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Abstract

Results are presented of a search for supersymmetric particles in events with large missing transverse momentum and
at least one heavy flavour jet candidate in

√
s = 7 TeV proton-proton collisions. In a data sample corresponding to

an integrated luminosity of 35 pb−1 recorded by the ATLAS experiment at the Large Hadron Collider, no significant
excess is observed with respect to the prediction for Standard Model processes. For R-parity conserving models in which
sbottoms (stops) are the only squarks to appear in the gluino decay cascade, gluino masses below 590 GeV (520 GeV) are
excluded at the 95% C.L. The results are also interpreted in an MSUGRA/CMSSM supersymmetry breaking scenario
with tanβ =40 and in an SO(10) model framework.

1. Introduction

Supersymmetry (SUSY) [1] is one of the most com-
pelling theories to describe physics beyond the Standard
Model (SM). It naturally solves the hierarchy problem and
provides a possible candidate for dark matter. SUSY is a
symmetry that relates fermionic and bosonic degrees of
freedom, and postulates the existence of superpartners for
the SM particles. Experimental data imply that supersym-
metry is broken and that the superpartners are expected
to be heavier than the SM partners. In the framework
of a generic R-parity conserving minimal supersymmetric
extension of the SM, the MSSM [2], SUSY particles are
produced in pairs and the lightest supersymmetric parti-
cle (LSP) is stable. In a large variety of models, the LSP
is the lightest neutralino, χ̃0

1, which is only weakly inter-
acting.

If supersymmetric particles exist at the TeV energy
scale, the coloured superpartners of quarks and gluons,
the squarks (q̃) and gluinos (g̃), are expected to be co-
piously produced via the strong interaction at the Large
Hadron Collider (LHC) [3, 4]. Their decays via cascades
ending with the LSP produce striking experimental sig-
natures leading to final states containing multi-jets, miss-
ing transverse momentum (its magnitude is referred to as

Emiss
T in the following) – resulting from the undetected

neutralino – and possibly leptons. First searches for the
production of SUSY particles at the LHC have been pub-
lished recently [5, 6, 7].

In the MSSM, the scalar partners of right-handed and
left-handed quarks, q̃R and q̃L, can mix to form two mass
eigenstates. These mixing effects are proportional to the
corresponding fermion masses and therefore become im-
portant for the third generation. In particular, large mix-
ing can yield sbottom (b̃1) and stop (t̃1) mass eigenstates
which are significantly lighter than other squarks. Con-
sequently, b̃1 and t̃1 could be produced with large cross
sections at the LHC, either via direct pair production
or, if kinematically allowed, through g̃g̃ production with
subsequent g̃ → b̃1b or g̃ → t̃1t decays. Depending on
the SUSY particle mass spectrum, the cascade decays of
gluino-mediated and pair-produced sbottoms or stops re-
sult in complex final states consisting of Emiss

T , several jets,
among which b-quark jets (b-jets) are expected, and pos-
sibly leptons.
In this letter, a search for final states involving Emiss

T

and b-quark jets is discussed. Results on searches for direct
sbottom [8, 9], stop [10, 11] and gluino mediated produc-
tion [12] have been previously reported by the Tevatron
experiments, placing exclusion limits on the mass of these
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particles in several MSSM scenarios.

The search described here is based on pp collision data
at a centre-of-mass energy of 7 TeV recorded by the AT-
LAS experiment at the LHC in 2010. The total data set
corresponds to an integrated luminosity of 35 pb−1. To en-
hance the sensitivity to different SUSY models, the search
was performed using two mutually exclusive final states,
characterised by the presence of leptons. They are referred
to as zero-lepton and one-lepton analyses in the following.

In the zero-lepton analysis, events are required to con-
tain energetic jets, of which one must be identified as a
b-jet, large Emiss

T and no isolated leptons (e or µ). The
zero-lepton analysis is employed to search for gluinos and
sbottoms in MSSM scenarios where the b̃1 is the light-
est squark, all other squarks are heavier than the gluino,
and mg̃ > m

b̃
1

> m
χ̃0

1

, such that the branching ratio

for g̃ → b̃1b decays is 100%. Sbottoms are produced via
gluino-mediated processes or via direct pair production.
They are assumed to decay exclusively via b̃1 → bχ̃0

1, where
m

χ̃0

1

is assumed to be 60 GeV, above the present exclusion

limit [13].

In the one-lepton analysis, events are required to contain
energetic jets, of which one must be identified as a b-jet,
large Emiss

T and at least one high-pT electron or muon.
This analysis is sensitive to SUSY scenarios in which the
stop is the lightest squark and mg̃ > m

t̃
1

. If the stop

decay channel t̃1 → bχ̃±

1 dominates, possible subsequent
χ̃±

1 → χ̃0
1l

±ν decays result in experimental signatures with
energetic charged leptons in addition to b-jets and Emiss

T .
In the present analysis, only g̃g̃ and t̃1t̃1 pair production
are considered, with 100% branching ratios for the g̃ → t̃1t
and t̃1 → bχ̃±

1 decays. The chargino is assumed to have a
mass m

χ̃±

1

≃ 2 · m
χ̃0

1

, with m
χ̃0

1

= 60 GeV, and to decay

through a virtual W boson (BR(χ̃±

1 → χ̃0
1l

±ν)=11%).

In addition to the aforementioned phenomenological
MSSM models, the results are interpreted in the frame-
work of minimal supergravity (MSUGRA/CMSSM [14])
and in specific Grand Unification Theories (GUTs) based
on the gauge group SO(10) [15]. For MSUGRA/CMSSM,
limits on the universal scalar and gaugino mass pa-
rameters (m0,m1/2) are presented for fixed values of
the ratio of the Higgs vacuum expectation value,
tanβ=40, the common trilinear coupling at the GUT scale
A0=0 GeV(−500 GeV), and the sign of the Higgsino mix-
ing parameter µ > 0. Taking large values of tanβ or neg-
ative values of A0 with other model parameters held fixed
leads to lower third generation sparticle masses compared
to those of the other sparticles. Depending on m0 and
m1/2, any of the final states such as q̃q̃, q̃g̃ and g̃g̃ might be

dominant. In the SO(10) scenario, the SUSY particle mass
spectrum is characterised by the low masses of the gluinos
(300-600 GeV), charginos (100-180 GeV) and neutralinos
(50-90 GeV), whereas all scalar particles have masses be-
yond the TeV scale. Depending on the sparticle masses,
chargino-neutralino and gluino-pair production dominate.

The three-body gluino decays g̃ → bb̄χ̃0
1 and g̃ → bb̄χ̃0

2 are
expected to lead to final states with high b-jet multiplici-
ties. Two specific models are considered [16], the D-term
splitting model, DR3, and the Higgs splitting model, HS.

2. The ATLAS Detector

The ATLAS detector [17] comprises an inner detector
surrounded by a thin superconducting solenoid, and a
calorimeter system. Outside the calorimeters is an exten-
sive muon spectrometer in a toroidal magnetic field.
The inner detector system is immersed in a 2T ax-

ial magnetic field and provides tracking information for
charged particles in a pseudorapidity range |η| < 2.5.1 The
highest granularity is achieved around the vertex region
using silicon pixel and microstrip detectors. These detec-
tors allow for an efficient tagging of jets originating from
b-quark decays using impact parameter measurements and
the reconstruction of secondary decay vertices. The tran-
sition radiation tracker, which surrounds the silicon detec-
tors, contributes to track reconstruction up to |η| = 2.0
and improves the electron identification by the detection
of transition radiation.
The calorimeter system covers the pseudorapidity range

|η| < 4.9. The highly segmented electromagnetic calorime-
ter consists of lead absorbers with liquid argon as the ac-
tive material and covers the pseudorapidity range |η| <
3.2. In the region |η| < 1.8, a presampler detector con-
sisting of a thin layer of liquid argon is used to correct for
the energy lost by electrons, positrons, and photons up-
stream of the calorimeter. The hadronic tile calorimeter
is a steel/scintillating-tile detector and is placed directly
outside the envelope of the electromagnetic calorimeter.
In the forward regions, it is complemented by two end-
cap calorimeters using liquid argon as active material and
copper or tungsten as absorber material.
Muon detection is based on the magnetic deflection of

muon tracks in the large superconducting air-core toroid
magnets, instrumented with separate trigger and high-
precision tracking chambers. A system of three toroids,
a barrel and two end-caps, generates the magnetic field
for the muon spectrometer in the pseudorapidity range
|η| < 2.7.

3. Simulated Event Samples

Simulated event samples were used to determine the de-
tector acceptance, the reconstruction efficiencies and the
expected event yields for signal and background processes.
SUSY signal processes were generated for various mod-

els using the HERWIG++ [18] v2.4.2 Monte Carlo program.

1The azimuthal angle φ is measured around the beam axis and the
polar angle θ is the angle from the beam axis. The pseudorapidity
is defined as η = − ln tan(θ/2). The distance ∆R in the η − φ space

is defined as ∆R =
√

(∆η)2 + (∆φ)2.
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Physics process σ· BR [nb]

W → ℓν (+jets) 31.4±1.6 [23, 24, 25]
Z/γ∗

→ ℓ+ℓ− (+jets) 3.20±0.16 [23, 24, 25]
Z → νν̄ (+jets) 5.82±0.29 [23, 24, 25]
tt̄ 0.165+0.011

−0.016 [26, 27, 28]
Single top 0.037±0.002 [26, 27, 28]
Dijet (p̂T > 8 GeV) 10.47×106 [29]

Table 1: The most important background processes and their pro-
duction cross sections, multiplied by the relevant branching ratios
(BR). Contributions from higher order QCD corrections are included
for W and Z boson production (NNLO corrections) and for tt̄ pro-
duction (NLO+NNLL corrections). The inclusive QCD jet cross sec-
tion is given at leading order (LO). The QCD sample was generated
with a cut on the transverse momentum of the partons involved in
the hard-scattering process, p̂T.

The particle mass spectra and decay modes were deter-
mined using the ISASUSY from ISAJET [19] v7.80 and
SUSYHIT [20] v1.3 programs. The latter was used for the
assumed MSSM scenarios, which are parametrised in the
(mg̃,mb̃

1

) and (mg̃,mt̃
1

) planes, with gluino masses above

300 GeV. The SUSY sample yields were normalised to the
results of next-to-leading order (NLO) calculations, as ob-
tained using the PROSPINO [21] v2.1 program. For these
calculations the CTEQ6.6M [22] parametrisation of the
parton density functions (PDFs) was used and the renor-
malisation and factorisation scales were set to the average
mass of the sparticles produced in the hard interaction.
For the backgrounds the following Standard Model pro-

cesses were considered:

• tt̄ and single top production: events were generated
using the generator MC@NLO [30, 31] v3.41. For the
evaluation of systematic uncertainties, additional tt̄
samples were generated using the POWHEG [32] and
ACERMC [33] programs.

• W (→ ℓν)+jet, Z/γ∗(→ ℓ+ℓ−)+jet (where ℓ = e, µ, τ)
and Z(→ νν̄) +jet production: events with light
and heavy (b) flavour jets were generated using the
ALPGEN [34] v2.13 program. A generator level cut
mℓℓ > 40 GeV was applied to the Z/γ∗(→ ℓ+ℓ−)
process.

• Jet production via QCD processes (referred to as
“QCD background” in the following): events were
generated using the PYTHIA [29] v6.4.21 generator.
For the evaluation of systematic uncertainties, sam-
ples produced with ALPGEN were used.

• Di-boson (WW , WZ and ZZ) production: events
were generated using ALPGEN, however, compared to
the other backgrounds their contribution was found
to be negligible, after the application of the selection
criteria.

All signal and background samples were generated at√
s = 7 TeV using the ATLAS MC09 parameter tune [35],

processed with the GEANT4 [36] simulation of the ATLAS
detector [37], and then reconstructed and passed through
the same analysis chain as the data. For all generators, ex-
cept for PYTHIA, the HERWIG + JIMMY [18, 38] modelling of
the parton shower and underlying event was used (v6.510
and v4.31, respectively).
For the comparison to data, all background cross sec-

tions, except the QCD background cross section, were nor-
malised to the results of higher order QCD calculations.
A summary of the relevant cross sections is given in Ta-
ble 1. For the next-to-next-to-leading order (NNLO) W
and Z/γ∗ production cross sections, an uncertainty of±5%
is assumed [39]. For the tt̄ production cross section, the
corresponding uncertainty on the NLO+NNLL (next-to-
next-to-leading logarithms) cross section was estimated to

be +6.5%
−9.5%. For the QCD background, no reliable prediction

can be obtained from a leading order Monte Carlo simula-
tion and data-driven methods were used to determine the
residual contributions of this background to the selected
event samples, as discussed in Section 5.

4. Data and Event Selection

After the application of beam, detector and data-quality
requirements, the data set used for this analysis resulted
in a total integrated luminosity of 35 pb−1.
For the zero-lepton analysis, events were selected at the

trigger level by requiring jets with high transverse momen-
tum. The selection is fully efficient for events containing
at least one jet with pT > 120 GeV. A further trigger level
requirement of Emiss

T > 25 GeV was applied [40]. For the
one-lepton analysis, the trigger selection was based on sin-
gle lepton triggers, which retain events if an electron with
pT > 15 GeV or a muon with pT > 13 GeV is present
within the trigger acceptance.

In the data sample selected, jet candidates were recon-
structed by using the anti-kt jet clustering algorithm [41,
42, 43] with a distance parameter of R=0.4. The inputs to
this algorithm are three dimensional topological calorime-
ter energy clusters. The jet energies were corrected for
inhomogeneities and for the non-compensating nature of
the calorimeter by using pT- and η-dependent calibration
factors. They were determined from Monte Carlo simu-
lation and validated using extensive test-beam measure-
ments and studies of pp collision data (Ref. [44] and ref-
erences therein). Only jets with pT > 20 GeV and within
|η| < 2.5 were retained. Candidates for b-jets were iden-
tified among jets with pT > 30 GeV using an algorithm
that reconstructs a vertex from all tracks which are dis-
placed from the primary vertex and associated with the
jet. The parameters of the algorithm were chosen such
that a tagging efficiency of 50% (1%) was achieved for b-
jets (light flavour or gluon jets) in tt̄ events in Monte Carlo
simulation [45].
Electron candidates were required to satisfy the

‘medium’ (zero-lepton analysis) or ‘tight’ (one-lepton anal-
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ysis) selection criteria, as detailed in Ref. [46]. Muon can-
didates were identified either as a match between an ex-
trapolated inner detector track and one or more segments
in the muon spectrometer, or by associating an inner de-
tector track to a muon spectrometer track. The combined
track parameters were derived from a statistical combina-
tion of the two sets of track parameters. Electrons and
muons were required to have pT > 20 GeV and |η| < 2.47
or |η| < 2.4, respectively.
The calculation of Emiss

T is based on the modulus of
the vectorial sum of the pT of the reconstructed jets
(with pT > 20 GeV and over the full calorimeter cover-
age |η| < 4.9), leptons (including non–isolated muons) and
the calorimeter clusters not belonging to reconstructed ob-
jects.
After object identification, overlaps were resolved. Any

jet within a distance ∆R = 0.2 of a medium electron can-
didate was discarded. The whole event was rejected if one
or more electrons were identified in the transition region
1.37 < |η| < 1.52 between the barrel and endcap calorime-
ters. Any remaining lepton within ∆R = 0.4 of a jet was
discarded.
Events were selected if a reconstructed primary vertex

was found associated with five or more tracks, and if they
passed basic quality criteria against detector noise and
non-collision backgrounds.
In the zero-lepton analysis, events were required to have

at least one jet with pT > 120 GeV, two additional jets
with pT > 30 GeV and Emiss

T > 100 GeV. At least one
jet is required to be b-tagged. Events containing identi-
fied ‘medium’ electron or muon candidates were rejected.
The effective mass, meff , is defined as the scalar sum of
Emiss

T and the transverse momenta of the highest pT jets
(up to a maximum of four). Events were required to have
Emiss

T /meff > 0.2. In addition, the smallest azimuthal sep-
aration between the Emiss

T direction and the three lead-
ing jets, ∆φmin, was required to be larger than 0.4. The
last requirement reduces the amount of QCD background
effectively since, in this case, Emiss

T results from mis-
reconstructed jets or from neutrinos emitted along the di-
rection of the jet axis by heavy flavour decays.
In the one-lepton analysis, events were required to have

at least one muon or a ‘tight’ electron, two jets with pT >
60 GeV and pT > 30 GeV respectively, Emiss

T > 80 GeV
and mT > 100 GeV, where mT is the transverse mass
constructed using the highest pT lepton and Emiss

T . At
least one jet is required to be b-tagged. The mT cut rejects
events with a W boson in the final state.
In both analyses, further cuts on meff were applied to

maximise the sensitivity to gluino-mediated production of
sbottoms or stops. A threshold on meff at 600 GeV (500
GeV) was chosen for the zero-lepton (one-lepton) analysis.
It should be noted that for the one-lepton analysis the
transverse momenta of reconstructed leptons are included
in the definition of the meff .
The event selection efficiency for each SUSY signal hy-

pothesis was calculated as the sum of the efficiencies for

the g̃g̃ and b̃1b̃1 (t̃1 t̃1) processes, weighted by their re-
spective NLO cross sections. For the zero-lepton selec-
tion, the efficiency varies between 7% and 50% across the
(mg̃,mb̃

1

) plane. The lowest values are found at large

∆m= mg̃ −m
b̃
1

, where the production of b̃1b̃1 pairs dom-

inates. As ∆m decreases, high efficiency values are found
down to ∆m ≃ 20 GeV. For the one-lepton channel,
the efficiency for (g̃, t̃1)-type SUSY signals varies between
0.4% and 3% across the (mg̃,mt̃

1

) plane and depends on

∆m =mg̃-mt̃
1

in a similar way to the gluino-sbottom case.

No additional dedicated optimisations were performed
for the MSUGRA/CMSSM and SO(10) scenarios. The
efficiencies for the zero-lepton (one-lepton) selection
for MSUGRA/CMSSM range between 8% (1%) for
m1/2 ≃ 130 GeV and 23% (12%) for m1/2 ≃ 340 GeV,

with a smaller dependence on m0. For SO(10) models,
the highest sensitivity is reached in the zero-lepton anal-
ysis, with dominant contributions via g̃g̃ production. In
this case, the efficiencies vary between 7% and 20% as the
gluino mass increases and are generally found to be larger
for the DR3 scenario than for the HS scenario.

5. Standard Model Background Estimation

Standard Model processes contribute to the events that
survive the selection described in the previous section. The
dominant source is tt̄ production due to the presence of
jets, Emiss

T and b-quarks in the final state.
The QCD background to the zero-lepton final state was

estimated by normalising the PYTHIA Monte Carlo pre-
diction to data in a QCD-enriched control region defined
by ∆φmin < 0.4. The Monte Carlo was then used to eval-
uate the ratio between the number of events in this control
region and the signal region (∆φmin > 0.4). In the one-
lepton final state the number of QCD multi-jet events was
estimated using a matrix method similar to the one de-
scribed in Ref. [39]. Cuts on the electron and muon iden-
tification were relaxed to obtain “loose” control samples
that are dominated by QCD jets.
The non-QCD background in the zero-lepton final state

was estimated using Monte Carlo simulation, while in
the case of the one-lepton final state a data-driven tech-
nique is employed. This method exploits the low correla-
tion between meff and mT. Four regions were defined:
(A) 40 < mT < 100 GeV and meff < 500 GeV, (B)
mT > 100 GeV and meff < 500 GeV, (C) 40 < mT <
100 GeV and meff > 500 GeV and (D) mT > 100 GeV
and meff > 500 GeV. Regions A-C are dominated by back-
ground from tt̄ and W+jet production. Assuming that
the variables are uncorrelated, the number of background
events in the signal region is given by ND = NC×NB/NA,
where NA, NB, NC are the numbers of events in the re-
gions A, B and C, respectively. A Monte Carlo simulation
was used to validate the method and to establish possi-
ble sources of systematic uncertainties. The small number
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of events in the control regions is the main limitation of
the method. It was also checked that a SUSY signal con-
tamination does not bias the estimated background and
that any bias is smaller than the systematic uncertainties
assigned to the method and on the expected SUSY predic-
tion.

6. Systematic Uncertainties

Various systematic uncertainties affecting signal and
background rates were considered.
For the zero-lepton analysis, the backgrounds from tt̄

and W/Z+jet production are taken from Monte Carlo sim-
ulation. The total uncertainty on this prediction was es-
timated to be ±35% after the final selection. It is domi-
nated by the uncertainty on the jet energy scale (JES) [44],
the uncertainty on the theoretical prediction of the back-
ground processes and the uncertainty on the determina-
tion of the b-tagging efficiency [45]. The uncertainty on
the jet energy scale varies as a function of jet pT, and
decreases from 6% at 20 GeV to 4% at 100 GeV, with
additional contributions taking into account the depen-
dence of the jet response on the jet isolation and flavour.
This translates into a ±25% uncertainty on the absolute
prediction of the background from SM processes. Uncer-
tainties on the theoretical cross sections of the background
processes (see Section 3), on the modelling of initial and
final-state soft gluon radiation and the limited knowledge
of the PDFs of the proton lead to uncertainties of ±20%
and ±25% on the absolute predictions of the tt̄ and the
W/Z+jet backgrounds, respectively. The uncertainty on
the determination of the tagging efficiency for b-jets, c-
jets and light-jets introduces further uncertainties on the
predicted background contributions at the level of ±12%
for tt̄ and ±25% for W/Z+jets. Other uncertainties re-
sult from the modelling of additional pile–up interactions
(±5%) and of the trigger efficiency (±3%) in the Monte
Carlo simulation. For the QCD background estimation,
the uncertainty is dominated by the limited number of
Monte Carlo events available for the zero-lepton analysis.
For the one-lepton analysis, where a data-driven tech-

nique was employed, the small event number in the control
regions was the dominant uncertainty (±25%). Residual
uncertainties associated to the method due to the JES,
b-tagging, lepton identification and theoretical predictions
of the relative contributions of W and tt̄ backgrounds were
studied using Monte Carlo simulation and estimated to be
at the level of ±8%.
For the SUSY signal processes, various sources of uncer-

tainties affect the theoretical NLO cross sections. Varia-
tions of the renormalisation and factorisation scales by a
factor of two result in uncertainties of ±16% for g̃g̃ pro-
duction and ±30% (±27%) for b̃1b̃1 (t̃1t̃1) pair production,
almost independently of the sparticle mass and the SUSY
model. Uncertainties for q̃q̃ and q̃g̃ production, relevant
in MSUGRA/CMSSM scenarios, were estimated to be at
the level of ±10% and ±15%, respectively.

The number of predicted signal events is also affected by
the PDF uncertainties, estimated using the CTEQ 6.6M
PDF error eigenvector sets at the 90% C.L. limit, and
rescaled by 1/1.645. The relative uncertainties on the g̃g̃
(b̃1b̃1, t̃1t̃1) cross sections were estimated to be in the range
from±11% to ±25% (±7% to ±16%) for the g̃g̃ (b̃1b̃1, t̃1 t̃1)
processes, depending on the gluino (sbottom, stop) masses.
For first and second generation squark-pair and associated
gluino-squark production, the uncertainty on the PDFs
varies between ±5% and ±15% as the squark masses in-
crease. The impact of detector related uncertainties, such
as the JES and b-tagging, on the signal event yields de-
pends on the masses of the most copiously produced spar-
ticles. The total uncertainty varies between ±25% and
±10% as the gluino/squark masses increase from 300 GeV
to 1 TeV, across the different scenarios, and it is domi-
nated by the JES and the b-tagging uncertainty for low
and high mass sparticles, respectively.
Finally, an additional ±11% uncertainty on the quoted

total integrated luminosity was taken into account [47].

7. Results

In Figure 1 the distributions of meff and of Emiss
T are

shown for the two analyses. For the Emiss
T distributions all

cuts described in Section 4 are applied. The meff distri-
butions are shown after the application of all cuts, except
for the meff cut.
The expectations from Standard Model background pro-

cesses are superimposed. For illustration, the figures also
include the distributions expected for SUSY signals. For
the zero-lepton channel, a scenario with mg̃ = 500 GeV
and m

b̃
1

= 380 GeV is chosen, while for the one-lepton

channel the relevant masses are mg̃ = 400 GeV and
m

t̃
1

= 210 GeV. In Table 2, the observed number of events

and the predictions for contributions from Standard Model
processes are presented. For both analyses, the data are
in agreement with the Standard Model predictions, within
uncertainties.
The results are translated into 95% C.L. upper limits on

contributions from new physics. Limits were derived using
a profile likelihood ratio, Λ(s), where the likelihood func-
tion of the fit was written as L(n|s, b, θ) = PS × CSyst; n
represents the number of observed events in data, s is the
SUSY signal under consideration, b is the background, and
θ represents the systematic uncertainties. The P function
is a Poisson-probability distribution for event counts in the
defined signal region and CSyst represents the constraints
on systematic uncertainties, which are treated as nuisance
parameters with a Gaussian probability density function
and correlated when appropriate. The exclusion p-values
are obtained from the test statistic Λ(s) using pseudo-
experiments and one-sided upper limits are set [48].
Upper limits at 95% C.L. on the number of signal events

in the signal regions are obtained independently of new
physics models for the zero- and one-lepton final states.
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Figure 1: Distributions of the effective mass, meff , (left) and the Emiss
T

, (right) for data and for the expectations from Standard Model processes
after the baseline selections in the zero-lepton(top) and one-lepton channel (bottom). The data correspond to an integrated luminosity of
35 pb−1. Black vertical bars show the statistical uncertainty of the data. The yellow band shows the full systematic uncertainty on the SM
expectation. The Emiss

T
distributions are shown after a cut on meff at 600 GeV (zero-lepton) and 500 GeV (one-lepton). For illustration, the

distributions for one reference SUSY signal, relevant for each channel, are superimposed.

These numbers are 10.4 and 4.7, respectively, and corre-
spond to 95% C.L. upper limits on effective cross sections
for new processes of 0.32 pb and 0.13 pb for the zero- and
one-lepton channel, respectively. The cross section upper
limits include the ±11% uncertainty on the quoted total
integrated luminosity.

These results can be interpreted in terms of 95% C.L.
exclusion limits in several SUSY scenarios. In Figure 2
the observed and expected exclusion regions are shown
in the (mg̃,mb̃

1

) plane, for the hypothesis that the light-

est squark b̃1 is produced via gluino-mediated or direct
pair production and decays exclusively via b̃1 → bχ̃0

1. The
zero-lepton channel was considered for this model and the
largest acceptance was found for g̃g̃ production. The limits
do not strongly depend on the neutralino mass assumption
as long as mg̃−m

χ̃0

1

is larger than 250-300 GeV, due to the

harsh kinematic cuts. Gluino masses below 590 GeV are
excluded for sbottom masses up to 500 GeV. These lim-
its depend weakly – via the dependence of the production

cross section for g̃g̃ production – on the masses of the first
and second generation squarks, q̃1,2. Variations of these
masses in the range between ∼3 TeV and 2 ·mg̃ reduce the
excluded mass region by less than 20 GeV.

The zero-lepton analysis was also employed to extract
limits on the gluino mass in the two SO(10) scenarios, DR3
and HS. Gluino masses below 500 GeV are excluded for the
DR3 models considered, where g̃ → bb̄χ̃0

1 decays dominate.
A lower sensitivity (mg̃ < 420 GeV) was found for the

HS model, where larger branching ratios of g̃ → bb̄χ̃0
2 are

expected and the efficiency of the selection is reduced with
respect to the DR3 case.

The results of the one-lepton analysis were interpreted
as exclusion limits on the (mg̃,mt̃

1

) plane in the hypoth-

esis that the lightest t̃1 is produced via gluino-mediated
or direct pair production. Stop masses above 130 GeV
are considered, and t̃1 is assumed to decay exclusively via
t̃1 → bχ̃±

1 . In Figure 3 the observed and expected exclusion
limits are shown as a function of mg̃ for two representa-
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0-lepton 1-lepton 1-lepton
Monte Carlo data-driven

tt̄ and single top 12.2± 5.0 12.3± 4.0 14.7± 3.7
W and Z 6.0± 2.0 0.8± 0.4 -
QCD 1.4± 1.0 0.4± 0.4 0+0.4

−0.0

Total SM 19.6± 6.9 13.5± 4.1 14.7± 3.7
Data 15 9 9

Table 2: Summary of the expected and observed event yields. The
QCD prediction for the zero-lepton channel is based on the semi-
data-driven method described in the text. For the one-lepton chan-
nel, the results for both the Monte Carlo and the data-driven ap-
proach are given. Since the data-driven technique does not distin-
guish between top and W/Z backgrounds the total background es-
timate is shown in the top row. The errors are systematic for the
expected Monte Carlo prediction and statistical for the data-driven
technique.

tive values of the stop mass. Gluino masses below 520 GeV
are excluded for stop masses in the range between 130 and
300 GeV.
Finally, the results of both analyses were used to calcu-

late 95% C.L. exclusion limits in the MSUGRA/CMSSM
framework with large tanβ. Figure 4 shows the observed
and expected limits in the (m0,m1/2) plane, assuming
tanβ = 40, and fixing µ >0 and A0 = 0. The largest
sensitivity is found for the zero-lepton analysis. The
combination of the two analyses, which takes account of
correlations between systematic uncertainties of the two
channels, is also shown. Sbottom and stop masses be-
low 550 GeV and 470 GeV are excluded across the plane,
respectively. Due to the MSUGRA/CMSSM constraints,
this interpretation is also sensitive to first and second gen-
eration squarks. From the present analysis, masses of these
squarks below 600 GeV are excluded for mg̃ ≃ mq̃. Gluino
masses below 500 GeV are excluded for the m0 range be-
tween 100 GeV and 1 TeV, independently on the squark
masses. Changing the A0 value from 0 to −500 GeV lead
to significant variations in third generation squark mixing.
Across the (m0,m1/2) parameter space, sbottom and stop

masses decrease by about 10% and 30%, respectively, if
A0 is changed from 0 to −500 GeV. The exclusion region
of the one-lepton analysis, mostly sensitive to stop final
states, extends the zero-lepton reach by about 20 GeV in
m1/2 for m0 <600 GeV.

8. Conclusions

The ATLAS collaboration has presented a first search
for supersymmetry in final states with missing transverse
momentum and at least one b-jet candidate in proton-
proton collisions at 7 TeV. The results are based on data
corresponding to an integrated luminosity of 35 pb−1 col-
lected during 2010. These searches are sensitive to the
gluino-mediated and direct production of sbottoms and
stops, the supersymmetric partners of the third genera-
tion quarks, which, due to mixing effects, might be the
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Figure 2: Observed and expected 95% C.L. exclusion limits, as ob-
tained with the zero-lepton channel, in the (mg̃ ,mb̃

1

) plane. The

neutralino mass is assumed to be 60 GeV and the NLO cross sections
are calculated using PROSPINO in the hypothesis of mq̃

1,2

≫ mg̃. The

result is compared to previous results from CDF searches which as-
sume the same gluino-sbottom decays hypotheses, a neutralino mass
of 60 GeV and mq̃

1,2

= 500 GeV (≫ mg̃ for the Tevatron kinematic

range). Exclusion limits from the CDF and D0 experiments on direct
sbottom pair production [8, 9] are also reported.
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Figure 3: Observed and expected 95% C.L. upper limits, as obtained
with the one-lepton analysis, on the gluino-mediated and stop pair
production cross section as a function of the gluino mass for two
assumed values of the stop mass and BR(t̃

1
→ bχ̃±

1
) = 1. The

chargino is assumed to have twice the mass of the neutralino (=
60 GeV) and NLO cross sections are calculated using PROSPINO in
the hypothesis of mq̃

1,2

≫ mg̃. Theoretical uncertainties on the

NLO cross sections are included in the limit calculation.

lightest squarks.

Since no excess above the expectations from Standard
Model processes was found, the results are used to exclude
parameter regions in various R-parity conserving SUSY
models. Under the assumption that the lightest squark b̃1
is produced via gluino-mediated processes or direct pair
production and decays exclusively via b̃1 → bχ̃0

1, gluino
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Figure 4: Observed and expected 95% C.L. exclusion limits as ob-
tained from the zero- and one-lepton analyses, separately and com-
bined, on MSUGRA/CMSSM scenario with tanβ = 40, A0 = 0,
µ > 0. The light-grey dashed lines are the iso-mass curves for gluinos
and sbottom – stop masses are 15% lower than sbottom masses,
across the (m0, m1/2

) parameter space. The results are compared to

previous limits from the LEP experiments [13].

masses below 590 GeV are excluded with 95% C.L. up to
sbottom masses of 500 GeV. Alternatively, assuming that
t̃1 is the lightest squark and the gluino decays exclusively
via g̃ → t̃1t, and t̃1 → bχ̃±

1 , gluino masses below 520 GeV
are excluded for stop masses in the range between 130 and
300 GeV.
In specific models based on the gauge group SO(10),

gluinos with masses below 500 GeV and 420 GeV are ex-
cluded for the DR3 and HS models, respectively.
In an MSUGRA/CMSSM framework with large tanβ, a

significant region in the (m0,m1/2) plane can be excluded.
For the parameters tanβ = 40, A0 = 0 and µ > 0, sbottom
masses below 550 GeV and stop masses below 470 GeV are
excluded with 95% C.L. Gluino masses below 500 GeV are
excluded for the m0 range between 100 GeV and 1 TeV,
independently on the squark masses.
These analyses improve significantly on the regions of

SUSY parameter space excluded by previous experiments
that searched for similar scenarios.
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P. Barrillon115, R. Bartoldus143, A.E. Barton71, D. Bartsch20, V. Bartsch149, R.L. Bates53, L. Batkova144a,
J.R. Batley27, A. Battaglia16, M. Battistin29, G. Battistoni89a, F. Bauer136, H.S. Bawa143,e, B. Beare158, T. Beau78,
P.H. Beauchemin118, R. Beccherle50a, P. Bechtle41, H.P. Beck16, M. Beckingham48, K.H. Becks174, A.J. Beddall18c,
A. Beddall18c, S. Bedikian175, V.A. Bednyakov65, C.P. Bee83, M. Begel24, S. Behar Harpaz152, P.K. Behera63,
M. Beimforde99, C. Belanger-Champagne166, P.J. Bell49, W.H. Bell49, G. Bella153, L. Bellagamba19a, F. Bellina29,
M. Bellomo119a, A. Belloni57, O. Beloborodova107, K. Belotskiy96, O. Beltramello29, S. Ben Ami152, O. Benary153,
D. Benchekroun135a, C. Benchouk83, M. Bendel81, B.H. Benedict163, N. Benekos165, Y. Benhammou153,
D.P. Benjamin44, M. Benoit115, J.R. Bensinger22, K. Benslama130, S. Bentvelsen105, D. Berge29,
E. Bergeaas Kuutmann41, N. Berger4, F. Berghaus169, E. Berglund49, J. Beringer14, K. Bernardet83, P. Bernat77,
R. Bernhard48, C. Bernius24, T. Berry76, A. Bertin19a,19b, F. Bertinelli29, F. Bertolucci122a,122b, M.I. Besana89a,89b,
N. Besson136, S. Bethke99, W. Bhimji45, R.M. Bianchi29, M. Bianco72a,72b, O. Biebel98, S.P. Bieniek77, J. Biesiada14,
M. Biglietti134a,134b, H. Bilokon47, M. Bindi19a,19b, S. Binet115, A. Bingul18c, C. Bini132a,132b, C. Biscarat177,
U. Bitenc48, K.M. Black21, R.E. Blair5, J.-B. Blanchard115, G. Blanchot29, C. Blocker22, J. Blocki38, A. Blondel49,
W. Blum81, U. Blumenschein54, G.J. Bobbink105, V.B. Bobrovnikov107, S.S. Bocchetta79, A. Bocci44, C.R. Boddy118,
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R. Mandrysch15, J. Maneira124a, P.S. Mangeard88, I.D. Manjavidze65, A. Mann54, P.M. Manning137,
A. Manousakis-Katsikakis8, B. Mansoulie136, A. Manz99, A. Mapelli29, L. Mapelli29, L. March 80, J.F. Marchand29,
F. Marchese133a,133b, G. Marchiori78, M. Marcisovsky125, A. Marin21,∗, C.P. Marino61, F. Marroquim23a, R. Marshall82,
Z. Marshall34,r, F.K. Martens158, S. Marti-Garcia167, A.J. Martin175, B. Martin29, B. Martin88, F.F. Martin120,
J.P. Martin93, Ph. Martin55, T.A. Martin17, B. Martin dit Latour49, M. Martinez11, V. Martinez Outschoorn57,
A.C. Martyniuk82, M. Marx82, F. Marzano132a, A. Marzin111, L. Masetti81, T. Mashimo155, R. Mashinistov94,
J. Masik82, A.L. Maslennikov107, M. Maß42, I. Massa19a,19b, G. Massaro105, N. Massol4, A. Mastroberardino36a,36b,
T. Masubuchi155, M. Mathes20, P. Matricon115, H. Matsumoto155, H. Matsunaga155, T. Matsushita67,
C. Mattravers118,s, J.M. Maugain29, S.J. Maxfield73, D.A. Maximov107, E.N. May5, A. Mayne139, R. Mazini151,
M. Mazur20, M. Mazzanti89a, E. Mazzoni122a,122b, S.P. Mc Kee87, A. McCarn165, R.L. McCarthy148, T.G. McCarthy28,
N.A. McCubbin129, K.W. McFarlane56, J.A. Mcfayden139, H. McGlone53, G. Mchedlidze51, R.A. McLaren29,
T. Mclaughlan17, S.J. McMahon129, R.A. McPherson169,i, A. Meade84, J. Mechnich105, M. Mechtel174, M. Medinnis41,
R. Meera-Lebbai111, T. Meguro116, R. Mehdiyev93, S. Mehlhase35, A. Mehta73, K. Meier58a, J. Meinhardt48,
B. Meirose79, C. Melachrinos30, B.R. Mellado Garcia172, L. Mendoza Navas162, Z. Meng151,q, A. Mengarelli19a,19b,
S. Menke99, C. Menot29, E. Meoni11, K.M. Mercurio57, P. Mermod118, L. Merola102a,102b, C. Meroni89a, F.S. Merritt30,
A. Messina29, J. Metcalfe103, A.S. Mete64, S. Meuser20, C. Meyer81, J-P. Meyer136, J. Meyer173, J. Meyer54,
T.C. Meyer29, W.T. Meyer64, J. Miao32d, S. Michal29, L. Micu25a, R.P. Middleton129, P. Miele29, S. Migas73,
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I.A. Minashvili65, A.I. Mincer108, B. Mindur37, M. Mineev65, Y. Ming130, L.M. Mir11, G. Mirabelli132a,
L. Miralles Verge11, A. Misiejuk76, J. Mitrevski137, G.Y. Mitrofanov128, V.A. Mitsou167, S. Mitsui66, P.S. Miyagawa82,
K. Miyazaki67, J.U. Mjörnmark79, T. Moa146a,146b, P. Mockett138, S. Moed57, V. Moeller27, K. Mönig41, N. Möser20,
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F. Touchard83, D.R. Tovey139, D. Traynor75, T. Trefzger173, J. Treis20, L. Tremblet29, A. Tricoli29, I.M. Trigger159a,
S. Trincaz-Duvoid78, T.N. Trinh78, M.F. Tripiana70, N. Triplett64, W. Trischuk158, A. Trivedi24,v, B. Trocmé55,
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73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
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