ¼
Z q

L�1

d3k

ð2�Þ3 ½2�ðk;t;xÞ�ijþ�ijðk;t;xÞ�; (3.2)

where �ðk; t; xÞ and �ijðk; t; xÞ are mode functions with

comoving momentum k, as in the expansion (2.4). In
particular, if we restrict to the domain q < aðtÞHðtÞ, this
expression will be constant in time to a very good approxi-
mation, as excitations are frozen outside the horizon, but
will vary in space over comoving distances * 1=q. One
can then define a scale-dependent physical momentum
[modulo rescaling by aðtÞ] via

	q;iðk; xÞ ¼ ½e��ðq;xÞ=2�ijkj;
	2
qðk; xÞ ¼ ½e��ðq;xÞ�ijkikj;

(3.3)

as well as a scale-dependent metric, hijðq; x; tÞ ¼ a2ðtÞ�
½expf�ðq; xÞg�ij. These expressions are again constant in x

in fixed regions of comoving size 	 1=q, but vary on
scales * 1=q. An extended statement of the proposal of
[4] is that leading IR-dependent higher-order effects are
incorporated into the spectrum P by writing the tree-level
two-point function P0ðkÞ instead as a function of 	kðk; xÞ:

Pðk; xÞd3k ¼ P0½	kðk; xÞ�d3	k: (3.4)

That is, the physics determines the spectrum in terms of the
instantaneous physical momentum of the mode when it is
exiting the horizon, as expected. The same reasoning ap-
plies whether the fluctuation in question is in � , the tensor
modes �ij, or in another ‘‘spectator’’ field 
. For example

in the former case, we have the definitions2

h�k�k0 i0 ¼ ð2�Þ3�3ðkþ k0ÞP�;0ðkÞ;
P�;0ðkÞ ¼ ð2�2ÞP �;0ðkÞ=k3

(3.5)

and can parametrize P �;0ðkÞ / kns�1, with ns ¼ 1 the

scale-independent case.
Note that it is simply the Taylor expansion of the right-

hand side of (3.4) around the tree-level two-point function
P0ðkÞ that gave us the order-by-order corrections to the
power spectrum in [4], as can be seen from e.g. Eq. (4.5) or

2In a similar definition for P, the delta function is effectively
smeared on scales q.
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Eq. (4.11) of that paper.3 [Equation (4.7) of the present
paper contains an expansion of the same form, for the
related quantity (4.4).] The prescription (3.4) extends to
higher-point functions as well, with examples given in [4].

As a function of k, Pðk; xÞ is sensitive to the IR cutoff,
which enters via (3.2). This is what explicit loop calcula-
tions show in de Sitter space [4]. However, rewriting P as a
function of 	kðk; xÞ resums leading IR logs, giving a can-
didate ‘‘IR-safe’’ quantity P0½	kðk; xÞ�d3	k, as is shown by
the IR match between the expression (3.4) and the one-loop
calculation. This latter aspect has been emphasized in other
recent discussions [7,11,12]. Reference [13] has also dem-
onstrated cancellation of IR tensor variance contributions,
in a position-space analog of (3.4). We will give an im-
proved IR-safe prescription for actual observers in Sec. IV.

IV. LATE-TIMEOBSERVATIONS AND IRGROWTH

An important question is how these corrections contrib-
ute to the spectrum of fluctuations seen by a late-time
observer, such as us; this is also a sharper context to
investigate IR safety. We first consider the reheating sur-
face, at � ¼ �r which is a constant time slice, t ¼ tr, in
our gauge (3.1). Fluctuations with a longer wavelength
than the horizon scale at that time will have been generated
with the spectrum P in (3.4), and then stay constant outside
the horizon. Thus, for 	kðk; xÞ< aðtrÞHðtrÞ, these fluctua-
tions will be given by this spectrum.

A. Geometry(ies) of the reheating
surface vs late-time observers

One possible approach, also advocated in [11–14], is to
describe the fluctuations, geometrical or otherwise, in
terms of the geometry of the reheating surface. This ge-
ometry is determined by the spatial metric(s) hijðq; x; trÞ.
This will not, in general, be flat, but can be made ‘‘as flat as
possible’’ at scale q by a coordinate transformation of the
form [cf. (1.2)]

~x q
i ¼ ½e�ðq;xÞ=2�ijxj: (4.1)

For example, if one takes q ¼ aðtrÞHðtrÞ, incorporating all
fluctuations outside the horizon,4 and with the common
assumption that fluctuations inside the horizon are unim-
portant, this puts the metric in a locally flat form at the
(arbitrarily chosen) origin of coordinates. However, this
will then introduce gradient terms in the metric of the form
@i�jlðq; xÞxl, which become important at sufficiently long

distances. One has put the fluctuation spectrum (3.4) in an

apparently simpler form, since the conjugate variable to ~xqi
is (3.3), up to the same kind of gradient terms. Thus, in the
vicinity of the given scale, the spectrum can be written as
the uncorrected spectrum P0ð	qÞ.
In comparing the spectra at significantly different scales

on the reheating surface, there will however be mismatches
depending on which choice of scale-dependent metric is
used in the definition (4.1). Moreover, there have been
suggestions [11–13] that gauge-invariant observables are
naturally formulated in terms of correlators at fixed proper
distance on the reheating surface.5 For distances much
smaller than the inverse 1=q of the scale used in defining
the scale-dependent metric (3.2), its geodesics are those of
the unperturbed metric, corresponding to the fact that
Eq. (4.1) is effectively just a constant transformation.
But, at longer distances than 1=q, the fluctuations modify
the geodesics, so the scale used to define the metric is
relevant. Further examination of this and q-observables
characterizing metric fluctuations in the geometry of the
reheating surface will be given in [3].
However, a late-time physical observer does not directly

measure the local geometry of the reheating surface.6 In
fact, at the time of reheating, the perturbations on scales
relevant for observations today are far outside the horizon,
and when comparing correlation functions as observed
today, corresponding to different causally disconnected
regions on the reheating surface, one has to take into
account that the local physical momenta in different
regions are different, via (3.3), due to intermediate wave-
length fluctuations present within the observable universe
at the reheating time.
To a late-time observer like us, it is the physical mo-

mentum today that matters, and today the intermediate
wavelength fluctuations, which were background for
shorter-wavelength fluctuations at the time of reheating,
have entered the horizon and can no longer be counted as
background. Thus, for an observer today, observing a
largest mode entering the horizon, which exited the hori-
zon 60 e-folds before the end of inflation, the relevant
physical momentum coincides with the physical momen-
tum when that mode exited the horizon. This defines a
notion of a ‘‘small box’’ and the corresponding comoving
momentum scale. For a later observer, a larger box is
relevant.

3At one-loop order it was sufficient to calculate the scale-
dependent metric fluctuation in the Gaussian approximation, but
going to higher orders one will also needs to calculate the scale-
dependent metric fluctuation self-consistently to higher order in
the loop expansion parameter.

4For improved higher-order accuracy, this q can be replaced by
that determined by 	qðq; xÞ ¼ aðtrÞHðtrÞ.

5One can, in particular, write the spectrum P as a function of
the average physical momentum on the reheating surface,
h	qr ðk; xÞi, computed at the reheating horizon scale qr ¼ arHr.
Written in terms of this variable, one finds a different apparent
shift in the spectrum, of the form ðns � 1Þðh�2ir � h�2ih:c:ÞP0=2,
where h.c. denotes horizon crossing; this is like that found in
[11].

6Indeed, if we made observations in terms of proper momen-
tum at reheating, our observations would depend on the details of
reheating, while the point of working in terms of conserved
correlations at the horizon exit is that cosmic microwave back-
ground predictions do not depend on such microphysics.
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B. Late-time observation

We therefore focus on the spectrum seen by a late-time
observer. This is due to an essentially familiar effect: at
recombination, the fluctuations in � are imprinted in the
observed �T=T of what are now microwave photons. This
follows from the well-developed treatment of the Sachs-
Wolfe effect on large angular scales and the acoustic
oscillations on smaller scales, which can be conducted
precisely by following the metric (2.2) into the matter-
dominated regime. The metric perturbations governed by
(3.4) then reenter the horizon at times tp when 	kðkÞ ¼
aðtpÞHðtpÞ, and begin oscillating and decaying. However,

the leading effect of all this physics is simply the conver-
sion of �ðx; trÞ, given in the comoving coordinates, into
�Tð�;�Þ=T. Of course �Tð�;�Þ=T can be written gauge
invariantly and one is allowed to compute it any coordi-
nates one likes. However, in a standard treatment, like the
calculation of the second order Sachs-Wolfe effect in [15],
one is simply calculating �Tð�;�Þ=T in terms of the
primordial curvature fluctuations in comoving coordinates.
Thus, in this approach any new primordial second order
effects are compared to the primordial linear spectrum in
comoving coordinates.

The physics we are looking at is a small second order
effect on the primordial spectrum of comoving curvature
perturbations exhibiting mode-mode coupling of long-
wavelength modes with short-wavelength modes. It can
easily be summarized in the following way. Today we
observe the last-scattering region, which consists of
many causally separate patches. When we observe a cor-
relation function of relatively short-wavelength fluctua-
tions in many different places on the last-scattering
surface, the background on which this correlation function
is evaluated will change from place to place due to long-
wavelength fluctuations on the last-scattering surface. Of
course only wavelengths larger than the wavelength of the
correlation function we are evaluating, but smaller than the
observed universe (i.e. the observed part of the last-
scattering surface), will lead to any additional anisotropy.
Wavelengths much larger than the observed universe today
will only have an effect which can be absorbed in a
coordinate transform (4.1).

Thus, the spectrum of the needed �ðx; trÞ is for the most
part given by a function of the form (3.4), with k conjugate
to comoving coordinate x. But, there is the important
subtlety that the metric perturbation �ij½q� aðt0ÞHðt0Þ�,
where t0 is the observation time, has not yet decayed. It is
moreover apparently IR cutoff sensitive, or divergent.
However, at small scales, its effect can be eliminated by
a transformation of the form (4.1), with

q0 ¼ aðt0ÞHðt0Þ (4.2)

(which again can be improved as in footnote 3). Specifically,
at short distances as compared to H�1ðt0Þ, the gradient
terms described above have effect parametrically small in

distance. The transformation (4.1) simply corresponds to
scaling outmetric fluctuations frozen at longer scales, which
are constant on the observer’s Hubble scale.
The net effect is that we work in physical coordinates

~x0;i � ~xq0i in which the observer’s horizon-scale metric

appears flat. We correspondingly rewrite the fluctuation
spectrum (3.4) in terms of the conjugate physical momen-
tum, p0;i ¼ ½expf��ðq0; x0Þ=2g�ijkj=aðt0Þ, combining the

relations to find7

	kðk; xÞ2 ¼ a20½e�ðq0;t0;x0Þ��ða0p0;tr;xÞ�ijp0;ip0;j; (4.3)

and the resulting spectrum given by (3.4),

Pðp0Þd3p0

¼ P0fa0ð½e�ðq0;t0;x0Þ��ða0p0;tr;xÞ�ijp0;ip0;jÞ1=2gd3	k; (4.4)

which is now a function of the observed physical momen-
tum p0 and the comoving momentum q0 corresponding the
size of the observers horizon. (Again, see footnote 3.)
Notice that this has accomplished something very im-

portant. As a function of k, the spectrum depends on the IR
cutoff L, and diverges as it is taken to infinity. But, by
working in terms of the observer’s physical momentum p0,
where longer-wavelength fluctuations are ‘‘scaled out,’’ the
observed spectrum instead depends on the quantity

�0;ijða0p0; t0; xÞ ¼ �ijða0p0; tr; xÞ � �ijðq0; t0; x0Þ (4.5)

which is IR safe—IR cutoff dependence is eliminated, and
the observer’s horizon size 1=q0 instead functions as an IR
cutoff.
This is not to say that there are no IR large effects. For

sufficiently large hierarchy between the scale p0 of the
fluctuation being observed and the horizon scale Hðt0Þ for
the observer, the integral (4.5) can make a large contribu-
tion via (4.4). Specifically, looking at the tensor contribu-
tion, the variance, given in de Sitter space by Eq. (2.8),
signals such large contributions. In this simple case (which
approximates slow-roll), we see that this variance grows
linearly as

h�2i � 2

�
H

2�

�
2
log½Hðt0Þ=p0�: (4.6)

Thus, while this is small today, it becomes of order one for
a late-time observer who is able to see 1=H2 � S e-folds of
inflation.8 A more precise criterion is given in [4], which
examines the size of corrections in simple scenarios. This

7This expression is given modulo commutators. These could,
e.g. be handled by giving a ‘‘scale-ordered’’ expression, analo-
gous to a path-ordered exponential in other contexts. Indeed, that
is one way to give a formal solution to the differential equation
(5.1) for the evolution in scale.

8Here, in describing such a late-time observer, we neglect the
effects of late-time inflation that appears to be beginning in the
Universe today and interferes with such idealized observations.
Alternatively, if the present-day vacuum energy decays, ulti-
mately the relevant information enters the observer’s horizon.
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appears to confirm the proposal of [4], that large IR effects
can be resummed/absorbed for the purposes of describing
sufficiently local observables, but not for purposes of
describing sufficiently global observables. This also ex-
tends the discussion of [16,17], in which IR effects were
argued within the �N approach to be small in the small box
(defined by absorbing the long-wavelength field fluctua-
tions smoothed with a top-hat window function in the local
background), but not in a ‘‘large box.’’ However, in the �N
approach the IR divergences in the field fluctuations at
horizon crossing are not automatically included, and
some of the IR divergences captured by the present ap-
proach were not included in earlier treatments (see [4] for
more discussion of this point).

The spectral distortion due to (4.5) can be examined by
expanding (4.4) in �0;ij,

P� ðp0;xÞ
¼
�
P�0þ

�
��0;ijðk;xÞþ1

2
�0;ilðk;xÞ�0;ljðk;xÞ

�
kikj

@P�0

@k2

þ1

2
½�0;ijðk;xÞkikj�2

�
@

@k2

�
2
P�0þ���

�
jk¼a0p0

�a30e
�Tr�0ða0p0;xÞ=2: (4.7)

[See Eqs. (4.5) and (4.11) of [4]; other formulas there can
likewise be rewritten in terms of p0.] The expectation value
of the first-order term vanishes at leading order in pertur-
bation theory. However, by comparing different regions of
the sky, the observer can in principle see differential
isometries. In this way long-wavelength modes induce a
statistical inhomogeneity/anisotropy for correlation func-
tions of shorter-wavelength modes. The statistical inhomo-
geneity arises in part from the fact that, if we are restricted
to individual smaller patches of the sky, then they are
affected by longer-wavelength scalar modes, which we
can actually measure. The tensor modes, on the other
hand, contribute an additional inhomogeneous statistical
anisotropy. The size of the effects of the scalar and tensor
modes are proportional to the typical fluctuation in �0;ij,

determined by the accumulated variance (4.6), and thus is
largest for the smallest-scale fluctuations. For an approxi-
mate scale invariant spectrum, the effect of the scalar
modes is slow-roll suppressed, and the effect of the tensor
modes dominates. If we are measuring a correlation on a
comoving scale a0p0, the size of the effect of long-
wavelength tensor modes can be estimated to be of order
the square root of the variance of long-wavelength tensor

modes within the horizon, i.e., from (4.6), ðh�2iobsÞ1=2 �
2� 10�5, where as example values we assumed a tensor-
to-scalar ratio of order r� 0:1, the scalar amplitude
as measured by WMAP7 As ¼ 2:46� 10�9 [18], and
p0 ¼ 103H0. Planck is only expected to be able to probe
statistical anisotropy down to a precision around 2%, but it
has been predicted that it is possible to see statistical

anisotropy all the way down to the 10�7 level by using
21 cm emissions to probe the ‘‘dark ages,’’ thereby im-
proving statistics [19]. However, these statements apply to
homogeneous anisotropies. It would be interesting to
investigate observability of the kind of inhomogeneous
anisotropies discussed in this paper, in these futuristic
21 cm measurements. It is also interesting to note that,
while the present effect of tensor modes is imprinted on
scalar modes of all scales, the effect of primordial tensor
modes on B-mode polarization in CMB is only on rela-
tively large scales. This suggests that this effect could even
be the most sensitive probe of primordial tensor modes in
the far future. Indeed, in a related work, Masui and Pen
[20] gave arguments for 21 cm observability of the effect
(4.7) on the spectrum, with a heuristic rederivation of the
leading effect [4] based on similar considerations, but
basing a signal to noise estimate on the approximation of
a statistically homogeneous effect.

V. COMMENTS AND CONCLUSIONS

This discussion is expected to generalize in several
directions. First, as initially investigated in [4], one can
apply a prescription like (4.4) to higher-point functions,
using (4.3). Second, while we have discussed the essential
points in the context of single-field slow-roll inflation,
clearly they have broader applicability. For example, to
control the statement that fluctuations exiting the horizon
are determined in a simple way in terms of a physical
momentum defined by the background, really all one needs
is an adiabaticity condition that time scales for deviation
from de Sitter space are long as compared to the Hubble
time 1=H, here provided by slow-roll. Likewise, the use of
a scale-dependent metric and physical momentum have
broader possible generality to other inflationary scenarios,
and suggest an approach to defining certain IR-safe ob-
servables in dS space.
These notions also appear connected to renormalization

group methods, of which they have a strong flavor, and
which have been applied to inflation in related contexts
[21–23]. For example, thinking of q as playing a role
like a renormalization scale, one can differentiate to find
renormalization group equations. Applied to the scale-
dependent momentum, this yields

q
@

@q
	q;iðxÞ ¼ � 1

2

�
q

2�

�
3 Z

d2�q½2�ðq; t; xÞ�ij

þ �ijðq; t; xÞ�	q;jðxÞ (5.1)

with related equations for other quantities. One might think
of the right side of (5.1) as giving an analogue of a beta
function. Likewise, differentiating the spectrum (4.4) gives

q
@

@q
P ¼

�
q@q�ijðq; xÞp0;ip0;j

@

@p2
0

þ 1

2
q@qTr�ðq; xÞ

�
P;

(5.2)
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a ‘‘cosmological renormalization group’’ equation. Note
that IR cutoff dependence is also eliminated in these equa-
tions, and that similar equations can be written for other
correlators.9

Finally, growth of the variance as in e.g. (2.8) means that,
for the late-time observer seeing S� 1=H2 e-folds, the one-
loop corrections competewith the lowest-order effects. This
suggests a breakdown of this perturbative approach to
gravitational fluctuations on these time scales, such as has
been argued in [4,24–26] to occur more generally on time
scales t� RS, with here R� 1=H, and supports the sug-
gestion [4] that de Sitter space has a sort of instability,
arising from accumulation of large-scale fluctuations.
References [4,25] also argue this is parallel to a breakdown
of the calculation of the quantum state of a black hole, also
on the time scale t� RS, with R the horizon radius, and S

the entropy ([24,26] argue for a relation via an apparently
different proposed mechanism). Thus, there appear to be
q-observables sensitive to the perturbative breakdown, de-
scribing late-time observation, andwe have also argued that
there is a portal to present-day observations where one
could possibly see a small imprint of statistical anisot-
ropy/inhomogeneity in short-wavelength primordial corre-
lation functions in 21 cm measurements. These hint at a
possible link between a potentially observable effect, and
profound aspects of nonperturbative quantum gravity.
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