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ABSTRACT

We use a variant of the minimal subtraction
scheme to calculate, in a transparent way, relevant
physical quantities inGUTS and study the dependence

on various parameters: gauge, A, top quark mass, etc.
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It turns out that this quantity is finite and is expressed in terms of renorma-

lized quantities

B(p)
o ( P") = ( (3)
N A ()
where m is the renormalized mass: m = m, - m, etc. Since meff(pz) is
expressed in terms of bare quantities [Eq. (2)], it is independent of the renor-
malization procedure: rtenormalization scheme and renormalization point (scale).

10)

We shall then compute it in the minimal subtraction scheme where we obtain :

mep(F) = W { 1, fé‘—“ [— 3(¢-Whin) - 3?@ "“1:21
+(5+0.)E1_ ‘N\M havo - OJ“ ﬂm\g__g_ a’mt]} (4)
'P" w* PP

where o is the renormalized QCD coupling comstant, a the remormalized gauge
parameter, 7Y the Euler constant and p the scale. One important feature of
Eq. (4) is the gauge dependence that we shall now discuss. Since, thanks to

Eq. (2), LI is scale independent, one can write a renormalizatiom group

equation for meff(pz) whose solution is:

e ()= () [ 10 B2 [ 3¢ bl
~ 3 _LL-?-((;\).L)_ *(5*“(?‘))—?—“‘% chealy)
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a (p = (-7 (P ]k

W)
where m(p?), as(pz), a(p?). are the running mass, coupling and gauge parameter,

that is the solution of the renormalization group equations:
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1. INTRODUCTION

=3 has

A large amount of the recent literature on unified gauge theories
been devoted to the problems of quark masses and proton decay. The first one is
of importance because constraints on the number of generations is based on the

3),4)

determination of the mass of the bottom quark Besides, there exists a

5)

controversy on the computation of the strange quark mass On the other hand,

the utmost importance of proton decay need not be emphasized. We therefore have

to be very cautious when computing contributions to proton lifetime or quark
masses, In this paper, we stress the relevance of gauge and renormalization scheme

dependence on such computations.

In Section 2 we calculate renormalized masses and show that, when one includes
mass effects, the constituent mass used to give numerical predictions becomes
gauge dependent. Instead, as one expects, the true pole of the propagator is
gauge independent and therefore allows safe (if not checkable) predictions. We
then review, in Section 3, different renormalization schemes and stress the fact
that one should stick to a given renormalization procedure and a given gauge
throughout the calculations. This is especially true for proton decay computations
where one has to take into account numercus contributions cadlculated by various
authorsS)’G)_S). We define a variant of the minimal subtraction scheme of re-
normalization which incorporates the decoupling of superheavy fields. This allows
us to compute the superheavy gauge boson mass in a clean and transparent way.
Technical details are given in an appendix. Finally in Section 4, we give some

numerical results and our conclusions.

2. QUARK MASSES

We first start by reminding the different masses available on the QCD market,

If one computes a fermion propagator with bare quantities, one obtains

(%) - K(® Fo-w ¥(y) (1)

where the superscript °

by9)

denotes bare quantities, We define the effective mass

™, ‘) = w Bl]’:)_ 2
w (7 v (2)
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Wee (T=m3) = my 9

b, = _’lf'\(-\'l\;)‘\ 4 B_Es%‘““i) [h-.’)(‘(-‘\l““) i Sl“]} (10)

This expression looks complex. However, if T << #n(p?/A?), then m(-p?) =
= m(p?) [1 + 1 (Yéo)/S) &S(pz)] and to the first order

= () | L+ B3 [ -3 (-]} an

The reason is clear: 1if T<< Rn(pzlﬂz), it is sufficient to sum the leading
logs Rn(pzlﬁz) and use therefore &S(pz). However, 1f m~ QnCpZ/AZ), one

has to use a continuity procedure.

The <Y - &n4m factor is the usual facter that appears whenever one uses

the minimal subtraction scheme.

In summary, mp given by Eq. (11) is the only definitiom of quark masses
which is gauge independent and renormalization scheme independent. To compare
with the comstituent mass given by (8), one has to express m(m?) in terms of

m(4m?) which gives, to the first order
mp 2 % (i) {1 () [y 3 b+ S| S
o .

The coefficient of &S(Am;)/3ﬂ is numerically about 14, The pole is therefore
higher than the constituent mass (evaluated for a mot too pathological gauge)
and the difference is substantial for the strange quark mass. We do not claim
that this is the right definition of mass but this only shows that the accuracy

to which one can predict the strange quark mass is certainly bad.
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One should note that in the minimal subtraction scheme, as well as in any mass
independent renormalization scheme, these equations are decoupled and it is

therefore straightforward to solve them,

Now the constituent mass m, is defined byll}

g (1= ld) = m | 7

which gives

[

- () \J_L“_m_e)[h 30{ o) + 62 - 153
N _ & (knd) (\--‘—%5)“

This shows that the constituent mass is explicitly gauge dependent. For example,

(8)

in the Landau gauge, the coefficient of as(émi)/3ﬂ is approximately 8; in
the Feynman gauge (5(4mi) = 1), it is of the order of 7.2. Therefore the
effect is certainly negligible for the bottom quark mass (as(kmé) << 1) but
starts being sensitive at the strange quark mass (as(émé) n 1) in the minimal

subtraction scheme, !

One should note that authors of Ref. 3) define the constituent mass in the

timelike sector, namely the one available in e'e” annihilation
T LW -
Mg (F7= hme) = e 7

which gives

m(-hmo){h?s( b -3 -l + 62 M3
m(-'-mc)(‘*‘ h3) + 3‘“ (\+ \ a(*hmd)]% 8"

There is, in this expression, an explicit and implicit (ﬁ(—hmi) veo )} imaginary
contribution. One should therefore use a procedure for continuing to the space-
like region3)—12). Anyway, both the difference of the real parts between (8)

and (8') and the uncertainty in the choice of procedure incréase the uncertainty

in the estimate of the constituent mass.

On the other hand, it is clear from Eq. (5) that the only gauge invariant
definition of mass (to this order) is the perturbative pole of the fermion pro-

pagator mP which satisfies
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3. RENORMALIZATION SCHEME DEPENDENCE

The minimal subtraction, which allowed us to give analytical expressions
because the equations (6) were decoupled, incorporates two unwanted features.

143

The first ome is that the decoupling theorem of Appelquist and Carazzone does

not hold: if one takes, for example, a fermiom (boson) loop in a Green's function,
this loop will give a 1/(n - 4) (n is the dimension) pole and therefore the mini-
mal subtraction will take this loop into account, whatever the mass of the fermion
(boson) is. This situation seems dramatic since this does not seem to allow any
breaking of symmetry: if one has to keep the leptoquark contribution at low
energy, each coupling is the origimal SU(5) coupling and for example, formula
(14) does not hold. The other feature is that large logarithms are creeping into
the calculation: the large #n(m/u) where m is a large fermion (boson) mass

and | the dimensional regularization scale (of the order of the external momen-
tum) are not subtracted (whereas they are in a subtraction at p? = -M?) and.
spoil the perturbation approach., This is the main reason why people did not use

1)

the minimal subtraction sheme for mass calculations , despite its simplicity.
The answer to these two problems is clear: the large tn(m/u) are just the one
that spoil the decoupling theorem. Resumming them should therefore give variables
that agree with this theorem. We have checked explicitly that this is the case
for fermion masses. Actually the only diagrams that give a leading Ln(m/u)

contribution to the gauge coupling are (see Appendix):

and their summation turns the N (total number;of fermion) dependence of the
running gauge coupling into an effective N. We believe that the same sunmation

2 is nothing

holds for bosom masses {actually, the renormaii%a;ion at p2 = =M
else than an example of such a summation) énd théfefore'the theory decouples and
is free of large logaritims. Obviously, such a decoupling property is vital to
any GUT considération: the fact that we want to, describe low emergy pheromena
via three distinct interactions xequires that the superheavy gauge bosons (X,Y)
must decouple. From now on, we will therefore refer to the minimal subtraction.

scheme in the following sense: we renormalizela'éreen function of typical external
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After this rather long discussion within QCD, we can now .add the well-known
GUT ingredients to Eq. (11) and find the bottom mass (defined as the pole) versus

the T mass foxr example:
m toly b

e e (B (Bl R ECORS
PSR E-ACR) IR A TR %,(My o

m(m))‘;ﬁ = (_( zﬂ,, T G\ R B Tl (13 )
%2 (No) d, (1) 3{5(‘-"’) %) n 3n

where B

Y(0) (1)

P A are defined in Eq. (6);

Bu ,i Y(OQb, Y(O)T are the same quantities for the groups SU(2) and

U(l) (the anomalous dimensions referring to b and T respectively)};
%
Mu is the grand unification mass ) in the minimal subtraction scheme

{see below); 1in particular ab(M Yy =m (M),
u T u

We have introduced in Eq. (13) only the first order QCD corrections. As can be
seen, we had to take into account the az term in the B function which gives

a contribution to this order (but in our approximation we have neglected & o

s 1
or o o, terms).
As pointed out elsewhere13), the anomalous dimensions ( ib T 1 = 1,2 are
gauge dependent. However, this gauge dependence disappears 1n’the formula (13)
because Y(,ib Yéfzr is gauge independent [the tiny gauge dependence, coming

from the fact that we make a ratio of two quantities at different points ai(mb)/

/a.(mT), is of order ai(mb T) and should disappear, if we take these terms into
1 L]

account in (13) because each is gauge independent as a pole] and we obtain

()b _ (02T
(mz miz)
Yﬁg?— ™

&)
my= My (L(m) 1 i) 2.,

i

(14)

[\ “') = &) CACNEN Efs(m)(q 3y x\u“))]

Before giving any number, we need to precise our scheme of renormalizationm.

*
)Throughout the paper, we define the grand unification mass as the mass scale
where the three couplings are equal to the SU(5) coupling or (in some schemes)
s0 mear to it as to be effectively unified.
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As we shall now see, the simplicity of our calculation is not shared by
every renormalization scheme. Let us take, for example, the renormalization at

p? = —-u?. 1In such a scheme, Eqs (6) form a system of coupled differential equa-

tions because B, Y(U) .. are functions of a(M), a (M). However, we can use
what we learned above by parametrizing the solution in terms of the solution of
the decoupled equations, namely in terms of the minimal subtraction quantity.
For instance, if we renormalize the QCD coupling constant via the three gluon

couplings at the symmetrical point (p° = ¢ =1* = 1%y, we have

I CERCRIEECRIE)

X () = %s () -)'\ X E‘_(l‘_ 3(\»)}

(17a}

where m'(u), &;(u) are the running quantities in the renormalization at p? =

= -u?, and m(u), &s(u) the runping quantities in the minimal subtraction scheme.
It is straightforward to obtain A(W
)
A = - (- W)= o U*P - (n ‘L(L)"“(m)&m"‘( )i
W ()

- - ‘»" v 16b
13-0-(}*‘)-'5&( ) P %M_‘E_g‘ﬁ? L (L(‘»-) (160)

uabt'

As for B{w) 16),18)

B(p) - -{5,&1_&«_3,, ‘h\: u]+c(@)l{%a-%a‘

B E(B-ga )},_T(p\)xu%», T(R)i{

[Py (- Y, o) a0 ()

Qn“"*) Mw 2 |
(Ao \)n* R

where B, = 11/3 C,(G) - 4/3 T(RIN;

(17b)

Cz(G)’ T(R) are defined as usual (respectively 3 and Y for SU(3))
I = 2.344 [see Ref. 16)]

p(y) = Sffdx dx, dx, 8(1-x -x,-%,) S(y-x,X,~%,X;~XX;) {see Ref. 18)].

SRALLLL B i L
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momentum M by subtracting the pole 1/(n - 4) (pure minimal subtraction) when
M2 > M;(or M%) and by subtracting the pole and the appropriate Rn(M;/uz) terms
when M2 < M%. "appropriate' means the Qn(Mi/uz) terms that one would find far
from the threshold: M? << M%. This gives us, as a final result, B,y functions
that behave as step functions at the X (or W) threshold, that is nothing other
than the B,y functions that most people use. The fact that one crosses thres-
holds via step functions does not seem quite physical but neither is the running
coupling constant (even if the threshold was crossed aesthetically)., We follow

the same procedure for fermion thresholds.

In such a scheme, the grand unification mass coincides with the mass of the
superheavy gauge bosons. We therefore first test the method by computing it and
comparing our result with the wvalue given by Goldman and Ross7). These authors
use the value A% = 0.1 Gev? for six flavours. On the other hand, they are in
the momentum subtraction scheme since they use threshold effects computed in
Ref. 6). To compare, we must therefore start, in our minimal subtraction scheme,
with A% = 0.1/(5.5)% Gev? = 0.33 x 1072 Gev? 10

to obtain MX [see, for example, Ref. 15)].

It is then straightforward

(15)

| I 170 A P T Y
Ymm- RS eom: (1)

)

*
In our scheme where  functions behave as step functions at the pole, we find
a;im.(MW) = 128 and obtain M, = 1.35 x 10'® GeV. This should be compared
with the value MX = 1.8 x 105 GeV obtained in Ref. 7), before higher order and

Higgs contributions are taken into account. We interpret such an agreement as a

success of our method. The reason is very transparent: Amom is approximately
. . 16 . ‘s .
S1X times AMS ); - this, more or less, translates the grand unification masses

of the same amount, that is (Mu)mom = 6(Mu)MS = 6MX' This factor 6 is just the

&) for threshold effects. Actually, it turns out not to be

cne advocated by Ross
exactly 6 (5.5) and not to translate by exactly the same amount the upification
masses [see Eq. (15)] and this gives the above value . If we now take into account
higher orders and Higgs contributions with a factor 20/3 reduction as in Ref. 7),
the final wvalue is Mk = 2 x 10" gev. Actually the value of A was taken ?ggve

mainly for comparison purposes and is somewhat low compared with experiments .

We give other values in Table 1.

* )
)Of course, Goldman and Ross find a different value for Ce.m. namely ae_m.(ZMw) =
= 130.4, because they use a momentum subtraction scheme where they have to
include threshold effects.

I UL TS R T YTIRLIS M BTR -1 FATORAY. AW TPRINYS YA =Pl <18 ]k U] SRRSO IR AR E LG 1T es h 0 IR T I I b 18 UL IR R L L AW R h e e i
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4, RESULTS AND CONCLUSIQON

After this rather long discussion on renormalization scheme dependence, we
can now give a numerical result to Eq. (14). Using Refs 4),13},19)

(o) b \ 2 oy ® 4 3
= - = - — = - == 0
L Ywoo =g ¥ 20 | R AT

we obtain, for six flavours
|

—

L.
o (&(h\) 3 &, (i) '*[ 12082 %) 329 “M], (20)
AT CH ANTATS n "

Qur numerical results are given in Table 1 for different values of A, One
should stress that in Eq. (20) we have neglected the top threshold. However, it
turns out that taking it into account, within a large range of mt(15 GeV < m <
= MW)’ changes only the result by a few (2 to 3) per cent. Results given in
Table 1 are high. The mass defined as the pole is too high. As for the cons-
tituent mass, it is, certainly high if one looks at the values corresponding to
17): A = 0.19 GeV. The situation could be

MS
saved if A turned out to be lower and if one stuck to usual gauges (but why

the experimentally favoured A

should we?). If not, the model is in trouble. There are several ways to get

out of it. One is to search for another definition of quark masses (we feel free
to do so, since confinement may spoil any of our definitions). We tend teo favour
a definition that would be based on physical processes involving Higgs particles
(the fermion-Higes coupling being proportiomal to the mass): for imstance, the

3 matrix element describing the process ete - Higgs + qq should provide us
with a gauge independent meff(pz) and therefore a gauge independent definition
of the mass. The strange quark mass problem is worse. It turns out [see Table 1
note (e)] that the term of order o in Eq. (14) (adapted to the strange.quarky
gives rise to a correction that ranges from 307 to 100%, in most cases. The high
values given in Table 1 should therefore mot be trusted. Anyway, this suggests
either a change of the relations mq(Mu) = mz(Mu) =) or a search for a new

perturbative definition of masses.

PPN TN
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Of course, B would be different, had we chosen to renormalize the gauge coupling
through the quark-quark-gluon interaction. In the momentum subtraction scheme,

Mg ('\S") = W‘l(' '{5‘) (18)

and therefore as expected, we recover the expression given in (5). If one thinks
that the perturbative expansion converges more rapidly in this scheme than in the
minimal subtraction one, one can express meff(pz) in terms of a;(pz) through

Eqs (5) and (17). The same treatment can be applied to Eq. (1l4) which gives
oy to)T

- - m o - ‘A'“l‘ ~Rw
_ 25 Umg) \ 7 Yo [ A () )
e (B (SR

JiLs %‘%( % - %)ai(;\@ + &-;-%El') (L-Z(‘Jnlm)»% Y_)%B(m\,)? (197

One can check that the (v - in4m) term disappears (Yéo) = -8) in this expression.
M; is the grand unification mass in the scheme considered. Of course, as is

obvious from Eq. (17), M, # M& that is the grand upnification mass depends on the
scheme used to renormalize (whereas the physical quantity MX is independent;

this was the basis of the above calculation). Actually things turn out to be even

more complicated as we shall now see.

In the minimal subtraction scheme, the three coupling constants intersect
at MX- If we now go to the momentum subtraction this will no longer be the case.
Not only they will intersect at another point but the three of them will no longer
intersect at the same point. As is clear from Eq. {(17b), B depends in a com-
plicated way on the gauge group through C,(G) and T(R). Therefore if as(MX) =
az(MXQ then the point MG where a;(M;) = u%(M;) will depend on the gauge groups
SU(3) and SU(2), and so forth for other pairs of gauge couplings. So they
would only intesect two by two. Similarly, running masses would intersect at
still another point; The answer to this puzzle is clear: as stressed by Rossﬁ),
threshold effects play an important role and force the couplings to join a unique
value beyond MX' But the moral of it is clear too: threshold effects and grand
unification point (Mu<3 MX) strongly depend on the renormalization procedure :
scheme, point chosen to renormalize (quark-quark-gluon; three gluon...) and also
gauge (B 1is gauge dependent). It is therefore of great importance, esPeciallj for
proton decay where one has to add so many ingredients7)_8), to compute every con—

tribution in the same scheme, with the same gauge. It is not clear in the 1i-

terature that this is the case,

Al T Mg UL LU LN LU T TR IR RO, IR L LI TR TN ST TR ETE R T SR LR RE ol R T R R LT T B T e R e R S P R T A I P T TP
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APPENDIX

Consider two interacting (light) quarks described to lowest order by the

— z

Let us add higher order corrections involving heavy gquarks of mass M. We show

following graph

that in the minimal subtraction scheme the only graphs contributing terms pro-
portional to afa a4/ (leading logs) are repeated insertions of simple

heavy quark loops into the gluon propogator:

First we remark that a graph containing a converging loop does not contri-
bute a afo Lo(M/u))™ term. This is the case whenever a heavy quark loop is
attached to a light quark line. Therefore it is sufficient to consider only

higher order corrections to the gluom propagator which contain no convergent loop.

The following is a complete list of irreducible gluon propagators of any

order not containing any convergent loop: '

It remains to show that the second graph has a zero (g gn(M/u))n term.

e e g e
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Finally, about the number of fermions N as already noted by Nanopoulos

f’
*
4 ), it is of wvital importance for the model that N_ = 6.

and Ross £

As a conclusion, we think that the variant of the minimal subtraction scheme
that we use provides us with a very simple way to calculate physical quantities,
especially the mass of the superheavy gauge bosons. The bottom and strange quark
mass turn out to be high, even with six flavours and whatever definmition (pole
or constituent) that one uses. This raises the question of a suitable perturba=~
tive definition of quark masses. We have not yet succeeded in answering this

gquestion.

After this manuscript was completed, we learnt from S. Weinberg that he had
developed a very similar prescription for calculating renormalization in unified

theories.
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One should also note that, within our scheme, we recover the original results
of these authors for the b and s constituent mass at ordinary gauges (a = 0
or 1).
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We have checked it explicitly but the reasons of this behaviour is quite
general; any diagram that contains a loop with a degree of divergence D = 0
has no (a 2n(M/W))" term. Actually it is easy to show that the divergent
part corresponding to such a loop is just TI'(e) with no dependence on external
parameters as M. Therefore the subtraction corresponding to such a loop provides
no £n{M/u). On the other hand, in case of overlapping divergences, after having
done the lower order subtractions for the whole diagram, ome camnnot end with a
(1/e™ M term since that would allow a (l/snnl)Rn M counterterm which is not

local, We thus obtain no (o &n{M /u))n term.

As a conclusion, the only diagrams that contribute to the leading log level
are repeated insertions of heavy quark loops as indicated above and the summation

is obvious. The effective low energy coupling constant O eg is then expressed

in terms of the original one o by:

d(p)
1-L T TR) Wt o«
3 ¥ T

Xgp (W) =

(4.1)

where the sum runs over heavy fermions and T(R) = ¥ for the fundamental repre-—
sentation of SU(N).

A summation of the leading En(MX/u) with M, a superheavy gauge boson
mass would follow the same lines. The effective low energy coupling constant
aié% i=1,2,3 for U(1l), SU(2) and SU(3D) respectively] is expressed in terms
of the unified (SU(5)) coupling constant o by:

g u(}‘)
of =
O LT (o aagh s o =

where G 1s the unification group (SU{5)) and Gi i=1,2,3 the low energy
groups [U(l), 50(2) and SU(3) respectively]. The result is easily extended

to more complicate groups or breakings of symmetry and to Higgs contributions.

Finally we think that the summation of next to leading terms of order
o (o Rn(M/u))n, for example, will make the second order term in the 8 Ffunction

(81) decouple and so forth to all orders.

LR O T R T R I R T T T NI N I R AP R R A T T Tt I e g TP T T
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