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A methodology of including QCD next-to-leading-order corrections in the quark-gluon Monte Carlo

shower is outlined. The work concentrates on two issues: (i) constructing the leading-order parton-shower

Monte Carlo from scratch, such that it rigorously extends collinear factorization into the exclusive (fully

unintegrated) one which we call the Monte Carlo factorization scheme; (ii) introducing next-to-leading-

order (NLO) corrections to the hard process in this new environment. The presented solution is designed

to be extended to the full NLO-level Monte Carlo, including NLO corrections not only in the hard process

but in the whole shower. The issue of the difference between the factorization scheme implemented in the

Monte Carlo (MC) solution and the standard MS scheme is addressed. The principal MC implementation

is designed for the electroweak boson production process at the LHC, but in order to discuss universality

(process independence), the deep inelastic lepton-hadron scaterring is also brought into the MC

framework.
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I. INTRODUCTION

The excellent performance and fast experimental
data accumulation of the Large Hadron Collider (LHC)
at CERN makes the precise evaluation of the strong inter-
action effects within perturbative quantum chromodynam-
ics (QCD) [1–3] a more and more important task. The
principal role of QCD in hadron collider data analyses
(LHC and Tevatron) is to provide precise predictions for
the distributions and luminosities of quarks and gluons
accompanying the production of heavy particles.

Among the most important theoretical tools of perturba-
tive QCD (pQCD) are factorization theorems [4–6], which
reformulate any scattering process in QCD in terms of the
on-shell hard-process part convoluted in the light-cone
variable with the ladder parts, provided a single large-scale
Q2 is involved (short-distance interaction). The hard
process is usually treated at a fixed perturbative order,
and the ladder parts are resummed to infinite order, for
each colored energetic ingoing/outgoing parton. The initial
state ladders give rise to the inclusive parton distribution
functions (PDFs).

The initial state ladder, instead of being the source of the
inclusive PDF, can also be modeled using Monte Carlo
simulation (including hadronization), as initiated in
Refs. [7,8]. Such an implementation of the QCD ladder
is referred to as the parton-shower Monte Carlo (PSMC)
program. Programs of this kind play enormous practical
role in all collider experiments. In today’s PSMC applica-
tions, the initial ladders are restricted to the leading order
(LO). With growing requirements on the quality and pre-
cision of pQCD predictions for the LHC experiments, it

has become urgent to upgrade PSMC to the same next-to-
leading-order (NLO) level which was reached for the in-
clusive PDFs two decades ago. This is not easy, mainly
because factorization theorems of QCD [4–6] were never
meant for the Monte Carlo (MC) implementation. They are
well suited for the simpler case of the hard process up-
graded with finite-order calculations and convoluted with
collinear-inclusive PDFs.
There has been, however, significant progress in imple-

menting pQCD in the framework of PSMC, which started
with the work of the MC@NLO team [9,10], followed by
the development of the POWHEGmethod [11,12]. In these
works, the hard process in PSMC is upgraded to NLO,
while the ladder part stays at the LO level; essentially,
older solutions and software for the LO PSMC are
not modified. This, of course, saves a lot of work, but
because of that, the methodology of combining the initial
ladder parts and the NLO-corrected matrix element (ME)
for the hard process is quite complicated. The solution for
this problem is to redesign the basic LO PSMC. This
would be too big an investment if simplification of the
NLO corrections to the hard-process ME were the only
aim. However, this effort is mandatory if we are also
aiming to upgrade the ladder parts of PSMC to the com-
plete NLO level.
In this paper, we outline a redesigned LO parton-shower

MC and simultaneously present a methodology of includ-
ing QCD NLO corrections to the hard process which takes
advantage of it. Hence, we shall concentrate on two issues:
(i) constructing once again the LO parton-shower
Monte Carlo from scratch, such that it is based firmly
on the rigorous extension of the collinear factorization
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theorems, which, contrary to the original collinear
factorization, is fully exclusive (unintegrated); and
(ii) introducing the NLO corrections to the hard process
in this new environment. It is natural to expect that the
issues of the difference between the factorization scheme

implemented in the MC solution and the standard MS
scheme will have to be addressed. The important point of
universality (process independence) will be also discussed
extensively. Although the principal aim will be a new MC
implementation with the LO ladder (upgradable to NLO)
and the NLO hard process for the production of the
electroweak (EW) boson in quark-antiquark annihilation,
in order to address the issue of universality, and for other
practical reasons, the deep inelastic lepton-hadron process
will be also brought into consideration. The next step in the
project, the upgrade of the ladder part to the NLO level,
will be treated in a separate publication [13], although the
general method was already outlined in Refs. [14–16].
Many technical details needed for the NLO ladder are
provided in Ref. [17], and auxiliary discussions on the
soft limit and the choice of the factorization scale in the
MC can be found in Refs. [18–20]. The first numerical tests
of the discussed method of including the NLO hard-
process corrections are presented in Ref. [21].

Let us note that the ongoing effort undertaken in
Refs. [22,23] is in some aspects similar to the present
work; in particular, the parton shower is also redesigned

at the NLO level, and a departure from the standard MS
factorization scheme is also advocated. These works are
extending/exploiting techniques of Refs. [24,25].

The remaining part of the paper is organized as follows:
In Sec. II, we discuss collinear factorization in a form
suitable for the MC implementation. Section III covers
the construction of the LO MC for EW boson production
and the new method of introducing the NLO corrections to
the hard part of this process. In Sec. IV, we present a
similar MC solution for the deep inelastic electron-proton
scattering (DIS) process, with the new LOMCmodeling of
the initial- and final-state ladders and the NLO corrections
to the hard process. The issue of universality as well as
factorization-scheme dependence are addressed in various
steps of this presentation, with the final discussion in
Sec. V, where we also give a summary and an outlook on
further work.

II. GENERALITIES: COLLINEAR
FACTORIZATION

The precise definition of the LO approximation within
the factorization of collinear singularities and the resulting
distributions implemented in Monte Carlo is a necessary
prelude to defining complete NLO distributions, both
in the ladder and in the hard process. This is why in
the following section we shall define a new LO MC,
‘‘anchoring’’ it in the collinear factorization theorems
[4–6] as firmly as we can.

The production process of electroweak bosons W, Z, �,
or of other color-neutral vector particles, in hadron-
hadron scattering will be the object of interest in the
following discussion. We shall refer to it as the Drell-Yan
(DY) process for short. We are going to describe a
Monte Carlo algorithm in which two initial-state parton
ladders will be modeled up to the LO, and the hard process
up to the NLO, with both the hard and ladder parts modeled
in a completely exclusive way. In the construction of the
MC, we will keep track of the precise relation to the QCD
factorization theorems, keeping in mind that the ladder part
(parton shower) will be upgraded to the NLO level in the
next step. Diagrammatically, we shall temporarily limit
ourselves to the Ck

F part in the ladder; that is, to gluon
bremsstrahlung. Because of copious soft gluon production,
this is the most difficult part in the MC construction of the
LO (and later on, of the NLO) MC implementation for the
ladder. The addition of more diagrams (quark-gluon tran-
sitions, singlet diagrams) will be discussed briefly, but will
be treated in a separate publication.
Let us start from the ‘‘raw collinear factorization’’ for-

mula of Ref. [4] (in the axial gauge) illustrated in Fig. 1 in a
standard way (cut diagrams). Following closely the nota-
tion of Ref. [4], the standard Feynman amplitude for the
heavy boson production process is ArFrB

jFjB
ðpF; pB; q1; q2;�Þ,

where two incoming partons of types jF and jB have spin
indices rF and rB, the heavy-boson decay lepton momenta

q
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FIG. 1 (color online). The EGMPR [4] factorization for EW
boson production. Example 2PI kernels for a quark in the
forward hemisphere K0F, an antiquark in the backward
hemisphere K0B, and the hard-process part C0 are delimited by
ellipses. The lower figure highlights the use of cut diagram
notation by indicating the amplitude in blue (left parts of
the ladders) and the complex conjugated amplitude in red
(right parts of the ladders).
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are qi, and any number of the emitted on-shell gluons and
quarks are collectively denoted as �. Also denoting
ðpF; pB; q1; q2Þ collectively as ðp; qÞ, the partly integrated
cut diagram is defined as

MrFsFrBsB
jFjB

ðp; qÞ � X
�

Z
d��ð4ÞðpF þ pB � q1 � q2 � p�Þ

� ArFrB
jFjB

ðp; q;�ÞAsFsB
jFjB

ðp; q;�Þ�: (1)

It is related directly to the differential cross section
d�jFjBðp;qÞ ¼ 1

flux

P
rFrB

MrFrBrFrB
jFjB

ðp;qÞZFZB, where ZF;B

are wave renormalization factors. The essence of the
‘‘raw’’ factorization theorem in Ref. [4] is that all collinear
singularities are located in the ladders with multiple two-

particle irreducible (2PI) kernels Kr0s0rs
0j0j ðk; pÞ. Suppressing

for the moment ladder B and neglecting subscript F, the
above statement reads

Mrs
j ðp; qÞ ¼ C0

rs
j ðp; qÞ þ

X1
n¼1

Yn
m¼1

Z
d4pm

X
rn;sn;jn

C0
rnsn
jn

ðpn; qÞK rnsn rn�1sn�1

0 jn jn�1
ðpn; pn�1Þ

� X
rn�1;sn�1;jn�1

K rn�1sn�1 rn�2sn�2

0 jn�1 jn�2
ðpn�1; pn�2Þ . . .

X
r1;s1;j1

K r1s1 rs
0 j1 j

ðp1; pÞ:

Using the compact matrix notation of Refs. [4,26], the
above expression in the case of two ladders reads

� ¼ C0

1

1� �K0F

1

1� �K0B

¼ X1
n1;n2¼0

C0ð�K0FÞn1ð�K0BÞn2 ;

(2)

see also the upper part of Fig. 1 for an equivalent graphical
representation. In the lower part of Fig. 1, the above
formula is illustrated diagrammatically using the lowest-
order bremsstrahlung matrix element where we explicitly
indicate the 2PI kernels, with the red part of the diagram
representing the conjugate part A� of Eq. (1). Note that in
the above expressions, the phase space of the emitted on-
shell partons (cut lines) is integrated over and treated
inclusively. In the following discussion, it will be explicit
and implemented in the Monte Carlo parton shower.

According to Ref. [4], all collinear singularities in � of
Eq. (2) are coming from (dressed) propagators between
kernels K0F (K0B) along the ladders. The 2PI kernels for
the initial quark ladder, K0F, and the antiquark ladder,
K0B, are expanded to infinite order; see Ref. [4]. In the
following practical example, we shall truncate them to the
(lowest) first order (LO) or to the second order (NLO),

Kð2Þ
0F ¼ K½1�

0F þ K½2�
0F , taking into account the following�C2

F

diagrams:

A similar expansion up to the first order (NLO) is done for

the hard-process part: Cð1Þ
0 ¼ C½0�

0 þ C½1�
0 . For simplicity,

we are omitting the initial quark and antiquark distribu-
tions in the beam hadrons, and the flux factor is included in
C0. The dot in the product A � B means full phase-space
integration,

R
d4q, over the lines joining two subgraphs in

one ladder.

The next step in the classic works of Refs. [4,26] is the
introduction of the projection operator P. Its role is to
decouple kinematically not only C0 and the ladder parts,
but also the consecutive kernels K0 along the ladders, such
that the integration over light-cone variables and collinear
logs becomes manifest and ready for analytical calcula-
tions. Formally, Eq. (2) gets transformed (at infinite order)
into

�¼C��F��B ¼C
1

1��KF

1

1��KB

¼ X1
n1;n2¼0

Cð�KFÞn1ð�KBÞn2 ;

C¼C0

1

1�RK0F

1

1�RK0B

; KF ¼ 1

1��PK0F
1

1�RK0F

;

KB ¼ 1

1��PK0B
1

1�RK0B

; R¼ ð�1��PÞ; (3)

where A � B means convolution in the light-cone variableR
dz1dz2�ðx� z1z2ÞAðz1ÞBðz2Þ, while integration over

transverse momenta is traded into 1
"k
poles of dimensional

regularization, extracted (upon integration) by P; see
Ref. [26] for details. The projection operator P used in
Ref. [4] is slightly different. However, both approaches are
incompatible with any MC implementation, as can be seen
from the explicit expansion up to NLO1:

C ¼ Cð1Þ
0

�
1��PK½1�

0F ��PK½1�
0B

�
;

�F ¼ 1þ PK½1�
0F þ PK½2�

0F þ P
�
K½1�

0F � K½1�
0F

�

� P
�
K½1�

0F � PK½1�
0F

�
þ

�
PK½1�

0F

�
�
�
PK½1�

0F

�
: (4)

Why? As we can see, the above is a mixture of the original
phase-space integrals like ðK0F � K0FÞ and partly integrated
integrals like ðPK0FÞ � ðPK0FÞ. Even if we managed

1Omitting for simplicity quark wave function renormalization.
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somehow to undo the transverse momentum integrations
implicit in the P operator, we would still face huge (double

logarithmic) oversubtraction in PK½1�
0Fðð�1��PÞK½1�

0FÞ
compensated by ðPK½1�

0FÞ � ðPK½1�
0FÞ, which would be deadly

for any MC implementation. For an explicit demonstration
of this problem, see also the toy model considerations in
Ref. [27],2 or the LO analysis to infinite order in Ref. [16].

The solution of the above oversubtraction problem is
well known and already employed in the existing LO
parton-shower MC [7,8]—in short, one has to introduce
the time-ordered (T.O.) exponent; see also Ref. [28].
Beyond the LO, a collinear factorization formula with a
T.O. exponent was outlined in Ref. [16], and we shall adopt
it here. We are going to use it for the LO MC ladders
combined with the NLO hard-process ME.3 According to
Ref. [16], Eq. (3) is replaced by

�LO ¼ X1
n1¼1

X1
n2¼1

Cð0Þ
0 fðP0Kð1Þ

0FÞn1gT:O:fðP0Kð1Þ
0BÞn2gT:O:; (5)

where Kð1Þ
0F is the lowest-order 2PI kernel, the same as in

Eq. (3); but at the NLO and beyond, it is different; see the
definition in Ref. [16]. The above LO process is depicted in
Fig. 2. As shown in Ref. [16], the complete and rigorous
definition of the new projection operator P0 is not simple.
For the present purpose of the two LO ladders and the NLO
hard process in EW boson production, we shall define it
step by step, starting from the simple cases of zero-, one-,
and two-gluon ME, n1 þ n2 ¼ 0, 1, 2, rather than defining
it immediately in the full form.

Let us denote the Born-level differential cross section
for the EW vector boson production and decay process,
q �q ! l�l, as follows:

d�B

d�
ðs; �Þ:

It may also include nonphotonic EW radiative corrections.
The above differential cross section is so well known that
we may avoid defining its details explicitly. From (two)
Feynman diagrams, we obtain the following (exact) LO
single-gluon emission differential distribution:

d�1 ¼ CF�s

�

d�d�

��

d’

2�

�
d�Bðŝ; �FÞ

d�

ð1� �Þ2
2

þ d�Bðŝ; �BÞ
d�

ð1� �Þ2
2

�
d�; (6)

where the Sudakov variables � and � are defined in
Appendix A. This elegant formula is valid for any on/off-
shell vector particle production, B ¼ �, W, Z. The polar
angles �F;B are defined [29] with respect to� ~p0B and ~p0F,

respectively, in the rest frame of the B boson (the rest frame
of p0F þ p0B � k).
Two collinear limits—� ! 0, 1� � ¼ z ¼ const; or

� ! 0, 1� � ¼ z ¼ const in Eq. (6)—are manifest. For
instance, in the first case we have

d�1 ¼ CF�s

�

dzd�

ð1� zÞ�
d’

2�

1þ z2

2

d�Bðzs; �FÞ
d�

d�; (7)

that is, the LO kernel PqqðzÞ ¼ 2CF�s

�
1þz2

2ð1�zÞ shows up as

expected. Introducing the P0 projector in this context may
look like an overkill, but it will be instructive to explain
how it works in this simple case before going to the not-so-
obvious case of multiple uses of P0 in the following.
The necessary ingredient is a spin projection operator

Pspin, which we define a little bit more rigorously as

compared to the Curci-Furmanski-Petronzio work (CFP)
[26]. Our Pspin acts definitely before the phase-space in-

tegration4:

HPspinK ¼ H ^6qi
�� 6n

4n � qi K; (8)

where q̂i is the on-shell momentum entering the H part,
such that it conserves the longitudinal (light cone) compo-
nent n � q̂i ¼ n � qi, and for the axial gauge vector n we
may take n ¼ p0B or any other lightlike vector, the same
for all rungs in a given ladder. The same n is defining
transverse polarizations of gluons in the axial gauge
and enters a definition of light-cone variables, xi ¼
ðnqiÞ=ðnp0FÞ.
In the present case of a single-gluon emission, the action

of the P0 projector, inserted in the squared, spin-summed

qq     Z+nG Z

G

q q

FIG. 2 (color online). The EGMPR factorization for EW boson
production; the LO ladder with the projection operators P0
inserted between the LO kernels.

2In this work, another example of the operator P is presented,
and also the order in factorizing collinear singularities in Eq. (3)
is reversed: it starts from the hard process. Nevertheless, it
features the same oversubtraction problems that inhibit
MC implementation.

3Considerations concerning the NLO MC ladder can be found
in Refs. [15–17].

4In CFP, spin projection is part of HPK ¼ H 6qi�P"½ 6n
4n�qi K,

where P" extracts the pole part and simultaneously sets q2 ! 0

in H. We have to be more specific about the choice of q̂ in the

substitution q ! q̂, q̂2 ¼ 0.
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Feynman diagram5 between the gluon emission vertex and
the q �qB vertex (where B is the EW vector boson) can be
summarized as follows:

(a) Apply Pspin to decouple a spinor � trace into two

parts, the hard ME part and the ladder part.
(b) Apply the explicit upper limit of the phase space for

an emitted gluon in the transverse momentum; for
example, a <M, with a2 � s�=�.

(c) Take the expression for the hard ME part6 in the
collinear limit a ! 0 (� ! 0), keeping � ¼
1� z ¼ const (or �þ � ¼ 1� z ¼ const), and ex-
trapolate it all over the phase space.

(d) Keep unchanged the phase-space integration ele-
ment and its limits.

Point (c) of the above recipe is the most important
and requires more discussion. Finding out the limiting
collinear expression is trivial; see Eq. (7). What is non-
trivial is the off-collinear extrapolation (OCEX) of this
formula, out of the � ¼ 0 point to all noncollinear phase
space. The simplest recipe: go back along the z ¼ 1� �
line and use Eq. (7). The formula

d�LO ¼ CF�s

�

d�d�

��

d’

2�

1þ ð1� �Þ2
2

� d�Bðð1� �Þs; �FÞ
d�

d� (9)

would be acceptable, provided the Born cross section is
flat. In the presence of a narrow resonance in d�BðŝÞ in the
ŝ ¼ sð1� �� �Þ ¼ sz variable, this would lead to a dis-
astrous NLO correction d�1 � d�LO, wildly varying over
the phase space. This kind of OCEX follows a vertical
dashed line in Fig. 3(a).

However, there is a freedom in the off-collinear
extrapolation away from the � ¼ 0 point—we may do it
also along the line x ¼ 1� �� � ¼ const:

d�LO ¼ CF�s

�

d�d�

��

d’

2�

1þ ð1� �� �Þ2
2

� d�Bðð1� �� �Þs; �̂Þ
d�

d�: (10)

In Fig. 3(a), this kind of OCEX goes along the curved

dashed line. The angle �̂ also has to be defined within
OCEX in some reasonable way which coincides with the
correct value �F at the � ¼ 0 point.7 In a sense, the above
is fully compatible with the methodology of calculating the
NLO corrections to the EW production process in

Ref. [30], where a light-cone variable of the collinear
factorization is also mapped into x ¼ 1� �� �. The
essential difference is that, with the help of OCEX, we
are replacing the traditional collinear PDF of Ref. [30] with
the exclusive distribution of Eq. (10). A number of con-
sequences of this replacement will unfold gradually in the
following discussion.
For easier generalization to two or more gluons, let us

slightly formalize the above as

P 0
M ¼ PP

$
a�M>aPspin;

where PP
$

a takes a collinear limit and implements
off-collinear extrapolation on both sides of its location in
the Feynman diagrams, without affecting the phase-space
integration element:

Cð0Þ
0 P0

MK
ð1Þ
0F ¼

Z d3k

2k0
Kð1Þ

0FðkÞP0
M

�
Z

d�2ðP� k;q1; q2ÞCð0Þ
0 ðq1; q2; kÞ

¼
Z 2CF�s

�
�a<M

da

a

d’

2�

d ��

��

1þ ð1� ��Þ2
2

d�q

� d�Bðsð1� ��Þ; �̂Þ
d�q

�sð1� ��Þ>0: (11)

Note that z ¼ 1� �� ¼ ŝ=s is within the proper limits,
0< z < 1. The above can be formalized by means of
introducing the rescaled four-momentum �k	 ¼ 
�1k	,


 ¼ �

�þ �
¼ ��

��þ ��
	 1;

where �� ¼ �=
 and �� ¼ �=
. The dilatation transforma-
tion preserves angles; hence, in the MC, one may generate
a and �� ¼ 1� z according to

αln

lnβ
δln

=1−xα+β

α =
 β

(a)
8−

αln

α =
 β

lnβ
=1−xαδln

(b)
−8

FIG. 3 (color online). The Sudakov plane of single-gluon
emission in DY for angular ordering.

5Just one Feynman diagram for gluon emission from the initial
quark.

6The one-gluon ladder can remain unchanged, but in the case
of two gluons in K0, taking a limiting expression is also done in
the ladder.

7For instance, as an angle between ~q2 � ~q1 and ~p0F � ~p0B in
the rest frame of the EW boson.
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Cð0Þ
0 P0

MK
ð1Þ
0F ¼

Z d3 �k

2 �k0

2Kð1Þ

0Fð �kÞP0
M

�
Z

d�2ðP� k; q1; q2ÞCð0Þ
0 ðq1; q2; kÞ

¼
Z 2CF�s

�
�a<M

da

a

d’

2�

dz

1� z

1þ z2

2
d�q

� d�Bðsz; �̂Þ
d�q

�sz>0; (12)

then construct �k	, and finally rescale it k ¼ 
 �k. The
‘‘barred space’’ of �k	 depicted in Fig. 3(b) is merely a
reparametrization of the true phase space in Fig. 3(a). For a
single gluon, the above parametrization of the phase space
may look trivial, but for many gluons, it will be useful.

As already said, the main role of the P operator in
Refs. [4,26] is to decouple kinematically the hard process
and the ladder. The above P0 does it also, but more gently,
protecting the four-momentum conservation. The kine-
matic decoupling is seen from the phase-space integration

Cð0Þ
0 P0

MK
ð1Þ
0F ¼ ln

M

q0

Z 1

0
dz

2CF�s

�

1þ z2

2ð1� zÞ�BðsxÞ; (13)

which provides exactly the same result as the collinear
factorization in these classic works where the four-
momentum conservation is broken. An additional cutoff,
a > q0 (the phase-space boundary in the LO MC), was
used in the above.

One may also easily define, within the above scheme, a
prototype of a universal inclusive collinear PDF:

DðM; xÞ ¼ P0
MK

ð1Þ
0Fjx ¼

Z d3 �k

2 �k0
Kð1Þ

0Fð �kÞP0
M�x¼1� ��

¼ ln
M

q0

2CF�s

�

1þ x2

2ð1� xÞ ; (14)

thanks to P0
M closing the phase space from the above by

means of the factorization scale M. As we shall see later
on, in the analogous construction for deep inelastic
electron-proton scattering, the role of P0

M is to map the
phase space of the ladder into an idealized phase space of
�k	, decoupled kinematically from the hard process, thus
removing process dependence8 and gaining universality of
the ladder part.

A. NLO correction to the hard process: One real gluon

Having defined the single-gluon ladder parts Cð0Þ
0 P0Kð1Þ

0F

and Cð0Þ
0 P0Kð1Þ

0B in the exclusive way, within the same exact

phase space where the complete exact single-gluon distri-
bution9 of Eq. (6),

D½1� ¼ C½1�
0 þ C½0�

0 � Kð1Þ
0F þ C½0�

0 � Kð1Þ
0B; (15)

is defined, it is straightforward to define the LOþ NLO
factorized hard-process part in the exclusive (unintegrated)
manner:

ðC½0�
0 þ C½1�

0 Þ½1þ ð1� P0ÞKð1Þ
0F þ ð1� P0ÞKð1Þ

0B�
’ C½0�

0 þ C½1�
0 þ C½0�

0 ð1� P0ÞKð1Þ
0F þ C½0�

0 ð1� P0ÞKð1Þ
0B

¼ C½0�
0 þ C½1�

0 þ C½0�
0 Kð1Þ

0F þ C½0�
0 Kð1Þ

0B

� C½0�
0 P0Kð1Þ

0F � C½0�
0 P0Kð1Þ

0B

¼ C½0�
0 þD½1� � C½0�

0 P0Kð1Þ
0F � C½0�

0 P0Kð1Þ
0B: (16)

The above difference of the exact and approximate MEs at
the level of the integrand reads

C½1�
0 þC½0�

0 ð1�P0ÞKð1Þ
0F þC½0�

0 ð1�P0ÞKð1Þ
0B ¼ D½1� �C½0�

0 P0Kð1Þ
0F �C½0�

0 P0Kð1Þ
0B

¼
Z d�d�

��

d’

2�
d�q

2CF�s

�

��ð1��Þ2
2

d�B

d�q

ðŝ; �FÞ þ ð1��Þ2
2

d�B

d�q

ðŝ; �BÞ
�

� ��>�

1þ ð1����Þ2
2

d�B

d�q

ðŝ; �̂Þ � ��<�

1þ ð1����Þ2
2

d�B

d�q

ðŝ; �̂Þ
�

¼
Z

dxC2rðxÞ�BðsxÞ; (17)

where the C2rðxÞ function is calculated in Appendix B.
Note that in the above integral, the phase space is

covered by the LO distribution completely, without
any gap or overlap, provided the factorization scale

variable M in both hemispheres is adjusted conven-
iently. Similarly, the entire integrand of the NLO
correction is also defined all over the single-gluon
phase space.

9Here C½1�
0 is the interference term, while the other two terms

are amplitude squares.

8A phase-space shape (upper limits) usually depends on the
process type.
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B. LO two-gluon Cð0Þ
0 P0Kð0Þ

0FP
0Kð0Þ

0F: A prelude
for the LO ladder MC

Let us take the exact integrated distribution for the
ladder diagram (no projections) with two-gluon emission,

�2 ¼ Cð0Þ
0 � Kð1Þ

0F � Kð1Þ
0F

¼
Z

dx1
d3k1
2k01

d3k2
2k02

d�2ðP� k1 � k2;q1; q2Þ

� �Bðp0F; p0B; k1; k2; q1; q2Þs�sx1¼ðP�k1Þ2 ; (18)

in which we have introduced explicitly a variable for the
effective mass squared

ŝ1 ¼ sx1 ¼ ðq1 þ q2 þ k2Þ2 ¼ ðP� k1Þ2
of the final state system after emitting the gluon k1.

Let us start with the same operation of parametrization
of the phase space in terms of k1 ¼ 
1

�k1 as in the previous
case of the single gluon, for a gluon at the end of the ladder:

Cð0Þ
0 Kð1Þ

0FK
ð1Þ
0F ¼

Z
dx1

d3 �k1
2 �k01

d3k2
2k02

d�2ðP� k1 � k2;q1; q2Þ

� 
2
1�Bðp0F; p0B; 
1

�k1; k2; q1; q2Þ�x1¼1� ��1
;


1 ¼ sð1� x1Þ
2P �k1

¼ ��1

��1 þ ��1

: (19)

The factor 
2
1 from the phase space is compensated for by a

similar factor in the single-gluon distribution, as it is for the
single-gluon case. No approximations or projections are
present yet.
Insertion of the first P0 requires examination of the

collinear limit a1 ! 0 ( ��1 ! 0) while keeping ��1 ¼
const; in this limit we also have �1 ! 0, ��1 ! �1, and

1 ! 1. The spin projection operator of Eq. (8) is also
used. The collinear limit is well known:

lim
a1!0

a21�Bð
 �k1; k2; . . .Þ ¼ 1

��2
1

2CF�s

�2

1þ ð1� ��1Þ2
2

� �1ðx1p0F; p0B; k2; q1; q2Þ;
(20)

where �1 is the already discussed distribution of the
single-gluon emission � of Eq. (6), in the reduced center-
of-mass system of sx1 ¼ ðx1p0F þ p0BÞ2, provided we
rename k ! k2.
The formula obtained above, valid originally at the col-

linear point a1 ¼ 0, is now extrapolated to the off-collinear
phase space using �k1:

�2F ¼ Cð0Þ
0 Kð1Þ

0FP
0Kð1Þ

0F ¼
Z

dx1
d3 �k1
2 �k01


2
1

d3k2
2k02

d�2ðP� 
1
�k1 � k2; q1; q2Þ 2CF�s

�2
�a2>a1

� 1þ ð1� ��1Þ2
2a21 ��

2
1

�1ðx1p0F; p0B; k2; q1; q2Þ�x1¼1� ��1

¼
Z

dx1�x1¼z1

CF�s

�

�Pðz1Þ
1� z1

da1
a1

d’1

2�
�a2>a1d�3ðP� 
1

�k1; q1; q2; k2Þ�1ðz1p0F; p0B; k2; q1; q2Þ; (21)

where the LO splitting kernel for the first emission of k1,

Pð0Þ
qqðzÞ ¼

�PðzÞ
1� z

¼ 1þ z2

2ð1� zÞ
is factorized off explicitly, and the factorization scale for
P0

M1
is just M1 ¼ a2 of the gluon in the next K0Fðk2Þ.

This fact—that the factorization scale for the first emis-
sion is defined to be a2 of the second emission—is the
essential difference from the standard EGMPR/CFP
scheme [4,26], where ai < 	 for both emissions and there-
fore a2 ! 0 is not blocked by a1 as it is here. The EGMPR
arrangement has the advantage of being similar to the
system of UV subtractions [26], but it causes oversubtrac-
tions, unfriendly for the MC implementation. We assume
implicitly a cutoff regularizing the a1 ! 0 limit, for in-
stance a1 > a0. Note that although the distribution of a1
seems to be simple, we cannot perform

R da1
a1

to get a pure

log, because the upper limit a2 > a1 is still nontrivial, and
we have to wait until the next simplifications due to

insertion of the second P0 before getting the pure log
from the integration.

Let us now insert the second P0 into Cð0Þ
0 P0Kð1Þ

0FP
0Kð1Þ

0F .

Again, we examine the limit a2 ! 0, keeping a2=a1 ¼
const. While taking this limit, we keep ��2 ¼ x1 � x2 ¼
const, such that ŝ ¼ ðP� k1 � k2Þ2 ¼ const, in addition
to the previous ŝ1 ¼ const. More precisely, we start by
introducing

ŝ ¼ ŝ2 ¼ sx ¼ sx2 ¼ ðP� k1 � k2Þ2
¼ ŝ1 � 2ðP� k1Þ � k2

as an integration variable:

�2F ¼
Z
a2>a1

dx1dx2
d3 �k1
2 �k01

d3k2
2k02

d�2ðP�
1
�k1 � k2;q1; q2Þ

� 2CF�s

�2

�Pð1� ��1Þ
a21 ��

2
1

�1ðx1p0F;p0B;k2; q1; q2Þ

��x1¼1� ��1
s�ðsx2 � sx1 þ 2ðP� k1Þ � k2Þ: (22)
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Next, we perform the same transformations on � functions accompanied by the rescaling k2 ¼ 
2
�k2:

s�ðsx2 � sx1 þ 2ðP� k1Þ � k2Þ ¼
Z

dYs�ðsx2 � sx1 þ 2ðP� k1Þ � k2ÞY�22p0B � k2�ðsx2 � sx1 þ 2p0B � k2Y�1Þ

¼
Z

dYs�ðsx2 � sx1 þ 2ðP� k1Þ � Y �k2ÞY�12p0B � �k2�ðsx2 � sx1 þ 2p0B � �k2Þ

¼ 
�1
2 2p0B � �k2

2ðP� k1Þ � �k2
�

�
x2 � x1 þ 2p0B � �k2

s

�
¼ �

�
x2 � x1 þ 2p0B � �k2

s

�
¼ �x1�x2¼ ��2

; (23)

where


2ð �k1; �k2Þ ¼ sðx1 � x2Þ
2ðP� k1Þ � �k2

¼ sðx1 � x2Þ
2ðP� 
1ð �k1Þ �k1Þ � �k2

:

Note that the scaling factor 
2 ! 1 in the collinear limit
��2 ! 0.
Let us stress that the integral under consideration is

now transformed into a new equivalent form, but the limit
a2 ! 0 is yet to be taken. In the transformed variables, the
integral reads

�2F ¼
Z
a2>a1>a0

dx1dx2
d3 �k1
2 �k01

d3 �k2
2 �k02

� d�2ðP�
1
�k1 �
2

�k2;q1; q2Þ2CF�s

�2

�Pð1� ��1Þ
a21 ��

2
1

�
2
2�1ðx1p0F;p0B;
2

�k2; q1; q2Þ�x1¼1� ��1
�x1�x2¼ ��2

:

(24)

Now we are ready to take the limit a2 ! 0, keeping
a1=a2 ¼ const (also a0 ! 0) and ��i ¼ const:

Cð0Þ
0 P0Kð1Þ

0FP
0Kð1Þ

0F ¼
Z
M>a2>a1

dx1dx2
d3 �k1
2 �k01

d3 �k2
2 �k02

� d�2ðP� 
1
�k1 � 
2

�k2; q1; q2Þ

� 2CF�s

�2

�Pðx1Þ
��2
1a

2
1

2CF�s

�2

�Pðx2=x1Þ
��2
2a

2
2

� d�B

d�
ðsx2; �̂Þ�x1¼1� ��1

�x2¼1� ��1� ��2
:

(25)

Note that the 
2
2 factor from the phase space and the matrix

element cancels out as before. The above formula is the
principal result of this subsection. It defines the double use
of P0, the transformation kið �kjÞ, and its inverse �kjðkiÞ, i,
j ¼ 1, 2. Note that in the above formulas we could use
the variables z1¼1� ��1¼x1 and z2¼ð1� ��1� ��1Þ=
ð1� ��1Þ¼x2=x1 instead of ��i, i ¼ 1, 2. In the following
discussion, we may find it useful to switch to the zi, i ¼ 1,
2 variables.

With the global factorization scale M inserted at the
end of the LO ladder, the transverse-plane integration

R
M>a2>a1>a0

da2
a2

da1
a1

¼ 1
2! ln

2 M
a0

now decouples and

provides a pure double log10:

Cð0Þ
0 P0Kð1Þ

0FP
0Kð1Þ

0F ¼
1

2!
ln2M

a0

�
2CF�S

�

�
2

�
Z 1

0
dx½Pqq�Pqq�2RðxÞ�BðsxÞ; (26)

where

4½Pð0Þ
qq � Pð0Þ

qq�2RðzÞ ¼ 1þ z2

1� z

�
4 ln

1

�
þ 4 ln ð1� zÞ

�

þ ð1þ zÞ ln z� 2ð1� zÞ
is just a double convolution of the LO kernel with the IR
regularization �i > �.
The distribution of Eq. (25) is easy to generate in the

Monte Carlo simulation. First, one generates ai and ��i,
paying attention to the constraint x ¼ x2 ¼ 1� ��1 � ��2,
and �ki are constructed in the laboratory frame. Then 
i are
calculated, and the rescaling �k

	
i ! k

	
i is done (in two steps).

Finally, in the frame P� k1 � k2, one generates qi accord-
ing to the Born differential distribution. The phase-space
boundary ŝ 
 0 is obeyed automatically. In the MC simu-
lation, the soft IR regulator zi ¼ xi=xi�1 < 1� � will be
introduced and the overall virtual Sudakov form factor

exp ð� 2CF�s

� lnM
q0

ln 1
�Þ will also be supplemented.

The above example demonstrates the most important
features of the P0 projector (see Ref. [16] for more details).
In particular, the following lessons are to be learnt:
(a) The phase space parametrization ki ! �ki plays an

important role in P0, as it is instrumental in imple-
menting off-collinear extrapolation, and also helps
in taking the collinear limit in the first place.

(b) The rescaled four-momenta �ki violate four-
momentum conservation, similarly to the four-
momenta after the action of the kinematical
projector of Refs. [4,27]. In our case, however, the
off-collinear extrapolation is effectively undoing this
kinematical projection11 and allows us to operate in

10With our phase-space parametrization in terms of �ki, the
above mechanism of producing pure logs is a general phenome-
non, because M is always at the end of the ladder, and the ladder
has a built-in time-ordered exponential.
11The undoing is ‘‘effective’’ because the kinematical projec-
tion of Refs. [4,27] in our methodology is never done. A clever
parametrization of the phase space is the only thing really done.
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the original phase space, with four-momentum con-
servation untouched.

(c) A nice accident of the Jacobian j@ð �k1; �k2Þ=@ðk1; k2Þj
being compensated by the matrix element is gener-
ally not guaranteed. However, if it were not true, we
would have to impose this by hand, such that a pure
logarithm resulted from the phase-space integration,
like in Eq. (26), similarly to the definition of the
collinear counterterm in Refs. [9,31], for example.

(d) The role of the parametrization ki ! �ki in assuring
universality (process independence) of the ladder
parts will be clarified once the MC for the DY and
DIS processes with NLO corrections to the hard part
are defined; see below.

(e) The phase-space parametrization in terms of �ki will
also be used inside K0 to parametrize the two-gluon
phase space; for instance, for the two-gluon crossed
diagram in the NLO ladder.

(f) The soft eikonal limit is protected by P0, because
rescaling �ki ! ki preserves it.

For a better (complete) understanding of the construction
of P0, one needs to examine in fine detail the case of two
gluons in the middle of the ladder; for instance,12 in
C0P

0K0Fð1� P0ÞK0F, which provides the NLO correction
to the evolution kernel.

III. MONTE CARLO FOR EW
BOSON PRODUCTION

The insertion of the P0 operator into the LO gluonstrah-
lung ladder with any number of gluons can be done in
similar fashion to Sec. II B to obtain a distribution ready
for the LO MC modeling of the production process of
the EW boson with multiple gluons emitted from the
incoming quarks.

A. Simplified single-ladder case

We start with the gluonstrahlung ladder in just
one hemisphere in order to avoid algebraic complica-
tions of the two-ladder case (to be dealt with in the next
subsection):

Cð0Þ
0 ��F ¼

X1
n¼1

fCð0Þ
0 ðP0Kð1Þ

0FÞngT:O:

¼ e�SF
X1
n¼0

Z
dx

�Yn
i¼1

d3Eð �kiÞ��i<�i�1

2CF�s

�2
�PðziÞ

�

�d�2

�
P�Xn

j¼1

kj;q1;q2

�
��<�n

�x¼Qn
j¼1

zj

�d�B

d�
ðsx; �̂Þ; (27)

where

ki ¼ 
i
�ki; 
i ¼ sðxi�1 � xiÞ

2ðP�P
i�1
j¼1 kjÞ � �ki

;

xi ¼ 1� Xi
j¼1

��i ¼
Yi
j¼1

zj; zi ¼ xi
xi�1

;

and �PðzÞ ¼ 1
2 ð1þ z2Þ. The a ordering, M> ai > ai�1 i ¼

1; . . . ; n, is rephrased into an equivalent rapidity ordering,

�<�i < �i�1 <�0, where M ¼ ffiffiffi
s

p
e��; see the defini-

tions of the phase-space integration element d3EðkÞ and
other kinematic notations in Appendix A. The T.O. sub-
script stands for the time-ordering exponential structure in
the factorization scale; see Ref. [16] for a general defini-
tion. The SF function is the usual MC Sudakov form factor
depending on the shape of the IR boundary, ��i ! 0. The
factorization scale is now defined as the minimum rapidity
� for gluons in the F hemisphere (maximum rapidity for
gluons in the B hemisphere). For the moment, � is a free
parameter, to be defined more precisely later on.
Note that the definition of 
i is recursive; that is, to

define 
i, one must know 
i�1. In a typical MC event, the
first 
’s, corresponding to very collinear gluons, will be
very close to 1 (
i ’ 1); only the last 
’s, corresponding to
noncollinear, nonsoft gluons—i.e., close to the hard pro-
cess—will be rescaled by a significant 
i � 1 factor.
Similarly to the case of two gluons in Eq. (26), the

transverse integration decouples and is feasible analytically:

Cð0Þ
0 � �F ¼

Z 1

0
dxGFðM; xÞ�BðsxÞ;

GFðM; xÞ ¼ e
�2CF�S

� ln 1
� ln

M
q0

�
�x¼1 þ

X1
n¼1

1

n!

�
2CF�S

�

�
n

� ln n M

q0
½Pð0Þ

qq��nðxÞ
�
; (28)

where the IR regularization ð1� ziÞ< � is used in the

n-times convolution of the LO kernel ½Pð0Þ
qq��n. It should

be stressed that the above LO formula represents the LOMC
without any approximation.
The inclusive (bare) PDF GFðM; xÞ of the MC obeys by

construction the LO evolution equation:

@

@ lnM
GFðM; xÞ ¼ ½P ð0Þ

qq �GFðMÞ�ðxÞ; (29)

where P ð0Þ
qqðzÞ ¼ 2CF�S

� ½ 1þz2

2ð1�zÞ�þ. This is essentially due to

the use of the T.O. exponent in Eq. (27).

B. Two-ladder LO case

Let us now consider the case of two ladders. In the
backward (B) hemisphere, xi are related to ��i (instead of
��i), and the evolution runs towards larger rapidity; other-
wise, all algebraic structure is the same. Again, we first
express the LO MC master formula in terms of rescaled12This task is pursued in separate works [13,17].
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four-momenta �ki ¼ 
iki, but we postpone the definition of 
i, as it will be a little bit special. We propose the following
multigluon distribution to be implemented in the LO approximation13:

Cð0Þ
0 ��ð1Þ

F ��ð1Þ
B ¼ X1

n1¼1

X1
n2¼1

½Cð0Þ
0 ð�P0Kð1Þ

0FÞn1ð�P0Kð1Þ
0BÞn2�T:O:

¼ X1
n1¼0

X1
n2¼0

Z
dxFdxBe

�SF
Z
�<�n1

�Yn1
i¼1

d3Eð �kiÞ��i<�i�1

2CF�s

�2
�PðzFiÞ

�
�xF¼

Qn1
i¼1

zFi

� e�SB
Z
�>�n2

�Yn2
j¼1

d3Eð �kjÞ��j>�j�1

2CF�s

�2
�PðzBjÞ

�
�xB¼

Qn2
j¼1

zBj
d�2

�
P� Xn1þn2

j¼1

kj;q1; q2

�
d�B

d�
ðsxFxB; �̂Þ:

(30)

In the above, we understand that the F part is the forward
part of the phase space �0F > �i >� and the B part is the
backward part �>�i > �0B. The rapidity boundary �
between the F and B parts is kept as a free parameter
as long as possible, to be adjusted later on. In particular,
� ¼ 0 is perfectly legal and may serve as the first choice
before something better is found.14 The variables zFi and
zBj could be defined similarly to the single-hemisphere
case, provided we perform kinematical mappings asym-
metrically, first in one hemisphere and then in the other
one. We shall do it below, however, in a more sophisticated,
symmetric way. The definition of zFi and zBj will result
from that.

The angle �̂ can be defined with respect to any reason-
able z axis in the rest frame of P�P

kj; for instance,

along ~p0F � ~p0B in this frame. The boundary between the
F and B phase spaces is at the rapidity �. It is also under-
stood that the differential cross section of Eq. (30) is
implicitly convoluted with some initial quark distributions
at �0F and �0B, and the appropriate boost is done from the
reference frame of the quark-antiquark frame p0F þ p0B to
the laboratory frame.

Again, in Eq. (30), phase space can be integrated ana-
lytically over transverse momenta, providing the classical
factorization formula

Cð0Þ
0 �ð1Þ

F �ð1Þ
B ¼

Z 1

0
dxFdxBGFð�; xFÞGBð�; xBÞ�BðsxFxBÞ;

(31)

where GBð�; xÞ ¼ GFð�; xÞ. The remarkable feature is
that the above LO formula represents the exact LO MC
without any approximations.

We could define the dilatation parameters 
i

(recursively) first for one ladder and then for the other,

but this solution would be asymmetric. Instead, we define
the dilatation parameters in ki ¼ 
 �ki in a more sophisti-
cated way, for both hemispheres simultaneously. For that
purpose, we introduce a new ordering (indexing) of gluons
according to the distance j�i ��j from the rapidity � of
the EW boson.15 Formally, we define a permutation

� ¼ f�1; �2; . . . ; �n1þn2g
of all gluons in the Fþ B phase space, such that

j��i
��j> j��i�1

��j; i ¼ 1; . . . ; n1 þ n2:

With the help of the above simultaneous ‘‘double
ordering’’ in the F and B hemispheres, we define in a
recursive way

k�i
¼ 
i

�k�i
; 
i ¼ sðxi�1 � xiÞ

2ðP�P
i�1
j¼1 k�j

Þ � �k�i

;

i ¼ 1; 2; . . . ; n1 þ n2; (32)

where xi now is

xi ¼
Yi
j¼1

zðF;BÞ�j
;

where ðF; BÞ means that we insert in the above product
either zFj or zBj, depending whether�j points to the F or B

region. The parameter 
i is defined in Eq. (32) recursively
by means of solving the following equation:

�si ¼ sxi ¼
�
P� Xi

j¼1

k�j

�
2 ¼

�
P� Xi

j¼1


j
�k�j

�
2
:

The LO Monte Carlo algorithm using the above alge-
braic framework can be described step by step as follows:
(1) The variables xF and xB are generated with the help

of the FOAM program [32], then parton (gluon)

13The reader should keep in mind that the above is for the
‘‘primordial’’ quark and antiquark initial beams, and their dis-
tributions in hadrons will be added in the MC program.
14In practice, the choice of � may be quite complicated; for
instance, it can be correlated with the rapidity position of the EW
boson. In the NLO correction calculation, for a single gluon,
� ¼ 0 should be set.

15Which is also the phase-space boundary between the F and B
ladders.
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multiplicities n1;2 and variables zFi and zBj are

generated using the constrained MC (CMC)
algorithm [33].16 The � variable is set.

(2) The four-momenta �k
	
i are defined separately in

the F and B parts of the phase space using the
CMC module, with the corresponding constraints:
1�P

j2F ��j ¼ Q
j2FzFj ¼ xF and 1�P

j2B
��j ¼Q

j2BzBj ¼ xB.

(3) The permutation � with simultaneous ordering in
Fþ B space is established.

(4) Using P and �k�1
, the rescaling parameter 
1 is

calculated, and then k�1
¼ 
1

�k�1
is set. At this stage

ðP� k�1
Þ2 ¼ sx1, where x1 ¼ z�1

¼ 1� ���1
or

x1 ¼ z�1
¼ 1� ���1

, depending on whether k�1

was in the F or B part of the phase space.
(5) Using P� k�1

and �k�2
, the parameter 
2 is found

and k�2
¼ 
2

�k�2
is set, enforcing ðP� k�1

�
k�2

Þ2 ¼ sx2 ¼ sz�1
z�2

. The recursive procedure

continues until the last gluon.

(6) In the rest frame of P̂ ¼ P�P
jk�j

, the lepton four-

momenta q
	
1 and q

	
2 are generated according to the

Born angular distribution.
The definition of zFj and zBj in terms of ��j, j 2 F and ��j,

j 2 B follows from the above algorithm and is more
complicated than in the case of one hemisphere. The
main advantage of the above scenario is that this way

the kinematics of the two hemispheres are interrelated
very gently, starting from very collinear gluons (for which

i ’ 1) and finishing with the least collinear ones, next to
the hard-process EW boson. (The angular ordering is the
same for ki and �ki.)
As compared to Ref. [34], where a similar algorithm

based on CMC [33] and rescaling of the four-momenta was
proposed, the present algorithm does the ‘‘rescaling’’17 in a
more sophisticated way. The rescaling affects mainly the
hard, noncollinear gluons, not the soft and collinear ones,
while the rescaling in Ref. [34] was global, similarly to the
global manipulations on the four-momenta (boosts and
rescaling) used in other parton-shower MCs [7,8] in order
to impose four-momentum conservation. Moreover, kine-
matic parametrization of the phase space in the present MC
is based on the projector P0 of the collinear factorization
(instead of being ad hoc), which is essential for completing
the NLO.

C. Real NLO correction to the hard process

The NLO correction in the EW boson production hard
process (nonsinglet) will be implemented using a single
‘‘monolithic’’ MC weight, which reweighs the LO distri-
butions defined in the previous subsection. The real emis-
sion part of the NLO correction in this weight comes from
the integrand of Eq. (17), which we rewrite as follows:

C½1� ¼ C½1�
0 þ C½0�

0 ð1� P0ÞKð1Þ
0F þ C½0�

0 ð1� P0ÞKð1Þ
0B ¼

Z
d3EðkÞd�q

2CF�s

�2
~�1ðp̂F; p̂B;q1; q2; kÞ;

~�1ðp̂F; p̂B;q1; q2; kÞ ¼
�ð1� �Þ2

2

d�B

d�q

ðŝ; �FÞ þ ð1� �Þ2
2

d�B

d�q

ðŝ; �BÞ
�

� ��>�

1þ ð1� �� �Þ2
2

d�B

d�q

ðŝ; �̂Þ � ��<�

1þ ð1� �� �Þ2
2

d�B

d�q

ðŝ; �̂Þ: (33)

In the following use of the function ~�1ðp̂F; p̂B; . . .Þ, defined in Eq. (33), the vectors p̂F and p̂B (p̂2
F;B ¼ 0) result from the

last insertion of P0 before the hard process, and they are defined in the rest frame of P̂ ¼ q1 þ q2 to determine
�̂ ¼ ffð ~q1; ~p0FÞ in the LO part of the Born cross section. On the other hand, the angles �F and �B are defined with
respect to the original � ~p0B and ~p0F in this frame. They will all coincide when all gluons become collinear.

The distribution of the MC with the LOþ NLO hard process is now defined as follows:

Cð1Þ�ð1Þ
F �ð1Þ

B ¼ X1
n1¼0

X1
n2¼0

Z
dxFdxBe

�SF
Z
�<�n1

�Yn1
i¼1

d3Eð �kiÞ��i<�i�1

2CF�s

�2
�PðzFiÞ

�
�xF¼

Q
i

zFi
e�SB

�
Z
�>�n2

�Yn2
j¼1

d3Eð �kjÞ��j>�j�1

2CF�s

�2
�PðzBjÞ

�
�xB¼

Q
j

zBj
d�2

�
P� Xn1þn2

j¼1

kj;q1; q2

�
d�BðsxFxB; �̂Þ

d�
WNLO

MC ;

(34)

16In the CMC algorithm, parton multiplicity is generated as the first variable, contrary to the Markovian and backward evolution
algorithms, where parton multiplicity is generated at the end of the MC algorithm.
17The ‘‘rescaling’’ in our case is merely a synonym for parametrization of the exact phase space in terms of the rescaled four-
momenta.
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where the MC weight is

WNLO
MC ¼ 1þ �SþV þ X

j2F

~�1ðŝ; p̂F; p̂B; aj; zFjÞ
�PðzFjÞd�Bðŝ; �̂Þ=d�

þ X
j2B

~�1ðŝ; p̂F; p̂B; aj; zBjÞ
�PðzBjÞd�Bðŝ; �̂Þ=d�

; (35)

with the NLO softþ virtual correction �VþS to be defined
separately in the following subsection.

Our construction of the above MC weight of Eq. (35) is
quite similar to that proposed in Ref. [35] for the NLO
corrections in the middle of the ladder.18 The difference is
that the proposal of Ref. [35] was based entirely on the
Bose-Einstein symmetrization of the multigluon emission
in the LO MC, and the resulting weight was more compli-
cated, while the MC weight of Eq. (35) is significantly
simpler and algebraically similar to that of Ref. [36] (albeit
for the collinear rather than soft gluon resummation).

The meaning of the arguments in ~�1 is such that in

Eq. (33) ŝ ¼ sxFxB, and the three angles �̂, �F, and �B
have already been explained above. What remains to be
specified is the definition of �j and �j in terms of the

variables aj, zj in the j 2 F, B parts of the phase space, as

follows:

�j ¼ 1� zFj; �j ¼ �ja
2
j=a

2
�

for j 2 F;

�j ¼ 1� zBj; �j ¼ �ja
2
�
=a2j for j 2 B;

where the rapidity �j is translated properly into aj, and the

rapidity � corresponds to a�.
As compared to earlier attempts to consistently imple-

ment the NLO corrections to the hard process in the parton-
shower MC, the proposals of Refs. [34,37] were going
in a similar direction. However, the present work differs
from these works in three important points: (i) the virtual
corrections �SþV are added here; (ii) the method of com-
bining the NLO correction with the LO MC proposed here
is systematic and NLO complete; (iii) the treatment of
the kinematics is compatible with the principles of the
collinear factorization.

Comparison of our methodology with the well-
established methods of MC@NLO [9] and POWHEG
[11] is done in Sec. III F.

D. NLO analytical factorization formula

For the LO MC defined in Eq. (30) we have seen that,
without compromising the exact phase space for multiple
gluons (keeping the four-momentum conservation), we
could get the contributions of ladder parts to factorize

off, exactly as in the traditional collinear factorization
(in which the four-momentum is not conserved). The above
seems to be almost miraculous in view of the complicated
nature of the exact complete phase space and the fact that
no approximation was done.
What is even more amazing is that the same nice, exact

factorization is also true for the MC with the NLO-
corrected hard process included, according to Eq. (34).
The key point is that analytical integration of the phase
space, again without any approximation, in Eq. (34) is
feasible and leads to a simple, familiar result:

Cð1Þ�ð1Þ
F �ð1Þ

B ¼
Z 1

0
dxFdxBdzGFð�; xFÞGBð�; xBÞ

� �BðszxFxBÞf�z¼1ð1þ�SþVÞ þ C2rðzÞg;
(36)

where C2rðzÞ ¼ 2CF�s

� ½� 1
2 ð1� zÞ�; see Appendix B. Two

LO PDFs, GFð�; xFÞ and GBð�; xBÞ, are those of Eq. (31).
The algebraic proof of the above formula can be found in
Appendix C.19

Note that as the LO PDFs GF;Bð�; xÞ are, by construc-

tion in the collinear factorization scheme, specific for the
MC, it will be the same in the MC for the DIS process—the
scheme dependence of physical observables will cancel as
usual—for instance, while transferring experimental
knowledge on the parton distributions from the DIS pro-
cess to the DY process (or vice versa).
Let us comment on the z-dependent C2rðzÞ term in

Eq. (36), since it is different from what we see in
Ref. [30],20 where it is simply absent. It is not present
there because it is compensated by the twin terms
�� 1

2"ð1� zÞ 1" �ð1� y2Þ originating from the � traces

and located at y ¼ �1; that is, exactly at the collinear poles
(for gluons strictly parallel with the quark). This cancella-

tion is not disturbed by the MS collinear counterterm
subtraction. In our MC factorization scheme, this term is
included in the counterterm; hence, the net contribution

from one of these terms, contrary to MS, stays uncanceled
in Eq. (36).

E. NLO soft þ virtual corrections

Let us consider the unsubtracted results of the Altarelli-
Ellis-Martinelli (AEM) work [30],21 in which real and
virtual single-gluon emission diagrams are combined and
integrated over the phase space, keeping the variable z ¼
x ¼ ŝ=s ¼ 1� �� � under control:

18The MC weight of Ref. [35], when applied to the hard
process, would also render complete NLO in the hard process
and provide the same inclusive LOþ NLO cross section.

19A quite similar formula for introducing the NLO correction to
the LO kernel in the middle of the ladder was already tested
numerically in the MC exercise with four-digit precision; see
Ref. [16].
20It is also absent in QED, in the well-known formula of
Bonneau-Martin [38].
21See Eq. (89) there.
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�AEM
DY ¼

Z 1

0
dzfAEMDY ðzÞ�BðzsÞ;

fAEMDY ðzÞ ¼ �ð1� zÞ þ �ð1� zÞCF�s

�

�
2

3
�2 � 7

4

�

þ 2
CF�s

�

�
ŝ

	2

�
"
� �PðzÞ
1� z

�
þ

�
1

"
þ!2

�

þ CF�s

�

�
4 �PðzÞ ln ð1� zÞ

1� z
� 2 �PðzÞ ln z

1� z

�
þ
;

(37)

where �PðzÞ ¼ 1
2 ð1þ z2Þ, !2 ¼ �E � ln 4�, and the in-

coming quark and antiquark are massless and on shell.
The NLO real single-gluon emission distribution entering

in the above AEM result is identical toD½1� of Eq. (15), and
�AEM

DY includes all (gluonstrahlung) virtual corrections,
including the quark wave-function renormalization con-
stant ZF. Since �AEM

DY is gauge invariant, the calculation
of Eq. (37) is done in Ref. [30] in the convenient Landau
gauge.22

In the formal, standard MS methodology, one subtracts
from fAEMDY ðzÞ two LO collinear counterterms

KMS
F ðzÞ þ KMS

B ðzÞ ¼ 2KMS
F ðzÞ ¼ 2

CF�s

�

� �PðzÞ
1� z

�
þ
1

"
;

(38)

in order to avoid double counting with the ladder and/or
experimental PDF, thus obtaining C0ð1� PK0F � PK0BÞ.
This gives rise to the standard subtracted DY analog of the
DIS coefficient function in the MS scheme:

fMS
DYðzÞ ¼ fAEMDY ðzÞ � KMS

F ðzÞ � KMS
B ðzÞ

¼ �ð1� zÞ þ �ð1� zÞCF�s

�

�
2

3
�2 � 7

4

�

þ 2
CF�s

�

� �PðzÞ
1� z

�
þ

�
ln

ŝ

	2
þ!2

�

þ CF�s

�

�
4 �PðzÞ ln ð1� zÞ

1� z
� 2 �PðzÞ ln z

1� z

�
þ
:

(39)

Note that the ln ŝ
	2 þ!2 term in the above equation will

be absent if the relation ŝ ¼ 	2e�!2 is adopted,23 as in
Refs. [39,40]. It is well known [30] that the numerically

dominant term ln ð1�zÞ
ð1�zÞþ in the above function is correcting for

the misrepresentation of the soft gluon behavior and in-

correct phase-space limits of theMS dimensional regulari-
zation (subtraction) scheme. In our MC scheme, this term
will not be present (it gets transferred to the ladder).

The plus regularization ð. . .Þþ of the IR singularity in
Eq. (38), in the diagrammatic approach of the CFP [26],
comes from ZF in the axial gauge. It is also shown by CFP
that there is a diagram-per-diagram correspondence be-
tween Feynman diagrams in the axial gauge and the dia-
grams of the operator product expansion (OPE) [41,42].24

In the context of the subtraction/factorization scheme
aligned with the MC, we should apply Eq. (17); that is, in
order to avoid double counting with the ladder (PDF),
we should subtract from Eq. (6) the LO contribution of
the MC:

�1Fcð�;�Þ ¼ 1

�

CF�s

�

�Pð1� �� �Þ
�

��<�:

However, in order to combine it properly with the virtual
corrections, the above distribution should be extrapolated
to n ¼ 4þ 2" and integrated over the phase space. This is
done for the F hemisphere in the following (keeping in
mind that 1� �� � ¼ 1� ��):

KMC
F ðz;"Þ ¼CF�s

�

Z d ��d ��

�� ��

Z
d�2þ2"

�
ŝ �� ��

z	2

�
"
�Pð1� ��;"Þ

�� ��< ��� ��¼1�z� ��>���ð1� zÞSMCðs;"Þ

¼CF�s

�

�
ŝ

z	2

�
"�2þ2"

"

�Pðz;"Þ
ð1� zÞ1�2"

�1�z>�

��ð1� zÞSMCðs;"Þ

¼CF�s

�

� �P0ðz;"Þ
1� z

�
1

"
þ!2þ ln

ŝ

z	2

��
þ
; (40)

where the Oð"Þ contribution from the � trace is added to
the LO kernel,

�P0ðz; "Þ ¼ �PðzÞð1þ 2" ln ð1� zÞÞ þ 1

2
"ð1� zÞ2;

�Pðz; "Þ ¼ �PðzÞ þ 1

2
"ð1� zÞ2:

The overall plus prescription is coming from the first-order
expansion of the Sudakov form factor in the MC in
n ¼ 4þ 2" dimensions and from the usual sum ruleR
dzKMC

F ðz; "Þ ¼ 0 (treating ŝ as z independent):

SMCðŝ; "Þ ¼ CF�s

�

�2þ2"

"

Z 1��

0
dz

�Pðz; "Þ
ð1� zÞ1�2"

�
ŝ

z	2

�
"
;

(41)

with both Oð"Þ terms in �P0ðz; "Þ necessarily participating
in the ð. . .Þþ prescription.25

22In the Landau gauge, ZF ¼ 1 up to the NLO level.
23This corresponds to the use of 1

" þ!2 instead of the pure pole
in the counterterm and setting ŝ ¼ 	2.

24In this sense, the axial gauge is implicitly present in Eq. (38),
while the unsubtracted Eq. (37) is gauge invariant.
25In the MC practice, regularization of 1=ð1� zÞ is done with
some cutoff 1� z > � rather than with " of the dimensional
regularization.
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The expression of Eq. (37) is the result of the following
phase-space integration:

fAEMDY ðz;"Þ¼CF�s

�

Z d�d�

��

Z
d�2þ2"

�
s��

	2

�
"

��1ð�;�Þ�1�z¼�þ���þ�>���ð1�zÞUSþV;

(42)

where �1ð�;�Þ is the one-real-gluon distribution, and
USþV sums up the real soft gluon �þ �> � and vertex
virtual contribution. The complete single-gluon contribu-
tion (including the expanded Sudakov form factor) of the
LO MC reads

KMC
F ðz; "Þ þ KMC

B ðz; "Þ

¼ CF�s

�

Z d ��d ��

�� ��
d�2þ2"

�
ŝ �� ��

z	2

�
"½ �Pð1� ��; "Þ

� � ��< ���1�z¼ �� þ �Pð1� ��; "Þ� ��> ���1�z¼ ���
� �1�z>� � �ð1� zÞ2SMCðs; "Þ: (43)

The difference between the complete NLO of Eq. (37) and
the above LO MC contribution, after partial phase-space
integration, reads

fMC
DY ðzÞ ¼ fAEMDY ðz; "Þ � KMC

F ðz; "Þ � KMC
B ðz; "Þ

¼ �CF�s

�
ð1� zÞ þ �ð1� zÞ�VþS;

�VþS ¼ CF�s

�

�
2

3
�2 � 7

4

�
þ CF�s

�

1

2

¼ CF�s

�

�
2

3
�2 � 5

4

�
: (44)

From the above, we are able to determine the
z-independent softþ virtual correction �VþS in the NLO
MC weight.26 The above does not include any singular
terms like ln ð1� zÞ=ð1� zÞþ, as advertised earlier.

The difference between the standard MS function of
Eq. (39) and that of Eq. (44) is entirely due to the difference
between the MS counterterm of Eq. (38) and the MC
counterterm of Eq. (40),

fMS
DYðzÞ � fMC

DY ðzÞ ¼ �2KMS
F ðz; "Þ þ 2KMC

F ðz; "Þ

¼ CF�s

�
ð1� zÞþ þ 2

CF�s

�

� �PðzÞ
1� z

�
þ

�
�
ln

ŝ

	2
þ!2

�
þ CF�s

�

�
4 �PðzÞ

� ln ð1� zÞ
1� z

� 2 �PðzÞ ln z

1� z

�
þ
; (45)

and it represents clearly the difference between theMS and
MC factorization schemes.

One may ask how to interpret this change from the MS
factorization scheme to the MC factorization scheme—in
particular, how unique the modified MC counterterms of
Eq. (40) are. One may answer this question in two comple-
mentary ways. One way is that the new MC counterterm of
Eq. (40) represents just the collinear limit of the exactmatrix
element in n ¼ 4þ 2
 dimensions (keeping higher order
terms in ") in the sense of the P0 projection operator. This
definition has to be supplemented with the plus prescription
in the soft limit or, alternatively, by saying that ZF, which in
CFP (MS) provides for plus prescription, is replaced by the
Sudakov form factor. This approach represents an effort in
combining the best from the two, the collinear and soft
resummation. Another way of addressing this question is
to say that the real backbone in the collinear factorization is
OPE, with CFP providing a solid bridge to OPE, and the
only thing that has to be explained and kept track of is the
difference between CFP and MC (in a similar way to finite
UV renormalization). This approach was already advocated
in Refs. [4,43] and in other papers [39], where factorization-
scheme dependence was discussed. In our approach, we are
using both ways of addressing the above question.
The related question is whether the counterterm of

Eq. (40) is universal. Basically, the answer is that it is
universal thanks to the fact that it is defined in terms of the
�k	 ¼ 
k	 variables. In other words, the kinematic mapping,
inherent in the new P0 operator, should remove the hard-
process dependence on the side of the ladder, in the same
way as the pole-part operation inCFP [26] orPkin of Ref. [4].
To be completely certain that the above aim of the universal-
ity of the new MC factorization scheme is achieved, in the
next section we shall define a similarMC scheme for the DIS
process; define and use the collinear counterterm of this MC
scheme; and in Sec. IV I, we shall check the validity of the
factorization-scheme-independent relation (DY� 2� DIS)
of Ref. [30] between the coefficient functions of DY and
DIS, both taken in the MC factorization scheme.

F. Differences compared with POWHEG and
MC@NLO methods

In this subsection, we outline the main differences of our
method compared to the well-established approaches of
POWHEG [11] and MC@NLO [9] used today to combine
the NLO-corrected hard process with the LO parton shower.
The first and most obvious difference between our method

and those of POWHEG andMC@NLO is the use of different
factorization schemes. In our approach, we use a factorization
scheme [16,17] designed especially for MC simulations,

whereas POWHEG and MC@NLO use the standard MS

scheme. This allows them to use the standard MS collinear
PDFs directly, while we need additional work here.27

26The last term in �VþS is due to the plus prescription in the
ð1� zÞþ part of the MC counterterm of Eq. (40).

27One possibility is refitting PDFs, which should not be too
complicated, as the difference between the MC andMS schemes
on the inclusive level is small.
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Moreover, we build the LO parton-shower MC from scratch,
whereas POWHEG and MC@NLO profit from the well-
established (unmodified) LO MC programs.

At first it may seem that these general features result
in unnecessary complications in our approach; however,
profits are more important, especially if we have in mind
the construction of the fully NLO parton-shower MC (with
NLO corrections not only in the hard process but also in the
ladder parts). Our method features the following:

(i) A simple and positive MC weight implementing
the NLO on top of the LO MC; see Ref. [21]
(MC@NLO features negative weights).

(ii) No need to correct for the difference in the collinear
counterterm between the LO MC and the standard

MS scheme.
(iii) Virtualþ soft corrections �VþS that are com-

pletely kinematics independent—all annoying
d�c� contributions of MC@NLO are gone.

(iv) Built-in resummation of the ln nð1�xÞ
1�x terms.

(v) Direct relation to the collinear factorization
procedures.

Note also that in the presented method, there is no need
to define the hardest emission, as in POWHEG, as it is
automatically included into the sum over spectator gluons
in the formula for the MC weight in Eq. (35). In fact, we
can explicitly see that the dominant contribution is from
the ‘‘hardest’’ (in kT) gluon

28; for numerical illustration,
see Ref. [21]. This allows us to avoid truncated/vetoed
gluons needed in POWHEG methodology in case of angu-
lar ordering.

A detailed comparison of the MC@NLO and POWHEG
methods themselves can be found in Refs. [44,45].

IV. DEEP INELASTIC ELECTRON-PROTON
SCATTERING

As already said, the process of DIS is included in the
scope of this article because it is an important source of
information on parton distributions in a proton, and by
comparing the DIS and DY processes, the question of
universality in the collinear factorization implemented in
the MC can be fully discussed.

In the following subsections, we shall first introduce
kinematics, phase space, and notation for one-real-gluon
emission. Next, we shall define the multigluon LO MC
distribution with initial-state radiation (ISR) and final-state
radiation (FSR) LO ladders and the LO matrix element for
the hard process for electron-hadron DIS. Analytical inte-
gration of the MC distribution will lead to the familiar
formula for the structure function F2 in the form of the
convolution of PDF with the Born cross section. Then we

shall give a close simple formula for the MC weight,
implementing the NLO correction to the hard process.
The analytical integration will again be possible, giving
the structure functions F2 and F1 in the form of the con-
volution of PDF with the NLO coefficient function. Of
course, the above NLO coefficient function will be in the
MC factorization scheme, but we shall see that universality
is preserved by means of checking the validity of the
factorization-scheme-independent relation DY� 2� DIS
of Ref. [30] between the coefficient functions of the DY
and DIS processes.

A. One-real-gluon distribution and kinematics

The Born differential cross section of the electron-quark
scattering eðp1Þ þ qðq1Þ ! eðp2Þ þ qðq2Þ in terms of the
standard variables29 s ¼ 2p1q1, t ¼ 2p1p2, u ¼ 2p1q2
reads

d�B ¼ �2

s
d

�
t

s

�
d’Q2

q

s2 þ u2

t2
; (46)

where Qq is the quark charge. Next, consider the process

with the emission of an additional gluon from the quark
line:

eðp1Þ þ qðq1Þ ! eðp2Þ þ qðq2Þ þ gðkÞ:
The differential distribution in this case reads

d�1 ¼
Q2

q�
2
QED

s
d

�
t

s

�
d’

s2 þ u21 þ s21 þ u2

2tt1

dc

2�

� CF�s

�

d�d�

��

t1
t
: (47)

The additional invariants s1 ¼ 2p2q2, u1 ¼ 2q1p2, t1 ¼
2q1q2 are introduced in this case. The factor t1

t is the

Jacobian due to parametrization of the phase space in terms
of the rescaled Sudakov variables [46,47]:

� ¼ 2kq2
t1 þ 2kq1

; � ¼ 2kq1
t1 þ 2kq1

: (48)

The angle c is the azimuthal angle of ~k around the z axis in
the Breit frame of Q ¼ q2 þ k� q1; that is, where
Q0 ¼ 0, with an additional requirement that ~q1 be parallel
to the z axis. We call this the reference frame B; see Fig. 4.
Yet another Breit frame B1 is marked in Fig. 4, that of

Q1 ¼ q2 � q1, with the z axis along ~q1. It will be used in
the MC and in the analytical calculations. Note that the
integration is over the angle c of the k, q1, q2 plane as a

whole around ~�, while another azimuthal angle �1 of ~k in
the B1 frame is frozen at zero. Note that the standard
Sudakov variables are

28This is just a relabeling according to kT ; we do not need to
change previously generated, angular-ordered gluons. It is only
exploited here for the purpose of efficient evaluation of the NLO
MC weight.

29We omit the minus sign in the variables like t and u with
respect to the standard notation.
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�0 ¼ kq2
q1q2

; �0 ¼ kq1
q1q2

; t ¼ t1ð1� �0 þ �0Þ:
(49)

They are not convenient, because �0 2 ð0;1Þ, and the
following transformation is mandatory30:

� ¼ �0

1þ �0 ; � ¼ �0

1þ �0 ; �0 ¼ �

1� �
;

�0 ¼ �

1� �
; 0<� 	 1� t

s
; 0<� 	 1;

t1 ¼ t
1� �

1� �
: (50)

B. Bjorken variables, structure functions,
collinear limits

The standard Bjorken variables are

xB � t

2q1Q
¼ jQ2j

2q1Q
; 1 
 xB > 0;

yB � Qq1
p1q1

¼ t

sxB
:

(51)

In the case of a single gluon, they are expressed as follows:

xB ¼ t

2q1Q
¼ 1� �0 þ �0

1þ �0 ¼ 1� �;

yB ¼ 2q1Q

2q1p1

¼ t

sð1� �Þ :
(52)

The reader should keep in mind that, for simplicity, xB is
the fraction of the parton momentum in the initial quark.31

Let us recall the definitions of the standard deep inelastic
structure functions in terms of the above Bjorken variables:

d2�

dtdxB
¼ 2��2

QEDQ
2
q

t2
x�1
B fy2B2xBF1ðxBÞ þ 2ð1� yBÞF2ðxBÞg

¼ 2��2
QEDQ

2
q

t2
x�1
B f½1þ ð1� yBÞ2�F2ðxBÞ

� y2BxBFLðxBÞg

¼ 2��2
QEDQ

2
q

t2
x�1
B f½1þ ð1� yBÞ2�2xBF1ðxBÞ

þ 2ð1� yBÞxBFLðxBÞg; (53)

where we have employed the standard definition
2xF1 � F2 � xFL. In the LO case, the Callan-Gross
relation 2xF1 ¼ F2 is fulfilled, and the longitudinal
structure function FL ¼ 0 (it will receive a nonzero
contribution at NLO). The LO relation to the parton
distribution function (luminosity) is 2F1ðxÞ ¼ F2=x ¼
PDFðxÞ.
It is instructive to investigate the collinear ISR and FSR

limits. The slightly reorganized single-gluon emission
distribution reads

d�1 ¼ �2
QEDQ

2
q

dt

t2
d’

dc

2�

CF�s

�

d�d�

��
W;

W ¼ s2 þ u21 þ s21 þ u2

2s2
: (54)

The soft limit is already manifest in the eikonal

phase-space factor d�d�
�� . The following explicit expres-

sions for the invariants in terms of our Sudakov variables
are useful:

t1
s
¼ð1��ÞyB;

u1
s
¼1�yB;

u

s
¼ s1

s
�ð1����ÞyB;

s1
s
’ð1��Þð1��Þþ��ð1�yBÞ

þ2cosc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1��Þð1��Þ��ð1�yBÞ

q
: (55)

In the FSR collinear limit, where � ’ 0, � ’ 1� z,
k ’ q2ð1� zÞ=z, and yB ’ y0 ¼ t=s, we have

s2 þ u21 ’ s2 þ ðs� tÞ2;
s21 þ u2 ’ ðs2 þ ðs� tÞ2Þð1� �Þ2;

W ’ 1þ ð1� �Þ2
2

s2 þ ðs� tÞ2
s2

¼ 1þ z2

2
½1þ ð1� y0Þ2�: (56)

In the ISR collinear limit, where � ’ 0, � ’ 1� z and
k ’ ð1� zÞq1, we have

CM

q

q

1

2k

=q +k2Π

θ

p
2

p
1

ψ

φ

B1B

1

1

1

FIG. 4 (color online). Kinematics of one-gluon emission in the
Breit frame.

30In the collinear limit k ’ q2�=ð1� �Þ, with z ¼ 1� � being
the light-cone variable in the LO splitting kernel.
31Returning to the normal definition in the MC (a fraction of the
hadron momentum) is quite trivial.
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s2 þ u21 ’ s2 þ
�
s� t

1� �

�
2
;

s21 þ u2 ’ ½sð1� �Þ�2 þ ½sð1� �Þ � t�2;

W ’ 1þ ð1� �Þ2
2

½1þ ð1� yBÞ2�

¼ 1þ z2

2
½1þ ð1� yBÞ2�: (57)

C. Bare structure functions for single-gluon emission

Our immediate aim is now to reproduce the well-known
[26,48,49] result for the NLO correction to the F2ðxÞ
structure function by means of integration of the one-gluon
phase space [the NLO correction to FLðxÞ will also be
found]. The aim is to test our Monte Carlo phase-space
parametrization, prepare ground for determining the softþ
virtual correction in the MC, and put FSR under control.

The unsubtracted (bare) contribution to F2ðxÞ=x,
corrected due to the real-gluon emissions plus the vertex
correction [Eq. (59) in Ref. [30]], can be rewritten as

CAEM
2;bareðzÞ ¼ �ð1� zÞ þCF�s

�

�
PqqðzÞ

�
1

"
þ!2

�

þPqqðzÞ ln tð1� zÞ
z	2

� 3

4

1

1� z
þ 1

2
ð3þ 2zÞ

�
þ
;

(58)

where PqqðzÞ ¼ 1þz2

2ð1�zÞ , and !2 ¼ �E � ln ð4�Þ comes

from the �2þ2" ¼ 2�ð1þ "!2 þ � � �Þ expansion. The
baryon number conservation sum rule

R
1
0 dzC

AEM
2;bareðzÞ ¼ 1

holds explicitly.
The standard NLO MS correction Cs

2 to the z�1F2ðzÞ
form factor is obtained simply by means of subtracting the
MS collinear counterterm32 1

" fPqqðzÞgþ (i.e., the pole part).

The formula of Ref. [48] to be reproduced reads

�FNLO
2 ðxBÞ ¼ Cs

2ðxBÞ ¼
CF�s

�

�
PqqðxBÞ

�
ln
tð1� xBÞ
	2xB

þ!2

�
� 3

4

1

1� xB
þ 3

2
þ xB

�
þ

¼ CF�s

�

�
PqqðxBÞ

�
ln
tð1� xBÞ
	2xB

þ!2

�
� 3

4

1

1� xB
þ 1þ 3

2
xB

�
þ
þ CF�s

�

�
1� xB

2

�
þ
: (59)

The last term in the nonsingular part, ð1� xBÞ=2, is due to the " term from the � trace for the intital-state collinear
singularity and !2 from the n-dimensional phase space.

We start from the unsubtracted (bare) DIS distribution coming from two-real-gluon emission diagrams from the quark
line plus the vertex virtual correction in n ¼ 4þ 2" dimensions:

d2�

dtdxB
¼ 2��2

QEDQ
2
q

t2
½ð1�UÞ�xB¼1 þ �G2ðxB; yBÞ�;

�G2ðxB; yBÞ ¼
Z

d�d�
Z d�c

2þ2"

2�
�2ð�;�Þ�xB¼1��;

�2ð�;�Þ ¼ CF�s

�

1

��
Wð�;�; yB; "Þ

�
t��

	2ð1� �Þð1� �Þ
�
"
�1>�>��1>�

Wð�;�; yB; "Þ ¼ s2 þ u21 þ s21 þ u2

2s2
þ "

s2 þ u21
s2

ðt� t1Þ2
t2

;

(60)

where we have reinstalled in W the " term from the �
trace.33

The real emission phase space is explicitly inte-
grated for �> �, where � 
 1 is an IR cutoff. The
above phase-space division is graphically shown in
Fig. 5. Note that the �> � part of the phase space,
which we are going to integrate over includes not
only the hard collinear ISR but also the hard collinear
FSR. The constant U must include the vertex correc-
tion summed with the soft real emission �< �. For

determining U, it will be enough to know [48,49] that
the F2 part of the distribution in Eq. (60) fulfills
exactly the Adler sum rule in the dimensional regu-
larization, and in this way we may omit the details of
its calculation. The complicated phase-space factor is
simply due to the fact that the transverse momentum
of the gluon in the Breit frame is

k2T ¼ jkj2 ¼ t1�
0�0 ¼ t��

ð1� �Þð1� �Þ :

32We subtract a pure pole as in the original CFP work and not
ð1" þ!2ÞfPqqðzÞgþ, as is a common practice nowadays.

33Only for the ISR collinear singularity; the one for FSR falls
into the U factor.

INCLUSION OF THE QCD NEXT-TO-LEADING ORDER . . . PHYSICAL REVIEW D 87, 034029 (2013)

034029-17



Finally,
R
d�c

2þ2" is the n-dimensional extension ofR
2�
0 dc .

In the CFP scheme, the ISR collinear singularity upon
integration gives rise to the LO pole part

C½0�
0 PK0I ¼ C½0�

0 �½1�
I ðxBÞ

¼ 1

"
½1þ ð1� yBÞ2�CF�s

�

� �PðxBÞ
1� xB

�
þ
;

whereK0I is the lowest-order 2PI kernel for the ISR ladder,
and the plus prescription comes from ZF, as usual. The
subtracted hard-process matrix element in the CFP scheme

is C½1�
0 � C½0�

0 PK0I. We shall calculate it with the help of

the usual counterterm technique. The ISR collinear/soft
counterterm (SCC) we define as follows:

�2cð�;�Þ ¼ ½1þ ð1� yBÞ2�CF�s

�

�Pð1� �Þ
�

� �"�1B�"��<Bð�Þ�1>�>�;

Bð�Þ ¼ 	2ð1� �Þ
t�

: (61)

It is defined such that it integrates to the pure pole part
exactly:

C½0�
0 �½1�

I ðxBÞ �
Z

d�d��2cð�;�Þ�1�xB¼�:

In Fig. 5, we have also marked the integration area for the
above counterterm. As we see, in this area the upper phase-
space integration limit from energy-momentum conserva-
tion is replaced by the limit on the gluon transverse
momentum equal (approximately) to 	.

With the help of the above ISR collinear counterterm,
our task is reduced to calculating the subtracted DIS dis-
tribution in n ¼ 4 dimensions:

G2ðxB; yBÞ ¼
Z

d�d�
Z 2�

0

dc

2�
½�2ð�;�Þ

� �2cð�;�Þ��xB¼1��; (62)

except for the trivial " term in W, which contributes
CF�s

� ð1�xB
2 Þþ, to be added at the end. The same holds true

with the similar �"!2 term from the phase space.
The integration can be summarized as follows:

d2�NLO
subt

dtdxB
¼ 2��2

QEDQ
2
q

t2
2CF�s

�2

Z
d3Eðk1Þ½Wð�;�; yBÞ �W0ðyBÞ �Pð1� �Þ��1<Bð�1Þ��1�xB¼�1

¼ 2��2
QEDQ

2
q

t2
ð½1þ ð1� yBÞ2�Cs

2ðxBÞ � y2BCLðxBÞÞ;

Cs
2ðxBÞ ¼

CF�s

�

�
PqqðxBÞ

�
ln
tð1� xBÞ
	2xB

þ!2

�
� 3

4

1

1� xB
þ 1þ 3

2
xB

�
þ
þ CF�s

�

�
1� xB

2

�
þ
;

CLðxBÞ ¼ CF�s

�
xB; W0ðyÞ � 1þ ð1� yÞ2; (63)

where the plus prescription is provided by the virtual corrections. We have also included the " contribution from the � trace
and !2 from the phase space. As we see, Cs

2ðzÞ is equal to the finite part of CAEM
2;bareðzÞ of Eq. (58); thus, we have reproduced

the classic result [48], as promised.

In the MC scheme, the ISR counterterm Cð0Þ
0 P0K0I is defined as the single-gluon distribution which is extrapolated to

n ¼ 4þ 2" dimensions and integrated over the phase space:

KIðz; "Þ ¼ CF�s

�

Z d�d�

��

Z
d�2þ2"

�
t��

ð1� �Þ	2

�
"
�Pð1� �; "Þ��<��1�z¼���>� � �z¼1SI

¼ CF�s

�

�
t

z	2

�
"�2þ2"

"

�P0ðz; "Þ
ð1� zÞ1�2"

�1�z>� � �ð1� zÞSI ¼ CF�s

�

� �P0ðz; "Þ
1� z

�
1

"
þ!2 þ ln

t

z	2

��
þ
; (64)

soft

FSR

ISR

lnβ
αln

(1−x)ln

δln

8

µ
k  =T

F

FIG. 5 (color online). The logarithmic Sudakov plane for
single-gluon emission in the DIS process.

S. JADACH et al. PHYSICAL REVIEW D 87, 034029 (2013)

034029-18



where �P0ðz; "Þ ¼ �PðzÞð1þ 2" ln ð1� zÞÞ þ 1
2"ð1� zÞ2.

The source of the plus prescription in this case is the MC
Sudakov form factor calculated in n ¼ 4þ 2" in such a
way that the sum rule

R
dzKIðz; 
Þ ¼ 0 is preserved also in

n dimensions:

SI ¼ CF�s

�

�2þ2"

"

Z 1��

0
dz

�P0ðz; "Þ
ð1� zÞ1�2"

�
t

z	2

�
"
;

hence two Oð"Þ terms in �P0ðz; "Þ necessarily participate in
the ð. . .Þþ prescription.

Subtracting KIðz; "Þ of Eq. (64) from the complete
Oð�1Þ result of Eq. (58) gives us the following coefficient
function:

CMC
2 ðzÞ ¼CF�s

�

�
� 1þ z2

2ð1� zÞ ln ð1� zÞ�3

4

1

1� z
þ1þ3

2
z

�
þ

(65)

in the MC factorization scheme, with the angular ordering.
The most important part of the difference between the

above MC structure functions and the MS variant is com-
ing from the different cutoff in the ISR counterterms:

2��2
QEDQ

2
q

t2
CF�s

�

Z
d3Eðk1ÞW0ðyBÞ½� �Pð1� �Þ��1<Bð�1Þ

þ �Pð1� �Þ��1<�1
��1�xB¼�1

¼ 2��2
QEDQ

2
q

t2
W0ðyBÞCF�s

�

�
2PqqðxBÞ ln ð1� xBÞ

þ PqqðxBÞ ln t

	2xB

�
: (66)

A few comments are in order:
(i) Why not k�-ordering? In such a DIS-like factoriza-

tion scheme,34 the term ðln ð1�xÞ
1�x Þþ would have been

gone from Eq. (65). FSR could be treated in the DIS
MC without the LO resummation, with the unexpo-
nentiated FSR NLO corrections. However, if the
universality is to be maintained, and the same k�
ordering is applied to the W=Z production process,
that would either mean asymmetric treatment of the
emission from the quark and antiquark lines or a
large double-logarithmic dead zone in the corre-
sponding LO MC, between the ISR and FSR phase
spaces. Both options are unacceptable.

(ii) Is there also a kinematic mapping involved in the
above P0, like in the previous W=Z production
process? Yes, it is implicitly included in the defini-
tion of the � and � variables in Eq. (50), where
dilatation using the factor 1=ð1þ �0Þ is seen.

(iii) From the point of view of the MC, the above
considerations are incomplete, as they still keep
FSR in the inclusive/integrated form.

D. DIS multigluon LO Monte Carlo

Let us start with the raw distribution for n gluons, the
ð�sCFÞn part only, relevant for the LO MC:

eðp1Þ þ qðq1Þ ! eðp2Þ þ qðq2Þ þ gðk1Þ
þ gðk2Þ þ � � � þ gðknÞ:

The corresponding differential distribution reads

d�n ¼ Q2
q�

2
QEDdtd’

W

tt1

dc

2�

�
CF�s

�

�
n
�Yn
i¼1

d�id�i

�i�i

d�i

2�

�

� �y

�X
j

~kj

�
t1
t
; (67)

where W is a mild function to be defined later on. The
invariants s1 ¼ 2p2q2, u1 ¼ 2q1p2, t1 ¼ 2q1q2 are the
same as previously. The factor t1

t is again the Jacobian

due to the parametrization of the phase space in terms of
the Sudakov variables [50]; see below. The angle c is the

azimuthal angle of ~k around the z axis in the Breit frame of
Q ¼ q2 þ k� q1 with Q0 ¼ 0, with the additional re-
quirement that ~q1 be parallel to the z axis. We call this
reference frame B. Another Breit frame, B1, is used in the
MC, that of Q1 ¼ q2 � q1 with the z axis also along ~q1
(and ~q2). The illustration of the kinematics in Fig. 4 is still
valid, provided we replace k1 with

P
jkj.

The integration is done over the angle c of the

ð�; q1; q2Þ plane as a whole around ~� ¼ ~q2 þ
P

j
~kj, while

there is a single restriction on n azimuthal angles�i of ~ki in

the B1 frame—namely, the vector
P ~kj must be coplanar

with p1 and p2.
The standard Sudakov variables are

�0
i ¼

kiq2
q1q2

; �0
i ¼

kiq1
q1q2

;

t ¼ t1

�
1�X

j

�0
j þ

X
j

�0
j

�
� K2; K ¼ X

j

kj: (68)

Next, we transform them as follows [50]:

�i ¼ �0
i

1þP
j
�0

j

; �i ¼ �0
i

1þP
j
�0

j

; �0
i ¼

�i

1�P
j
�j

;

�0
i ¼

�i

1�P
j
�j

; 0<
X
j

�j 	 1� t

s
; 0<

X
j

�j 	 1:

(69)

The Bjorken variable xB (of a parton in the initial quark)
can be expressed in terms of the Sudakov variables. Using
Q ¼ K þ q2 � q1 and K ¼ P

jkj, we obtain

34In the DIS factorization scheme, C2 ¼ 0 exactly, while in the
k� ordering it would only be less singular.
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xB ¼ 2q1q2 þ 2q1K � 2q2K � K2

2q1q2 þ 2q1K

¼
1þP

j
�0

j �
P
j
�0
j

1þP
j
�0

j

� ~K2 ¼ 1�X
j

�j � ~K2

¼ t

t1ð1þ
P
j
�0

jÞ
: (70)

In the NLO world, the term

~K2 ¼ K2

2q1Q
¼

2
P
i>j

ki � kj
2q1Q

can be either omitted or taken care of in the collinear limit.
Note that ~K2 is absent in the case of the single-gluon
calculation of the NLO coefficient function.

The fully differential distribution for emitting n gluons
in the LO MC for DIS we define as follows:

d�n ¼ Q2
q�

2
QEDdtd’

1

t2
e�S dc

2�
�y

�X
j

~kj

�

�
�Yn
i¼1

CF�s

�

d�id�i

�i�i

d�i

2�
�PðẑiÞ�ai>ai�1

�

� �P �i<1�
P

�i<1: (71)

The key objects to be defined are the variables ẑj and the

Sudakov form factor S. For this LO modeling of the
gluonstrahlung, we use ordering according to the factori-
zation scale (evolution) variable

a2i ¼ t
�i

�i

2
�
t�;

t

�

�
; (72)

which is the variable of the angular ordering of the MC.

The ISR part of the Sudakov plane (the blue trapezoid in
Fig. 6) contains the gluons I ¼ ð1; 2; 3; . . .mÞ which have

�i=�i < e�, and the FSR part (the red trapezoid in Fig. 6)
hosts the gluons F ¼ ðmþ 1; mþ 2; . . . ; nÞ which have

�i=�i > e�. We shall indicate that the gluon j belongs to
one of these two subsets by j 2 I or j 2 F . The variable
ẑj of the ISR or FSR gluon is defined in terms of either �’s

or �’s:

for j 2 I : ẑj ¼ zIj ¼ xIj

xIj�1

; xIj � 1�Xj
i¼1

�i;

for j 2 F : ẑj ¼ zFj ¼ xFj

xFj�1

; xFj � 1� Xj
i¼mþ1

�i:

(73)

The Sudakov form factor S is the integral over the area in
the logarithmic Sudakov plane available for the real emis-
sion in the step-by-step Markovian process. This area is
visualized in Fig. 6 as a shaded polygon. The rapidity �
defines the boundary between the ISR and FSR emissions
according to the corresponding LO distribution and can be
treated as an arbitrary parameter; for example, � ¼ 0 in
Fig. 6(a) is an acceptable LO choice. In fact, another more
clever choice of �, like the one indicated in Fig. 6(b), can
be made, for instance, within the Markovian LO MC
algorithm. It is also possible to switch from one value of
� to another in the final stage of the LO MC by means of
reweighting MC events. In view of the above flexibility, we
leave the exact definition of � to a later stage of the MC
code implementation.

E. Structure function for LO MC

The standard double-differential distribution of the DIS
process, as realized in our LO MC, is obtained by inserting
the � function defining xB:

δln
lnβ

αln

ln∆Ξ=0

(a)

1

23

n
m

m+1

ISR

FSR

δln
lnβ

αln

ln∆

(b)

Ξ

1

23

n
m

m+1

FIG. 6 (color online). The Sudakov plane of the LO MC for DIS. The shaded area denotes the integration domain for the Sudakov
form factor S of the LO MC. Rapidity equal to � marks the boundary between ISR and FSR.
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d2�LO

dtdxB
¼ 2�Q2

q�
2
QED

t2
W0ðyBÞ

� X1
n¼0

�Yn
i¼1

2CF�s

�2

Z
d3EðkiÞ �Pðzki Þ�ai>ai�1

�

� e�S�P
j

~kyj¼0�
P

�i<1�
P

�i<1�xB¼1�P �j� ~K2 :

(74)

The above distribution is directly implementable in the
MC form; for instance, using the Markovian algorithm,

and the above double-differential distribution of xB and t
is coming just from histogramming, using MC events
with all four-momenta of all leptons, quarks, and gluons
explicitly defined.
On the other hand, we may explicitly show analytically

that the above distribution is proportional to PDF convo-
luted with the coefficient function. This is done by means
of inserting into the integrand 1 ¼ Q

n
i¼1ð�ai>a� þ �ai<a�Þ

after expanding/reordering the sums of the integrals. The
distribution of Eq. (74) almost factorizes into the ISR and
FSR parts:

d2�

dtdxB
¼ 2�Q2

q�
2
QED

t2
W0ðyBÞ

��X1
n¼0

�Yn
i¼1

2CF�s

�2

Z
d3EðkiÞ �PðzIi Þ�a�
ai>ai�1

�
e�SI

�

�
�X1
n0¼0

�Yn0
i¼1

2CF�s

�2

Z
d3EðkiÞ �PðzFi Þ�ai>ai�1
a�

�
e�SF�P �i2F<1��I

�
�P

IþF

�i<1�xB¼1�P
IþF

�j

�
; (75)

where we have split the Sudakov form factor into the ISR and FSR parts, S ¼ SI þ SF and �I ¼
P

�i2I . In the above
equation, we have also neglected ~K2 in xB ¼ 1�P

j�j � ~K2. This is well justified at LO, but it turns out that it can be
done at NLO as well. The alternative solution would be to make special effort in parametrizing the phase space (part of the
definition of the P0 operator) to ‘‘protect’’ xB as it was done for x̂ ¼ ŝ=s in theW=Z production process. We have decided
that this is not worth the effort, as the dependence on xB of the differential distributions is relatively mild. We may come
back to this idea if an additional justification is found.

Altogether, the final LO formula can be written as a convolution of the PDF for ISR and the the resummed ‘‘coefficient
function’’ CF ðzFÞ for FSR:

d2�

dtdxB
¼ 2�Q2

q�
2
QED

t2
W0ðyBÞ

Z
dxIdzF�xB¼xIzFDI ð�; xIÞCF ðzFÞ;

DI ð�; xIÞ ¼ e�SI
X1
n¼0

�Yn
i¼1

2CF�s

�2

Z
d3EðkiÞ �PðzIi Þ�a�
ai>ai�1

�
�xI¼1�P

j2I

�j
;

CF ðzFÞ ¼ e�SF

�
�1¼zF þ

X1
n0¼1

�Yn0
i¼1

2CF�s

�2

Z
d3EðkiÞ �PðzFi Þ�ai>ai�1
a�

�
�1�zF¼x�1

I

P
j2F

�j

�
;

Z 1

0
dzFCF ðzFÞ � 1:

(76)

The interesting pure FSR object CF ðxÞ is probing the FSR evolution variable, instead of the FSR light-cone variable. In

the LO version, it is enough to keep only the trivial CF ðxÞ ¼ �ð1� xÞ term, while for our NLO purpose it is enough to

retain only one more easily calculable term, n0 ¼ 1, � ¼ 0:

Cð1Þ
F ðxÞ ¼ �ð1� xÞ þ CF�s

�

�Z 1

0

Z 1

0

d�1d�1

�1�1

�Pð1� �1Þ��1<�1
�1�x��1

�
þ

¼ �ð1� xÞ þ CF�s

�

�
� ln ð1� xÞ

1� x
� 3

4

1

1� x
þ 1

4
ð3þ xÞ

�
þ
: (77)

Note that the above reproduces the bulk of the coefficient

function of Eq. (65); that is, terms like ðln ð1�xÞ
1�x Þþ and

ð 1
1�xÞþ.
The MC initial-state PDF obeys the LO DGLAP evolu-

tion equation (limited to the nonsinglet gluonstrahlung):

2t
@

@t
DIðt; xÞ ¼ @

@�
DIðt; xÞ

¼
Z

dzdx�xI¼xz

CF�s

�

� �PðzÞ
1� z

�
þ
DIðt; xÞ; (78)

and the same is true for the structure function 2F1¼CF �DI:
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2t
@

@t
F1ðt; xÞ ¼ @

@�
F1ðt; xÞ

¼
Z

dzdx�xI¼xz

CF�s

�

� �PðzÞ
1� z

�
þ
F1ðt; xÞ:

(79)

F. Exclusive ISR and FSR subtractions in DIS

The two soft counterterms, for ISR and FSR, can be
identified in the fully differential distribution of the single
real gluon in the LO MC:

d�MCLO
1 ¼Q2

q�
2
QEDdtd’

1

t2
dc

2�
�yð ~k1ÞCF�s

�

d�1d�1

�1�1

d�1

2�

�W0ðyBÞf �Pð1��1Þ��1<�1
þ �Pð1��1Þ��1>�1

g;
(80)

where we define the yB ¼ t
sð1��1Þ variable, and the Born

spin factor isW0ðyÞ ¼ 1þ ð1� yÞ2. On the other hand, the
NLO-complete unsubtracted distribution is

d�NLO
1 ¼ Q2

q�
2
QEDdtd’

1

t2
dc

2�
�yð ~k1ÞCF�s

�

� d�1d�1

�1�1

d�1

2�
Wð�1; �1; yBÞ;

Wð�1; �1; yBÞ � s2 þ u21 þ s21 þ u2

2s2
: (81)

See Eq. (55) for explicit Mandelstam invariants.
For the MC, we shall use the subtracted distribution

with both the ISR and FSR counterterms:

d��NLO
1 ¼ d�NLO

1 � d�MCLO
1

¼ Q2
q�

2
QEDdtd’

1

t2
dc

2�
�yð ~k1ÞCF�s

�

� d�1d�1

�1�1

d�1

2�
~�1ðkÞ;

~�1ðkÞ ¼ ~�I��1<�1
þ ~�F��1>�1

;

~�Ið�1; �1; yBÞ ¼ Wð�1; �1; yBÞ �W0ðyBÞ �Pð1� �1Þ;
~�Fð�1; �1; yBÞ ¼ Wð�1; �1; yBÞ �W0ðyBÞ �Pð1� �1Þ;

(82)

which defines (up to NLO) the following expression:

Ĉ�NLOðz; yB=zÞ ¼ CF�s

�

Z 1

0

Z 1

0

d�1d�1

�1�1

dc

2�
f ~�I��1<�1

þ ~�F��1>�1
g�1�z¼�1

¼ CF�s

�
W0ðyBÞ

�
1

2
ð1þ zÞ ln ð1� zÞ

þ 5

4
zþ 1

4

�
� y2Bz; (83)

to be used in the numerical tests of the MC imple-
mentations.

G. Exclusive NLO correction to the hard
process in DIS MC

In the following, we propose aMCweight which upgrades
the MC with the LO hard process and LO evolution kernels
to the MC with the NLO hard process and LO evolution
kernels. The distribution in the LOþ NLO MC reads

d�NLO
n ¼ Q2

q�
2
QED

dt

t2
d’

dc

2�
�y

�X
j

~kj

�

�
�Yn
i¼1

CF�s

�

d�id�i

�i�i

d�i

2�
�Pðzki Þ�ai>ai�1

�

� �P �i<1�
P

�i<1e
�SW0ðyBÞw�NLO

MC ; (84)

where the key element is the following MC weight:

w�NLO
MC ¼ ½1þ�SþV� þ

X
j2I

~�1ð�0
j; �

0
j; yBÞ

W0ðyBÞ �PðzjÞ

þ X
j2F

~�1ð�00
j ; �

00
j ; yBÞ

W0ðyBÞ �PðzjÞ

¼ ½1þ�SþV� þ
X
j2I

~�Iðaj; zIj ; yBÞ
W0ðyBÞ �PðzIj Þ

þ X
j2F

~�Fðaj; zFj ; yBÞ
W0ðyBÞ �PðzFj Þ

; (85)

which adds the missing NLO correction of the real emission
type and also includes �SþV , representing the remaining
NLO virtualþ soft corrections.
The important point is the definition of the variables �0

i,
�0

i and�
00
i ,�

00
i in terms of ai and zi, in the presence of many

‘‘spectator LO gluons.’’ An extrapolation of the one-gluon
matrix element over all the multigluon phase space is an
inevitable feature of any scheme combining the fixed-order
ME with the resummed ME, and there is always certain
freedom in doing that. The above extrapolation is done in
terms of zj and aj. In the ISR part of the sum, we proceed

such that first we define �0
j ¼ 1� zIj , and next from the

evolution scale a2j=a
2
�
¼ �0

j=�
0
j we calculate �0

j (appar-

ently we proceed as if there were no spectator gluons).

In the FSR part, we proceed similarly; i.e., using zFj ,

we define �00
I ¼ 1� zFj . Next, from the evolution scale

a2j=a
2
�
¼ �00

j =�
00
j we calculate �00

j .

H. Analytical integration of DIS MC
distributions and determining �SþV

A remarkable feature of the complicated multigluon dis-
tribution defined within the exact phase space (with full
energy-momentum conservation) is that it can be integrated
analytically. This integration result will help us to determine
the NLO softþ virtual correction �SþV and will also be
used in the numerical cross-check of the MC code.
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The result of the analytical phase space integration for the DIS MC reads

d2�NLO
MC

dtdxB
¼ 2�Q2

q�
2
QED

t2

Z
dxIdz�xB¼xIzDI ðt; xIÞ½W0ðyBÞð1þ �SþVÞ�1¼z þ �CIðz; yBÞ þ �CFðz; yBÞ þW0ðyBÞC½1�

F ðzÞþ�;
(86)

where

�CIðz; yBÞ ¼ 2CF�s

�2

Z
d3EðkÞ ~�Ið�;�; yBÞ��<��1�z¼�

¼ 2CF�s

�2

Z
d3EðkÞ½Wð�;�; yBÞ �W0ðyBÞ �Pð1� �Þ���<��1�z¼�;

�CFðz; yBÞ ¼ 2CF�s

�2

Z
d3EðkÞ ~�Fð�;�; yBÞ��>��1�z¼�

¼ 2CF�s

�2

Z
d3EðkÞ½Wð�;�; yBÞ �W0ðyBÞ �Pð1� �Þ���>��1�z¼�; (87)

and

C½1�
F ðzÞþ ¼ 2CF�s

�2

Z
d3EðkÞ �Pð1� �Þ��<��1�z¼���>� � �z¼1SFð�Þ;

Z 1

0
dzC½1�

F ðzÞþ ¼ 0;

SFð�Þ ¼ 2CF�s

�2

Z
d3EðkÞ �Pð1� �Þ��<���>� ¼

Z 1��

0
dzC½1�

F ðzÞ:
(88)

The plus prescription for C½1�
F ðzÞþ is provided by the Sudakov form factor of the MC. �CIðz; yBÞ and �CFðz; yBÞ are

completely finite/regular, without any ð. . .Þþ parts. The IR regulator � will drop out at the end.
Let us now find out �SþV of the MC by means of comparing/matching the first-order Eq. (58) and/or Eq. (65) with

Eq. (86), truncated also to the first order. Going back for a moment to n ¼ 4þ 2", we find out that the first-order bare PDF
of the LO MC is

DI ðt; xIÞj1 st ord ¼ �ð1� xIÞ þ KIðxI; "Þ;
Z 1

0
dzKIðz; "Þ ¼ 0:

Also, as anticipated, the contribution C½1�
F ðzÞ cancels the counterterm in �CFðz; yBÞ:

W0ðyBÞC½1�
F ðzÞ þ �CFðz; yBÞ ¼ �DFðz; yB; �Þ �W0ðyBÞSFð�Þ�ð1� zÞ;

�DFðz; yB; �Þ ¼ 2CF�s

�2

Z
d3EðkÞ�1�z¼��1�z>�Wð�;�; yBÞ��>�:

(89)

Altogether, the first-order truncation of Eq. (86) reads

d2�NLO
MCð1Þ

dtdxB
¼ 2�Q2

q�
2
QED

t2
f�1¼xBW0ðyBÞ½1þ�SþV �SFð�Þ�þW0ðyBÞKIðxB;"Þþ �CIðxB;yBÞþ �DFðxB;yB;�Þg;

�CIðz;yBÞþ �DFðz;yB;�Þ ¼ 2CF�s

�2

Z
d3EðkÞfWð�;�;yBÞ�W0ðyBÞ �Pð1��Þ��1<�1

g�1�z¼��1�z>�

¼ ½W0ðyBÞ�1�z>�
�Cs
2ðzÞ� y2BCLðzÞ�; (90)

where

�Cs
2ðzÞ ¼

CF�s

�

�
1þ z2

2ð1� zÞ ln
1

1� z
� 3

4

1

1� z
þ 1þ 3

2
z

�
: (91)

Remembering that [cf. Eq. (65)]

CMC
2 ðzÞ ¼ ð �Cs

2ðzÞÞþ ¼ �1�z>�
�Cs
2ðzÞ � �z¼1Tð�Þ; Tð�Þ ¼

Z 1��

0
dx �Cs

2ðxÞ;

we finally get

INCLUSION OF THE QCD NEXT-TO-LEADING ORDER . . . PHYSICAL REVIEW D 87, 034029 (2013)

034029-23



d2�NLO
MCð1Þ

dtdxB
¼ 2�Q2

q�
2
QED

t2
f�1¼xBW0ðyBÞ½1þ�SþV � SFð�Þ

þ Tð�Þ�þW0ðyBÞKIðxB;"Þ þW0ðyBÞCMC
2 ðxBÞ

� y2BCLðxBÞg: (92)

Comparing this with the NLO-complete (realþ virtual)
calculation [e.g., Eq. (63)], we see that the matching
with the above MC implementation dictates the following
relation (the Adler sum rule for F2):

�SþV ¼ SFð�Þ � Tð�Þ ¼
Z 1

0
dz½C½1�

F ðzÞ � �Cs
2ðzÞ�: (93)

The above is finite in the � ! 0 limit. This is not surpris-
ing, because C½1�

F ðzÞ integrates the FSR counterterm, while
�Cs
2ðxÞ comes from the ISR-subtracted exact ME—they

both coincide in the FSR collinear limit, while the ISR
collinear singularity is already removed from �Cs

2ðxÞ.
Summarizing, the complete analytical result for the

structure function from the DIS Monte Carlo (angular
ordering) defined in Eq. (84) takes the following final form:

d2�NLO
DIS

dtdxB
¼ 2��2

QEDQ
2
q

t2

Z
dxdz�xB¼xzDIðt;xÞ½W0ðyBÞ

�ð1þ�SþVÞ�1¼zþW0ðyBÞCMC
2 ðzÞ�y2BCLðzÞ�;

CMC
2 ðzÞ¼CF�s

�

�
� 1þ z2

2ð1� zÞ ln ð1� zÞ�3

4

1

1� z
þ1þ3

2
z

�
þ

CLðzÞ¼CF�s

�
z: (94)

The above formula is ‘‘ready to go’’ for numerical
comparison with the Monte Carlo.

The virtualþ soft correction �SþV is given by Eq. (93),
more precisely

�SþV ¼ CF�s

�

Z 1

0
dz

�
� ln ð1� zÞ

1� z
� 3

4

1

1� z
þ 3

4
þ 1

4
z

þ 1þ z2

2ð1� zÞ ln ð1� zÞ þ 3

4

1

1� z
� 1� 3

2
z

�

¼ CF�s

�

Z 1

0
dz

�
� 1þ z

2
ln ð1� zÞ � 1

4
� 5

4
z

�
¼ 0:

(95)

The above is just the result of the rigorous NLO
calculation.

Notice also that the MC result features in a natural way
the exponentiation of the distributions like

fðzÞ ¼ �ð1� zÞ þ CF�s

�

�
ln ð1� zÞ
1� z

�
þ

’ CF�s

�

ln ð1� zÞ
ð1� zÞ e�

CF�s
�

1
2ln

2ð1�zÞ;

Z 1

0
dzfðzÞ ¼ 1:

Such an exponentiation can be included in the analytical
formula.
Last but not least, let us write explicitly the difference

between the coefficient functions of the standard MS fac-
torization scheme of Eq. (59) and the MC factorization
scheme of Eq. (94)35:

�C2ðzÞ ¼ Cs
2ðzÞ � CMC

2 ðzÞ

¼ CF�s

�

�
1þ z2

2ð1� zÞ ln
ð1� zÞ2

z
þ 1� z

2

�
þ
: (96)

The above function should be used to correct the

existing MS PDFs before using it to fix input in our
MC. Alternatively, the coefficient function of Eq. (94)
should be used to fit DIS experimental data with the
PDF function compatible with the presented MC.36

I. Factorization-scheme-independent relation
between DY and DIS processes

In spite of the change of factorization scheme in the MC,
the factorization-scheme-independent and regularization-
independent relation of AEM [Eq. (91) in Ref. [30]]
should be reproduced exactly, if we claim to protect the
universality. Let us verify it. The original AEM relation
reads37

�AEM
q ðzÞ ¼ fq;DY � 2fq;2

¼ CF�s

�

�
�z¼1

�
2

3
�2 þ 1

2

�
þ 3

2

1

ð1� zÞþ
þ ð�3� 2zÞ þ ð1þ z2Þ

�
ln ð1� zÞ
1� z

�
þ

�

¼ CF�s

�

�
�z¼1

�
2

3
�2 � 7

4

�
þ 3

2

1

ð1� zÞþ
þ ð�3� 2zÞþ þ

�
ð1þ z2Þ ln ð1� zÞ

1� z

�
þ

�
:

(97)

Using the result of the analytical integration of the DIS
MC, Eq. (94),

Cs
2ðzÞ ¼

CF�s

�

�
� 1þ z2

2ð1� zÞ ln ð1� zÞ� 3

4

1

1� z
þ 1þ 3

2
z

�
þ
;

and the analogous analytical result for the DY MC
of Eq. (44),

C2ðzÞ ¼ �z¼1

CF�s

�

�
2

3
�2 � 7

4

�
þ CF�s

�
½�ð1� zÞþ�;

35Here, the usual MS assignment t ¼ 	2e�!2 is done; see
Refs. [39,40].
36Similar corrections also have to be determined for the NLO-
inclusive kernels, once the NLO corrections are included in the
ladder part of the MC; see the first incomplete results in
Ref. [17].
37Using again

R
1
0 dzð1þ z2Þðln ð1�zÞ

1�z Þþ ¼ 7
4 .
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we obtain from our two MC implementations the same
result:

C2ðzÞ � 2Cs
2ðzÞ ¼ �AEM

q ðzÞ: (98)

In this way, we have reproduced the AEM [30] result
for the MC factorization scheme, confirming its univer-
sality. The above agreement with the AEM result is
easily traced back to the fact that it holds already
for the difference of the unsubtracted coefficient
functions38

fAEMDY ðzÞ � 2CAEM
2;bareðzÞ ¼ �AEM

q ðzÞ þ 2
CF�s

�
ln
ŝ

t
(99)

[cf. Eqs. (37) and (58)], and because in both MC
formulas the same ISR counterterm of Eqs. (40) and
(64) is subtracted.39 In particular, terms due to the " 1�z

2

component in the � trace present in the DY and DIS
coefficient functions necessarily cancel out.

It is fair to mention that in Ref. [30], the relation of
Eq. (97) is treated as the pQCD result for the coefficient
function of the DY process in the DIS factorization
scheme. On the other hand, this relation can be turned
into an experimentally testable relation between the struc-
ture functions of the DY and DIS processes, testing the
important principle of universality (process independence)
of collinear singularities in pQCD predictions, indepen-
dently of any particular choice of factorization scheme and
the PDFs.

V. SUMMARYAND OUTLOOK

We have presented a complete method for implementing
NLO corrections to the hard process in the LO MC for
DY and DIS processes. This method was originally
developed for introducing NLO corrections in the ladder
MC [15,16]; therefore, it is well suited to be extended
to include NLO corrections in both hard-process and
ladder parts.

The presented method is based on a new fac-
torization scheme [16,17] extending the collinear
factorization theorems [4,26] to the fully exclusive
(unintegrated) form, which can serve as a base for
the MC distributions. All differences between the

MS and this new MC scheme are kept under strict
control, and we elaborate on that in quite some detail.
In particular, we make a powerful cross-check of
the whole MC factorization scheme by showing
(analytically) that the NLO MC results reproduce the

factorization-scheme-independent relation of Altarelli-
Ellis-Martinelli [30] between the Drell-Yan and DIS
processes; see Eq. (98).
The main practical results of this work are the multi-

parton distributions of Eq. (34) and (84) for the EW boson
production in hadron-hadron collision and electron-
hadron deep inelastic scattering, respectively, which are
ready for Monte Carlo implementation. These distribu-
tions feature the NLO corrections in the hard-process part
and the LO pQCD evolution in two multiparton ladder
parts. The NLO corrections to the hard process are intro-
duced by means of a single MC weight on top of the LO
distributions—it is, therefore, critical that the LO MC
cover the multiparton phase space without any gaps or
overlaps. This is achieved by means of using the angular
ordering, which is also essential for good control of the
soft gluon behavior beyond LO, already in the LO MC.
The correct soft limit also assures good behavior of the
MC weight; weights are positive and small (peaked near
1). For the weight distributions and other numerical cross-
checks of the presented method, we refer the reader to
Ref. [21].
In our opinion, this work solves the main obstacles

on the way to the NLO MC, based rigorously on the
new MC factorization scheme. There are still many
less important problems to be solved on the way to
the practical level; i.e., the construction of a MC pro-
gram applicable in the LHC data analysis. Let us signal
some of these problems and their solutions: (i) For
simplicity in our formulas, we have omitted the initial
PDF of the quark in the hadron at the low factorization
scale Q� 1 GeV. This can be easily included in the
MC. (ii) If we are aiming for a fully NLO MC, the
ladder parts have to be upgraded to the NLO level, and
this work is already well advanced [14–16]. (iii) In the
presented MC scheme, the QCD coupling was constant
and nonrunning. It is quite trivial to make it running
within the LO MC. It will be less trivial, but also
profitable, to disentangle the running-coupling effect
from the NLO corrections in the MC implementation
of the NLO ladder. This problem is under study and
will be treated in a separate publication. (iv) All the
MC distributions presented in this work are defined for
quarks and gluons; hence, in the practical level MC
code they will be subject to a hadronization procedure,
using one of the existing MC tools, such as HERWIG [8]
or PYTHIA [7].
Obviously, the proposed scheme of implementing the

NLO corrections to the hard process combined with the
MC parton showers (ladders) is different from the existing
ones. In Sec. III F, we comment on the differences between
our scheme and those of MC@NLO [9] and POWHEG
[11]. More systematic comparisons with these and other
schemes [22,23] will be done separately, at the time of the
numerical MC implementation.

38The last term is, of course, absent for the usual assignment
ŝ ¼ t ¼ 	2.
39The ISR counterterm is defined in the DIS and DY processes
at the exclusive level, involving P0 and kinematic mapping, so
the statement that ‘‘it is the same’’ is more nontrivial than in the
case of the CFP-inclusive counterterms.
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The presented method of implementing the NLO cor-
rections to the hard process does not have any principal
limitations—it can be extended to more diagrams and other
processes. However, at the practical level, its application
requires that the LO parton shower provide for the full
coverage (no gaps or dead zones) of the hard-process
phase space relevant at the NLO level. This requirement
is typically not fulfilled by the classic MC parton
showers like HERWIG or PYTHIA. It is not excluded that
the modernized version of these MCs may provide for
better phase-space coverage, notably by using tools devel-
oped for the MC@NLO and POWHEG implementations.
Otherwise, the LO parton shower has to be reconstructed,
for instance, using the scheme proposed in the present
work. (This may turn out to be mandatory for implement-
ing NLO corrections in the ladder parts of the parton-
shower MC.)

Summarizing, this work represents an important step
into a new area in the pQCD calculations for hadron
colliders in the MC form, in which the NLO corrections
are implemented in both the hard process and the ladder
parts in a completely exclusive (unintegrated) way, in full
compatibility with the redefined, fully exclusive pQCD
factorization.
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APPENDIX A: KINEMATICS OF THE
EW BOSON PRODUCTION PROCESS

Let us consider the case of a single real (not necessarily
collinear) gluon emission, relevant to the NLO level
description of the hard process,

qðp0FÞ þ �qðp0BÞ ! l�ðq1Þ þ lþðq2Þ þ gðkÞ; (A1)

which is the classic EW vector boson production process in
the annihilation of the quark-antiquark pair (the Drell-Yan
process in case of ��) decaying into a lepton pair. Note that
in the definition belowwe omit the distribution of the quark
(antiquark) in the proton. This can be always added easily
in the MC.

The following kinematical variables are used in this
work:

x ¼ ŝ

s
¼ ðP� kÞ2

P2
¼ 1� �� �; P ¼ p0F þ p0B;

Q ¼ P̂ ¼ p0F þ p0B � k; s ¼ P2;

ŝ ¼ P̂2 ¼ Q2 ¼ ðP� kÞ2 ¼ P2 � 2k � P;
� ¼ 2k � p0B

P2
; � ¼ 2k � p0F

P2
: (A2)

The most important of them is the invariant mass squared ŝ
of the produced colorless boson.
For the emitted gluons, we are using dimensionless

eikonal phase space parametrized in terms of various
variables:

d3EðkÞ ¼ d3k

2k0
1

k2
¼ 1

2

dkþ

kþ
d2k

k2
¼ �

2

d�

2�

d�

�

da2

a2

¼ �

2

d�

2�

d�

�

d�

�
¼ �

d�

2�

d�

�
d� ¼ �

d�

2�

d�

�
d�;

(A3)

where k ¼ ðk1; k2Þ is a transverse Cartesian two-
vector (k2T ¼ jkj2 ¼ s��), and the Sudakov (light cone)
variables are

k� ¼ k0 � k3; � ¼ 2kþffiffiffi
s

p ; � ¼ 2k�ffiffiffi
s

p :

Moreover, we introduce the variable a � k=�, and the
conventional rapidity variable � is defined as

� ¼ 1

2
ln
�

�
¼ 1

2
ln
kþ

k�
¼ � ln

jajffiffiffi
s

p ; a ¼ jaj ¼ e��
ffiffiffi
s

p
:

Multiparticle phase space is defined as

d�nðP;p1; p2; . . . ; pnÞ ¼ �ð4Þ
�
P�Xn

i¼1

pi

�Yn
i¼1

d3pi

2p0
i

:

(A4)

The two-dimensional phase space for massless particles
is then

d�2ðQ; q1; q2Þ ¼ 1

2
d�: (A5)

APPENDIX B: ONE-REAL-GLUON NLO
CORRECTION, ANALYTICAL INTEGRATION

We are going to integrate analytically the one-real-gluon
NLO correction as defined in Eq. (17). The contribution
from the F hemisphere is easily calculable:
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1

2
C2rðxÞ ¼ CF�s

�

Z 1

0
d�

Z 1

0
d�

� �PðxÞ � ��

��
��þ�<1��<��x¼1���� � �PðxÞ

��
��<��x¼1��

�

¼ CF�s

�

�
�PðxÞ

Z ð1�xÞ=2

�
d�

1

ð1� x� �Þ��
Z ð1�xÞ=2

0
d�� �PðxÞ

Z ð1�xÞ

�
d�

1

ð1� xÞ�
�

¼ CF�s

�

�PðxÞ
ð1� xÞ

�Z ð1�xÞ=2

0

d�

1� x� �
þ

Z ð1�xÞ=2

�

d�

�
�

Z ð1�xÞ

�

d�

�

�
� CF�s

�

1� x

2

¼ �CF�s

�

1� x

2
: (B1)

APPENDIX C: INCLUSIVE NLO FACTORIZATION FORMULA FOR DY MC

We are going to prove the formula of Eq. (36), representing the MC with two LO ladders and the NLO-corrected hard
process, by means of reorganizing the phase-space integration of Eq. (34). Let us consider the part of the total cross section
of Eq. (34) proportional to the term j 2 F in the MC weight of Eq. (35). The summation and integration over the
‘‘spectator’’ LO gluons in the B part of the phase space can be easily folded into the LO PDF. What remains to be
considered is the following sum of integrals:

�NLO
I ¼

Z
dxFdxB

X1
n1¼1

e�SF
Z
�<�n1

�Yn1
i¼1

d3Eð �kiÞ��i<�i�1

2CF�s

�2
�PðzFiÞ

�X
j2F

~�1ðŝ; p̂F; p̂B;aj; zFjÞ
�PðzFjÞ

GBð�; xBÞ�xF¼
Q
i

zFi

¼
Z

dxFdxB
X1
n1¼1

e�SF
Xn1
j¼1

Z � Yn1
i¼1;i�j

d3Eð �kiÞ��i<�i�1

2CF�s

�2
�PðzFiÞ

�

�
Z

d3Eð �kjÞ��jþ1<�j<�j�1
~�1ðŝ; p̂F; p̂B; aj; zFjÞGBð�; xBÞ�xF¼

Q
i

zFi
: (C1)

The essential step in transforming each jth term is relabeling the gluons i ! i0 such that i0 ¼ i for i ¼ 1; 2; . . . ; j� 1,
and i0 ¼ i� 1 for i ¼ jþ 1; . . . ; n1; hence i

0 ¼ 1; 2; . . . ; n1 � 1 without any gap, and finally i ¼ j is relabeled as j0 ¼ 0.
Using the symmetry of the integrand, integrals over ki0 can be pulled out, and the sum over adjacent integration ranges of
kj0 ¼ k0 is factorized off:

�NLO
I ¼

Z
dxFdxB�x¼xFxB

X1
n1¼1

e�SF
Z �Yn1�1

i0¼1

d3Eð �ki0 Þ��i0<�i0�1

2CF�s

�2
�PðzFi0 Þ

�

� Xn1�1

i0¼1

Z
d3Eð �k0Þ��i0<�0	�i0�1

~�1ðŝ; p̂F; p̂B; a0; zF0ÞGBð�; xBÞ�
�
xF � zF0

Yn1�1

i0¼1

zFi0
�
: (C2)

The sum over the adjacent integration intervals is combined into a single integral

Z a1

0

~�1da0 þ
Z a2

a1

~�1da0 þ
Z a3

a2

~�1da0 � � � þ
Z an1�1

an1�2

~�1da0 ¼
Z an1�1

0

~�1da0

and factorized off, while the remaining integrals over the spectator gluons i0 ¼ 1; 2; . . . ; n1 � 1 give rise to the LO PDF:

�NLO
I ¼

Z
dxFdx

0
FdxB

� X1
n1¼1

e�SF
Z �Yn1�1

i0¼1

d3Eð �ki0 Þ��i0<�i0�1

2CF�s

�2
�PðzFi0 Þ

�
�x0F¼

Q
i0
zFi0

�

�
Z

d3Eð �k0Þ ~�1ðŝ; p̂F; p̂B;a0; zF0ÞGBð�; xBÞ�xF¼zF0x
0
F
�x¼xFxB

¼
Z

dxBdx
0
FdzF0GFð�; x0FÞGBð�; xBÞ 12C2rðzF0Þ�BðsxÞ�x¼xBx

0
FzF0

; (C3)

where we have replaced the integration variable xF with zF0 ¼ xF=x
0
F. In the last step, we were able to use the integral

defined in Eq. (17) and evaluated in Eq. (B1).
The other part of the total cross section of Eq. (34) proportional to the term j 2 B in the MC weight of Eq. (35) gives the

same result. For the LO part times (1þ �SþV), we use Eq. (31).
As already noted, the key part of the above algebra is reminiscent of that in Ref. [36], except that here the resummed

singularities are in the angle, while in Ref. [36] they are in the energy variable.
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