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ABSTRACT
The T m partial waves are studied up to the F-wave in the mass region from
580 to 1780 MeV/c? at low four-momentum transfer. The study is based on a previous
hydrogen target experiment and a more recent polarized target experiment. Using
the results of both experiments for 0.0l < |t] < 0.20 GeV%/c?, a partial wave
analysis is performed in each mass bin (Am = 40 MeV/c?) independently. For the
first time a model-independent analysis has been possible, which enables us to
check the assumptions made in previous studies. In general we find a unique solu-
tion determining the exact intensity of each partial wave. The uniqueness of our
solution is related to the Barrelet zeros being real in the mass region where their
imaginary parts were supposed to produce ambiguities. We observe a non-T exchange
contribution even in the helicity m = 0 amplitudes. This effect (A, exchange
and/or s-channel absorption) is stronger than previously expected but tends to
decrease with the increasing 7T mass. Apart from the leading resonances (p,f,8)

we see interesting structures in the lower partial waves.



INTRODUCTION

An extensive analysis of the e partial waves above 1 GeV became possiBle
with the high-statistics experiment (v 300,000 events) of the CERN-Munich group [1]
at 17.2 GeV/c on a hydrogen target (hereafter called experiment I). Several studies
were performed in the low four-momentum transfer regions (]t] < o0.15 Gev2/c?), all
based on the results of this experiment. In the absence of polarization data,
some physical assumptions had to be introduced in order to provide the missing

constraints; these were the following:
a) s-channel nucleon spin flip dominance in the unnatural spin-parity amplitudes;

b) phase coherence of the unnatural spin-parity exchange amplitudes with helicity

m=0and m = 1;

¢) identical vanishing of m > 2 t-channel moments (this assumption is well suppor-

ted by the experimental values of moments).
In most studies an additional assumption was made, namely

d) averaging over the t-bin is permitted. This means that instead of extrapola-
tion to the T pole, the partial wave analysis is done in a large t-bin in

the physical t region.
Only assumption (d) is maintained in the present work.

One of the first studies in the mass region covered in the present work was
done by the CERN-Munich Group [2], yielding a solution from 600 MeV/c? to 1900 MeV/c?

with a p!(1600) in the P-wave.

In other papers [3] the CERN-Munich Group and, independently, Estabrooks and
Martin [4] applied the method of Barrelet zeros [5] to investigate ambiguities in
the partial waves. While differing in many details, both approaches [3,4] led
to the same two solutions (A,B) below " 1450 MeV/c? and four (A,B,C,D) above this
mass. The main difference between these solutions is the resonance structure of

the lower waves (S,P,D) above Vv 1450 MeV/c2.
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Shimada [6] showed that the measurement of other charge states should remove

°7° mass spectra obtained by the CERN-

some of these solutions. In fact the raw 7
IHEP-Karlsruhe-Pisa-Vienna Collaboration [7] at 40 GeV/c seem to disagree with

the solutions C and D.

Froggatt and Petersen [8] imposed fixed-t dispersion relations on 7T partial
waves. They arrived at only one solution, B, which is of the B type, i.e. with

the p’(1600) resonance in the P-wave.

Martin and Pennington [9] also imposed analyticity in the form of fixed-t
and fixed-u dispersion relations. They arrived at two solutions: o (of the A

type; without the p’) and B. The main physical differences between these two

solutions are:

@) highly inelastic S-wave above the €(1200) resonance, very little or no p’(1600)

in the P-wave, and a new object called f*(1550) in the D-wave;

B) elastic S-wave vanishing around 1600 MeV, the p’(1600) in the P-wave, and no

£%(1550) in the D-wave.
Martin and Pennington have found also a third solution:

B') essentially similar to B but with stronger S-wave around 1600 MeV and weaker

but still prominent p’(1600).

In the present work we use the results of experiment I and our polarized tar-
get experiment (hereafter called II). The latter yielded v 1,200,000 events of
the reaction ﬂ_p -> ﬂ+ﬂ-n on a butanol (C4HoOH) target. About one third of them
correspond to collisions with free protons (the hydrogen nuclei) with the average
polarization P = 687%. Therefore we do not use the polarization-independent angular
distribution from experiment II since this corresponds mostly to the protons bound
in the carbon or oxygen nuclei; we use instead the results of experiment I. On
the other hand, only free protons contribute to the polarization-dependent angular
distribution in experiment II. As we will see, the very presence of the polariza-
tion effect rules out the basic assumption (a) used in all the above-mentioned

studies. Combining the results of both experiments, we can perform a model-independent
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partial wave analysis avoiding any a priori assumption throughout the paper.
(The cut-off in both the angular momentum £ and the helicity m = 1 which
max max
we will use in the analysis has been motivated by the absence of moments t;, with

L > 2% and M > 2m )
max max

Preliminary results of experiment II were presented previously [10]. The
p(770) mass region has been investigated in detail in refs. 11 and 12, which also
deal with the apparatus, acceptance corrections, and the determination of the
cross-section. The mathematical formalism used for describing nucleon polariza-
tion effects in this reaction (amplitudes, moments, and detailed relations between

them) are described elsewhere [13].

VARIABLES, MOMENTS, AND AMPLITUDES

At a given energy the reaction in question may be described by the following

five variables:

m__: effective mass of the 7T system

™
t: four-momentum transfer to the nucleon
P polarization angle (the angle between the normal to the reaction plane

and the polarization direction)

8,0: decay angles of the T in the mtn rest system (here the Gottfried-

Jackson system).

Owing to parity conservation, the angular distribution for the reaction on a
transversely polarized target is of the general form

I(m ,t,0.9,¥) = Z tlL,I(mm,t) Re Y:Z(cos 6,6) +P _cosy Z pﬁ(mﬂﬂ,t) Re Y;(cos 8,4)

LM L,M

. L L
+ P, sin ] z: rM(mnn’t) Im YM(cos 6,0) ,
L,M



where

Pt is the polarization component perpendicular to the beam direction (the

full proton polarization P = 687 in our case), and
Yﬁ(cos 6,¢) are the spherical harmonic functionms.

The full set of moments

€
ty = €, (Re Yy (cos 8,6)) - = fI(e,cp,w) Re Y(cos 6,9) d cos 6 do dy
L L u L
Py = ZEM(Re YM(cos 8,9) cos V) = I fI(G,d),d)) cos ¥ Re YM(cos 6,0) dcos 6 d¢ dy
rﬁ = 4(Im Yﬁ(cos 6,0) sin ¥) = %vjfl(6,¢,w) sin ¢ Im Y;(cos 8,9) d cos 6 d¢ dy ,
(€M=0 = 1"€M#0 = 2)

and their dependence on effective mass oo and four-momentum transfer t represent

the complete basis of our analysis.

As we have already mentioned, we use the tﬁ moments from experiment I on the
hydrogen target (v 300,000 events). The p; and rﬁ moments come from the polarized
free protons in experiment II. The errors on these moments correspond to what

. would be expected from 60,000 measured events on 1007 polarized protons.

Figure 1 shows the mass dependence of all t-channel moments for 0.01 GeV2?/c? <

< |t]< 0.20 Gev?/c?. The moments are normalized so that tg = 1/v4m,

Following ref. 1 we restrict the analysis to m above 580 MeV/c?, the upper
limit (1780 MeV/c?) being due to the acceptance restriétions of experiment II.
The lower limit of the four-momentum transfer |t| (0.01 GeV?/c?) was chosen above
the kinematic limit for the highest mass considered. The following features of the

moments are seen in fig., 1.

i) The pﬁ moments are generally of the opposite sign to that of the corresponding
t; moments, and are of comparable magnitude. The ratio pﬁ/tﬁ tends to de-
crease with increasing mass. For the ratio pg/tg, which is the left-right

asymmetry, we find the values 0.5 (0.35) for the p (f) resonance on a scale



-5 -

where the maximum value is 1. Between 1450 MeV/c? and 1600 MeV/c?, rapid

changes in the p; moments occur. This effect is somewhat marginal statis-
tically but follows the same pattern in the main moments (L = 2%, M = 0).

Above 1600 MeV/c? the p; moments are consistent with zero within large

errors.

ii) The r; moments are compatible with zero over the whole mass range.

iii) All1 M 2 2 moments are negligible (M = 2 moments become large at high t).

This fact led us to neglect amplitudes with m > 1 in the analysis.

The moments are related to the nucleon transversity amplitudes (spin component
perpendicular to the reaction plane) by the following formulae (they are given

explicitly in refs. 11-13):

LMUU*UU*NN*NN*]
2: Cjk Re (.gj g * hj hk + gj 8 + hj hk

L
RV

ik
L _ LM (u Ux _U Ux_N Nx N N*]
Py ;ZL cjk Re gJ gy hJ hk gJ 4 + h hk
b
L M U Nx U % N Ux N U=
r, = c Re [— . + . + J
j;k j By Bt My Mty g T oMy My

where
U(N) denotes the unnatural (natural) spin parity exchange;
j or k stands for the dipion spin £ and helicity m indices;

c?z contains the Clebsch-Gordan coefficients and factors such as vV2L+1,

Inspection of the structure of the formulae shows that there are no inter-
ference terms between the g and h amplitudes; therefore the phase between the
sets of g and h amplitudes cannot be determined. However, we can determine every-
thing (in principle) within each set of nucleon transversity amplitudes (hereafter
referred to as transversity amplitudes) and this is why we use them in our analy-
sis. Previous studies were always formulated in terms of helicity amplitudes.

Their relations to transversity amplitudes are as follows:



recoil transversity down

[
=2
=
[
Sl
—
[
=
[
BH¥°
——

recoil transversity up

In turn, the helicity amplitudes are defined as follows:

U 2 1 ; UL

nm = "/_— [Uz"m,l/zll/z) + ('1)m ('Q/’-m’lil%>:' n, = (%, 0’§|/

2 spin non-flip

N % 1 N 2 _

nm = ‘5 [(*Q/’m9lf|l§) = (_1)m <ls_ma|5|l/2>] n, =
UL 1 U_ L

fm = ﬁ [(*Q"m’l/z|_%> + (’1)m (,Q,,—m,%l—%)}] fO = <2' 0, 2|_

spin flip .

N_ & 1 N_2 _

£y = [(e,mkl-5) - (D (2,-m,%[-%)] £, =

In the above formulae (Q,m,n]k) is the helicity amplitude describing the transi-
tion from the initial state with the target proton helicity A = *% to the final
state with the recoil neutron helicity n = #%, and the dipion system characterized

by the spin £ and helicity m.

Now let us express the physical assumption of T-exchange dominance in the
reaction under cbnsideration, in the language of both amplitudes. For the s-
channel helicity amplitudes it is equivalent to spin-flip dominance, i.e.

Un. Z 0 for any j, or for transversity amplitudes Ugj = Uhj for any j. Therefore
any non-zero value of the p§ and r; moments could come only from the natural ex-

change contribution, which is small at low four-momentum transfer. Thus the ex-

. L . . .
perimental Py moments rule out assumption (a) of the introduction.



Before proceeding with the analysis, let us make a remark about the reference
system. We use t—channel (Gottfried-Jackson system) moments. The relations between
moments and amplitudes are valid for both s- and t-channel moments as long as the
7T helicities are chosen according to the given channel, and the nucleon helicities
are defined in the s—channel. If we used the t-channel moments and t-channel
helicities we would still obtain good results except for the phase between the
natural and unnatural spin-parity exchange amplitudes. This could be corrected
for by rotating this phase by the Wigner crossing angle (for its definition see
ref. 13). The direction of this rotation depends on the sign of transversity.
Since in any case we are not able to determine the relative phase between the
natural and unnatural spin-parity exchange amplitudes (see below), this rotation

does not make any difference in practice.

DETERMINATION OF THE TRANSVERSITY AMPLITUDES

We consider only amplitudes with m £ 1. This is justified by the vanishing
of the M > 2 t-channel moments and very small values of the M = 2 moments. This
simplification, while important, is not essential for our analysis, since even

with m = 2 amplitudes we have enough observables (considering M > 2 moments).

We divide the entire mass interval into three regions according to the
highest wave that must be used (P, D, or F). The upper limits of the first two
regions (900 MeV/c? and 1380 MeV/c?) are justified a posteriori by the negligible
intensity of the next wave (D or F). We could also check that there is sufficient
consistency for the lower waves calculated with and without this wave. However,
we have no evidence that the G-wave can be neglected at v 1700 MeV/c? even though
the L > 7 moments vanish within errors (see the relevant plots in ref. 1). On
the contrary, Martin and Pennington [9] have shown a good case for the importance
of this wave. Thus we are aware of the fact that our results may be somewhat
distorted in the last few mass bins. Another reason for the possible distortion

is the poor acceptance of experiment II at high mass.
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The characteristics of each mass region are shown in table 1. When fitting

the transversity amplitudes the following parameters are expected to be undetermined
or ambiguous:
i) The over-all phase.
ii) The phase between the g and h amplitudes. The missing information could
only be supplied by a measurement of the polarization of the recoil neutron.
In the absence of this information we can determine everything inside each
set of the transversity amplitudes and such quantities as Igi!z + Ihilz,
which is the intensity of each partial wave, or the ratio |gi|/|hi|. The
deviation of this ratio from unity measures the lower limit of the spin
non-flip amplitudes ni. If ni = 0 then ]gi] = ]hi].
iii) The over-all sign of all relative phases inside each transversity set
(g or h) can be changed.
iv) We expect also discrete ambiguities resulting from bilinear equations relating
moments to amplitudes.

In practice the last item could be the most troublesome one. Therefore some
effort was devoted to finding as many solutions as possible in each mass bin. It
should be remembered that we perform an energy-independent analysis, and each
mass bin is treated separately with many starting values for the fit. They are

(see ref. 13 for details):
i) several sets of random values;

ii) exact analytical solutions of the equations relating moments to amplitudes --

this is possible only in the first mass region;

iii) analytical solutions assuming phase coherence as in the old studies —-- this

is done in the second and third mass regions;

iv) analytical solutions assuming that the P-wave is the weakest one (only in

the second mass region).
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The approximations in (iii) and (iv) are used only for determination of the start-
ing values. It is always the exact formulae that we fit. This is done in 40 MeV/c?
mass bins using the CERN MINUIT program [14]. The fit becomes more difficult and
time-consuming as we include higher waves. Therefore we demand the MINOS error
analysis (see ref. [14] for details) for all parameters only in the first mass
region. In other mass regions these errors were requested only for the leading
amplitudes (m = 0), the errors of other parameters being taken as the MIGRAD

errors [14]. To facilitate the MINUIT task in the third mass region, we fixed the
smallest amplitudes (Ugi, Ng:, Ugf, Ngf and the relevant h amplitudes) at some

reasonably small values. In most mass bins this condition could be partially or

fully released once the proper solution had been found.

The fits are very good, as can be seen from the values of x?/d.f. in table 1.
Apart from the mass regions 900-1100 MeV/c? and ~n 1500 MeV/c?, there is exactly.
one solution in each mass bin; (There is also some ambiguity at 1600 MeV/c? and
1680 MeV/c?, but here the errors overlap. We select the solution with the lower
x?.) The ambiguities in these mass regions may be due to relatively low statistics.
Nevertheless even here one solution is usually favoured by demanding a resonance
shape for the leading waves (Po and/or Do and/or Fo). The only ambiguity which we
cannot resolve in our data is the S-wave ambiguity resembling the old "uﬁ-déwn"
one. We will come back to the problem of ambiguities in section 6 when discussing

the Barrelet zeros.

The phases between the natural and unnatural spin-parity exchange amplitudes
cannot be reliably determined in the four-momentum transfer region under investiga-
tion. This is connected with the small values of the natural exchange amplitudes

and vanishing of the rﬁ moments.

INTENSITIES OF THE PARTIAL WAVES

As we have already mentioned, the exact amount of each wave characterized by

the dipion spin £ and helicity m can be determined as

2 2 2 R A
R P LN P S
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Thus for the first time we can separate the individual partial waves. The partial-
wave intensities thus obtained can be directly compared with the previous results

without any complications due to the relations between helicity and transversity
amplitudes.
The partial-wave cross-sections are shown in fig. 2. Each point represents

the absolute intensity (in microbarns) of the given partial wave in a 40 MeV/c?

mass bin and 0.01 GeV?/c? < |t| < 0.20 GeV?/c? (we do not divide by the bin size).

Thus
512 = (1%21° + 1%01)
al? « (1%21° + %}l
2yl = (%217 + %n17)
ENLEN (LS TR L TR ey

If there is more than one solution the full circle shows the solution which is
more consistent with the tails of the leading resonances p(770), £(1270) and
g(1690) which dominate the Py~, Do- and Fyp-waves, respectively. The choice is
quite obvious around 1000 MeV/c? and less so around 1500 MeV/c?. 1In the S-wave
above the p(770) resonance the full circles represent the solution that is more

similar to the "down" solution generally favoured in previous studies.

We fit the intensities of the leading partial waves by the Breit-Wigner

formula:
2 2
d2g [L |2 . m V2J+1 mRXRF |
dtdm, m 9 m®> -m? -imT ’
Ll R ™ R
where

A = the normalization constant (determined from the P, fit to the p resonance

assuming 1007 elasticity);
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q =% m;ﬂ - m;, where m_ = pion mass;
23+1 D (qpr)
F=Tr [qR] D (qr) °
where

4 = gy = mp)

D

3 centrifugal barrier functions,

and J, mps PR’ and XR are the spin, mass, width, and elasticity of the resonance

in question. The parameter r was left free in the range between 1.0 and 10.0 Gev!
(1 fm = 5 GeV™!). For the Dy-wave we included the isospin I = 2 D-wave. This

was assumed to be purely elastic with the phase shifts given by Hoogland et al. [15].
The results of the fit are compared (table 2) with the relevant Particle Data

Group [16] values, given in brackets.

The consistency with the previous results is quite good (the large errors
for the g resonance are due to the lack of high-mass bins). Since we fit the
partial waves obtained from two high-statistics experiments in a model-independent
way, our results may well represent the best parameters for the p(770) and

£(1270) resonances.

Having extracted resonance parameters from the most prominent features of
the leading waves, we turn to the lower partial waves in fhe mass region above
1400 MeV/c2. As we have already mentioned, it is here that we can distinguish
between various solutions obtained in previous studies. Our results show that
the S-wave passes through a very low value around 1500 MeV/c?, and the Po-wave
probably goes thropgh a broad p’(1600) resonance while the Dgo-wave is of similar
strength. As is seen in fig. 3 these features (especially the last one) strongly
disfavour the o solution of Martin and Pennington. Our points are fairly well
described by the B’ solution, but B cannot be excluded. This distinction is of
minor importance since, according to the authors, B and B! are "two minima in a

fairly shallow plane and not in separated and distinct valleys". It should be
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stressed here that we have normalized the |S|2? + |Py|? + |Do|? values, predicted
by all solutions, to the experimental sum of the relevant intensities. If we had
taken the nominal values, all curves would go up. This would mean even stronger

disagreement for the o solution, but B and B’ would still have been consistent

with our results.

The last remark is even more valid for the comparison with the solutions A,
B, C, and D of ref. 4 shown in fig. 4. Here also we reduced the [S|%+ |Py|2+ |D,|?
before comparison and by a larger amount than was necessary for the a, B, and B’
solutions. If the S, Py, and Dy waves were too strong, some other waves would have
been to weak in old solutions. In the next section we will see that it is the

m = 1 waves which are now stronger in the mass region under consideration.

Coming back to fig. 4 we see that none of the A, B, C, or D solutions fit
the data. The nearest is the B solution, as could be expected since this is the
origin of the B solution. However, it predicts too low an S-wave and too high a
Po-wave. The A solution is ruled out by too high a Dy-wave (as is a). For complete-
ness we show the C and D solutions, which until now have been disfavoured only by
the m°n® data. It is easily seen that they also disagree with our results. There-
fore we solve the old ambiguity, demonstrating the unique solution which is close

to B or B/. 1In section 6 we will see that relative phases confirm this statement.

Let us comment on the fact that our results are closer to B than to B. This
means that somehow the imposing of analyticity shifted the solution in the same
direction as the additional observables supplied by experiment II. This may also

mean that our solution is fairly analytical in the sense demanded by Martin and

Pennington.
Concluding this section, let us comment on lower partial waves.

The Dy-wave is well described by the £f(1270) resonance alone. The fit is
only slightly improved (x? = 5.5/9) if we add a higher D-wave resonance. It could
be an f£’/(1520) resonance, but the parameters of this object (if it exists in our

results) are very badly determined so we cannot make any conclusive statement.
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The £’(1520) would probably be generated via a non-T exchange in order to avoid
the Zweig rule ban in the production process. In this context it is interesting
to note that the main p; moments, i.e. pg, pg, pg and pg, all change rapidly around
1500 MeV/c?. 1If this effect is significant it could indicate that the production
mechanism of the mo = 1500 MeV/c? object is different from all other objects in

the whole mass range.

The Py intensity does not represent a strong argument in favour of the
0'(1600). On the other hand, this resonance is an essential feature of the B-
type solution, which our results favour. Therefore this wave has been tentatively
fitted by the Breit-Wigner formula in the mass region above 1380 MeV/c? using

those solutions denoted by full circles in figs. 3 and 4. The results are also

shown in table 2.

Finally, the S-wave is certainly very complicated, showing first a maximum
at 800 MeV/c?, an ambiguity at (800-900) MeV/c?, then a dip at 1000 MeV/c2, and a
broad bump abruptly terminated at 1500 MeV. We shall come back to the S-wave
after presenting the phases that are consistent with the narrow $*(993) and broad
€(1200) states. Here we will only mention that the rapid fall of the S-wave in-
tensity at 1500 MeV/c? may indicate the presence of another object interfering
with the tail of the €(1200) resonance. The need for many S-wave objects has

been voiced for a long time; recently, Robson [17] argued in favour of glueballs

in this wave.

NON-m EXCHANGE

It has been widely assumed that at low momentum transfer, T exchange is
by far the dominating mechanism of our reaction. Experiment II enables us to in-
vestigate the other exchanges in a model-independent way; namely, we can deter-

mine both the exact amount of the m = 1 waves and the deviation of the m = 0 waves
from pure T exchange.
The intensities of m = 1 waves are also shown in fig. 2. Their main features

are as follows: -
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i) they are noticeable only if the relevant m = 0 wave is resonating;

ii) their relative strength decreases with increasing mass (only PU— and
PN—waves clearly resonate, DU- and DN-waves are consistent with resonance

behaviour, while the FU- and FN-waves are hardly visible);

iii) the natural (e.g. A;) exchange is roughly of a strength equal to that of the

unnatural m = 1 exchange, as was already deduced from the vanishing m = 2
moments.

The so-called "Poor Man's Absorption Model" of Williams [18] predicts the

following relation between the unnatural exchange amplitudes:

L
Ll e
S - A fa+D,
ILUI Mo

2
where [LU|2 = (dzo/dtdm)(lugil + |Uhi|2) and c, is an absorption constant. It

has been found in previous studies [2—4] that ¢, is independent of L but decreases

Ll

with the increasing mo.
In fig. 5 we show the ratio |LU|/[|L0|¢EiET:f13] as a function of oo for
our results. It is immediately seen that this function may be fairly complicated.
The m'% dependence (normalized in the p region) is obviously too weak, thus con-
firming the above-mentioned trend of the absorption constant. On the other hand,
the analysis of Estabrooks and Martin [4] clearly underestimated the amount of
the m = 1 unnatural spin-parity exchange, especially above 1400 MeV/c?. Conse-
quently, the natural exchange was also underestimated. Underestimation of the
m = 1 amplitudes is equivalent to overestimation of the S, Py, and D, intensities
mentioned in the previous section. The leading Fy-wave is probably so fixed by

the tg and tg moments that it does not have much freedom. This is confirmed by

the value of the g(1690) elasticity remaining unchanged (see table 2).

Now let us discuss the leading m = 0 waves. Pion exchange corresponds to
a spin-flip amplitude withm = 0. As we have already observed in section 2,
. . . L e . .
the polarization effect seen in the Py moments shows a significant spin non-flip

component in the leading waves (the m = 1 moments are too weak to be responsible
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for this effect). We cannot determine this component exactly without the (unknown)
phase between the g and h amplitudes. However, we can find its lower limit bylex—
ploring the difference between lg%| and |hf]. In the absence of the spin non-flip
helicity amplitude the moduli of both transversity amplitudes should be equal.
Figure 6 shows that this is not the case in a wide range of m o for S-, Py-, and

Dy-waves.

First let us comment on the errors of the |g§|/|h§] ratio. These errors (being
mainly determined by the errors of the po moments) are larger than the errors of
intensities (mainly constrained by the t; moments). Apart from increasing with
increasing m o these errors are large around 1000 MeV/c?, thus reflecting the
minimum in the number of observed events. Taking this into account we can state
that there is a general difference between the g and h amplitudes. The latter is
usually larger and therefore its phase (see next section) is better determined.
This effect decreases with increasing mass. The lower limit of the spin non-flip
amplitude can be detérmined from the formula

18k - ek
min /3

which yields a non-flip/flip ratio of 28% for the p(770), 167% for the £(1270), and

)
ny]

probably less than 10% for the g(1690). The above fractions represent the minimal
amount of the non-T m = 0 exchange. This lower limit is realized when spin-flip

and non-flip amplitudes are 90° out of phase (see ref. 11).

Considering also the m = 1 unnatural spin-parity exchange discussed above,
we can state that T exchange dominance is weaker than was thought previously.
This exchange becomes more dominant with increasing m o Especially at lower m
there is a considerable amount of exchange with quantum numbers of the A;. We
already know that assumption (a) of the introduction (vanishing of the spin non-flip
amplitudes) is no longer valid. However, Ochs [2] has shown that this assumption

can be replaced by a weaker one, leaving the old 7T phase shifts unchanged. Namely,

it is sufficient to assume that
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a’) the spin non-flip amplitudes are proportional to the relevant spin-flip
amplitudes with a complex constant independent of m and (£,m) at least

for the unnatural exchange.
This assumption translated into the language of transversity amplitudes is equiva-
lent to the following relation (see ref. 11 for a detailed discussion of this
topic):

U &, U 2 _
% /1%0t) = o

UL )
arg| g | - arg|’h | = ¢,

where o and § are independent of %, m, and m o In fig. 6 we see that the
]Ugo|/|Uhol value slowly increases with mo Also, as shown in ref. 11, o for

the S-wave is larger than o for the Pp-wave in the p region. The second relation
deals with the unknown phase § between the g and h amplitudes. However, if this
phase does not depend on the wave, then the relative phase between any g amplitudes

must be equal to the relative phase between the relevant h amplitudes. In the

next section we will see that this is not exactly true.

THE RELATIVE PHASES BETWEEN THE TRANSVERSITY AMPLITUDES

In this analysis, phases provide less information than the intensities.
Firstly, we can calculate only the relative phases in a model-independent way.
Secondly, these phases are calculated for each transversity separately so that the
errors are large. This is particularly so if the moduli of the amplitudes are
small. Consequently the errors of the phases between the h amplitudes are usually
smaller than those between the g amplitudes. Thirdly, all the relative phases
within each transversity set can be multiplied by (-1). When plotting the phases,
we select the possibility closer to the old results. Finally, the phases between
the transversity amplitudes are not necessarily equal to the phases between the
relevant helicity amplitudes. This is only true if assumption (a’), discussed in

the previous section, is valid.

We start the presentation with the S-P, phase (see fig. 7). At low mass this

phase is small, i.e. the S-wave follows the Pyo-wave which increases towards the
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p(770) resonance. Starting from the p(770) there is a difference between the two
transversity amplitudes. The gs-gf phase is small and becomes slowly negative-to
-(50-60)° around (1200-1400) MeV/c? with a possible discontinuity around

(900-1100) MeV/c?. The hS-hE phase behaves in a similar way above 1000 MeV/c2,
exhibiting the discontinuity at (900-1020) MeV/c?. This rapid variation of the
phase (the Py phase should change only slowly by now) together with the drop in

the S-wave intensity represents an argument in favour of the $*(993). But the main

feature of the h_ amplitude is the ambiguity between 750 MeV/c? and 900 MeV/c2.

S

This ambiguity resembles the "up-down'" ambiguity which was apparently solved by
the m°1° data [19] in favour of the "down" solution. The features of this solution
are the strong S-wave up to 900 MeV/c?, relatively large phase (-40°) between the

S and Py, and the 180° phase between the P_ and P, amplitudes in fig. 8 (phase co-

)
herence). The "up'" solution is characterized by the S-wave following the Py-wave,
both in intensity as well as in phase and no phase coherence. It can be seen in
fig. 7 that our results do not give a clear answer to this ambiguity (the curves
are from Estabrooks and Martin [20]). Let us recall that the "up" solution gives

an £(800) S-wave resonance. This resonance is preferred to the €(1200) by the

four—-quark speculations (see, for example, Jaffe [21]).

Above 1150 MeV/c? the S-P, phase stays nearly constant at the level of
-(50-70°). Since the P, phase should be nearly constant far above the p(770) and
well below the possible p’(1600), this means that the S amplitude stays near the
top of the Argand diagram up to at least 1400 MeV/c?. This demonstration of a
broad €(1200) resonance is confirmed by the high intensity of the S-wave (see
fig. 2) and the behaviour of the S-D; phase (see fig. 9). The latter falls slowly
to zero around the £(1270) peak, as is expected for the resonating Do-wave. Thus

we clearly show €(1200) in a model-independent way.

The behaviour of the Po-D, phase (also shown in fig. 9) is easily explained
by the nearly constant Po-wave and the resonating Do-wave, in complete agreement

with the intensities of both waves.
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The solutions A and B of Estabrooks and Martin [4] as well as o and B of
Martin and Pennington are also shown in fig. 9. Even taking into account the
sign ambiguity, the B solution can be ruled out, but B (nearly identical to R’
in this mass region) is only slightly preferred over a. Although the trend of the

g and h phases is the same, the latter are systematically larger.

The same trends are seen in the highest mass region shown in fig. 10. Here
the B’ solution is clearly favoured by our results. The a solution predicts too
high a Po-Fo phase, while the B solution gives too high an S-F, phase. This means

that the S amplitude retains some inelasticity around 1600 MeV/c2.

For completeness we show (fig. 8) the phases between the unnatural spin-parity
exchange amplitudes of the same £. While the phase coherence seems to be in good
shape for the P-wave (apart from the "up" version for the h amplitude) there is a
definite deviation from this prediction for the D-wave. The sign of each relative
phase is fixed by the phase between the leading waves (e.g. the Py-D, phase).

Therefore the difference between the g and h amplitudes is quite significant here.

As already stated, the difference between the relative g and h phases means

that the unknown phase between the g and h amplitudes is not the same for all waves.

In particular the gg-hg phase seems to be different from the others. This in turn
means that the weaker assumption (a’) of Ochs [2] is not exactly valid. To test

this directly we have tried to fit our moments between 1000 MeV/c? and 1400 MeV/c?

assuming
UL _ c UfR
% U m’
an Nfl )

The fits are much worse than those for the transversity amplitudes: mnot only
is x?/d.f. twice as large, but the results are very unstable even for the inten-
sities, and it is almost impossible to determine the MINOS errors [14] for any
parameters. This means that even the weaker assumption (a’) is partially broken

by the polarized target data (which can be directly deduced from the failure of
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the p; moments to be proportional to the tL moments). One of the consequences of

M
this breaking might be the difference between the relative helicity and transver-
sity phases. Therefore the above comparison between our (transversity) results
and the old (helicity) phases should be taken with some caution. Nevertheless,
the qualitative conclusions should be still valid since the breaking of the weak-

ened assumption (a’) of the introduction seems not to be too strong for the m = 0

waves.

THE BARRELET ZEROS OF TRANSVERSITY AMPLITUDES

The 7T scattering amplitude can be written as follows (Rmax = 3):

3 1 5 1
A(mﬂﬂ,z = cos 0) S + V3 Pyz + V5 Do[-z—-z2 —'E] + V7 Fo[5'23 - E-z]

3
=CH(z-zi),
i=1

where c and z, are complex functions of mo From the experimental cross-sections

we determine only the modulus of the amplitude:

do
m
dt

3 3
T « IA(mmT,z)|2 = |c|? II [(z-zi)(z—zz)] = |c|? II [(z—Re zi)2 + |Im zi|2] .
i=1 i=1

The Barrelet ambiguity is just the uncertainty in the sign of the imaginary parts
of the complex zeros since the TT cross-section is invariént under zg by z:. There-
fore an eightfold ambiguity would be expected. Fortunately each new zero (the
zeros are numbered according to the increasing real part) must enter the physical
region with a negative imaginary part. On the other hand, whenever Im z, reaches

zero a new ambiguity appears, as it can become either positive or negative.

The results of the previous studies [3,4] can be summarized as follows: in
the p region Im z; * 0, which produces the first ("up-down') ambiguity apparently
solved by the m°m° data [19]. Around 1200 MeV/c?, Im z; (the first zero is
the one with Re z; < 0) goes through zero again. This is the origin of the main
ambiguity (A or B). At ~ 1450 MeV/c?, Im z, * 0 (the second zero has small positive

real part) thus producing four solutions (A + A,C; B »> B,D). The imaginary part
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of the third zero (large positive real part) vanishes only at 1800 MeV. Many
ambiguities would be expected above this mass, since here also Im z; x= 0, but this
is irrelevant for the present work. The standard procedure of finding new solutions
was to calculate the Barrelet zeros of the old solution, then to flip the signs of
the imaginary parts, next to calculate the new partial waves, and finally to use
them as the starting values for the fitting program. The need for refitting is due
to the non-T exchange contribution to the measured moments. If it were strong

enough, one would hope to distinguish between the various solutioms.

Our analysis has already shown that the non-T exchange terms are stronger
than was thought previously. Also, we have found a unique solution above 1000 MeV/c?
(except for some ambiguities around 1500 MeV/c?), even though various independent

starting points were used for the fit. Thus it could be expected that the Barrelet

zeros for our transversity amplitudes differ considerably from the old results.

We see that this is the case when comparing the zeros of Estabrooks and
Martin [4] with our results. In fig. 11 the imaginary parts fluctuate around the
zero value (of course apart from the initial region in which their sign is fixed).
These fluctuations are larger for the g amplitude than for the better determined
h amplitude. There are some deviations (Im z;,» # 0) around 1500 MeV/c? and they
produce large ambiguities, but otherwise Barrelet zeros produce no ambiguity. The
real parts of the Barrelet zeros are just the positions of the minima of the ampli-
tude as a function of z = cos 6. Here we do not see any significant deviation
from the results of ref. 4; there are only fluctuations, especially for the g
amplitude @gtween 1300-1600 MeV/c?. The vanishing of the imaginary parts means
that the amﬁlitude goes right down to zero in the minima for nearly ﬁhe whole mass

range above 1100 MeV/c?.

CONCLUDING REMARKS

In this analysis we have used the results of experiment I on the reaction

T p > 1 n at 17.2 GeV/c R
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which were the basis of the previous studies [2-4,8,9]. Consequently our results
could not be entirely different from the results of those studies. However, the
polarized target experiment allows us to perform a completely model-independent
analysié, thus testing the quality of the assumptions made previously. This does
not mean that we could determine all the parameters of the partial waves. Owing
to the lack of measurement of the recoil polarization, we have been forced to use
transversity amplitudes, which restricts the possibility of direct comparison with
previous results. We have favoured this procedure rather than introduce any phy-
sical assumption. Also, we have performed an energy-independent analysis not pro-
viding absolute phases. Determination of phase shifts would need some fixing of
the over-all phase by demanding the Breit-Wigner formulae for the leading waves

and some additional theoretical input, e.g. by imposing analyticity.

Using our approach we have found a unique solution for the partial waves, thus
solving the old ambiguities. Tﬁe uniqueness of the solution is confirmed by the
Barrelet-zeros analysis. The solution is close to the analytical B’ solution of
Martin and Pennington. Further, we have determined the exact amount of each partial
wave, which enables us to find the resonance parameters and to show that the non-T
exchange is stronger than has been thought in the low four-momentum transfer region.
This effect is present even in the leading m = 0 waves but decreases with increasing
mass. The separation of non-T exchange into A; exchange and absorptive cuts probably

needs a model-dependent analysis as in refs. 12 and 22.

The study of resonances in our data needs further effort. In particular, the
complicated structure of the S-wave represents a real challenge. The interest in

this wave has recently been stirred by glueballs [17] and q4qg systems [21].
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Table 1

Fit parameters used in the different mass regions

Highest wave P D F
Mass region (MeV) 580-900| 900-1380 1380-1780
No. of amplitudes (m < 1) 8 14 20
No. of real parameters 14 26 38
No. of moments (M < 2) 15 31 47
Analytical solution exact | approximate | approximate
x2/d.f. 0.8 0.5 0.8
Table 2
Resonance parameters from fits
Resonance o] £ g p'
+2.8 +58 +24
Masg (MeV) 776.1 + 2.6 1273.8 2.7 1716 -29 1598 —22
(773 £ 3) (1271 £ 5) | (1690 %= 20) | (1600)
. o *7.6 8.3 4o +98
Width (MeV) 161.8 73°, 183.2 #,°0 | 325 T g 175 T,
(152 % 3) (180 = 20)| (180 * 30) | (200-800)
Elasticity (2) | 100 (input) 84.7 £ 1.6 25.9 10 | 28.7 133
(100) (81 = 1) (24 £ 1) ()
r (Gev™!) 5.3 10.0 3.0 1.0
Mass range (MeV) 580-980 980-1660 1420-1780 | 1420-1780
x2/d.£. 8.1/6 11.8/13 2.0/5 5.4/5




- 26 -

Figure captions

Fig.

la

1b

lc

1d

le

1f

1g

e

e

.o

Uppermost plot: 7T mass distribution in experiment I. Open circles
show the raw data, full circles are obtained after the correction
for acceptance losses, etc. The errors are always within the size
of the circles. Lower plots: mass dependence of the normalized
moments pg, t;, and p; (tg = I/JZF). Errors if not shown are smaller

than the size of a circle.

Mass dependence of the normalized moments tg, pg, tg, and pz.
Errors if not shown are smaller than the size of the circle.

Mass dependence of the normalized moments t:, p:, tg, p:, tg, and

pg. Errors if not shown are smaller than the size of the circle.

Mass dependence of the normalized moments with M = 1: ti, p:, r:,

tf, pf, and rf. Errors if not shown are smaller than the size of

a circle.

3 3
19 Pys rls

"
[
.

Mass dependence of the normalized moments with M t
t:, p?, and r:. Errors if not shown are smaller than the size of

the circle.

I
N

Mass dependence of the normalized moments with M = from ti to

r;. Errors if not shown are smaller than the size of the circle.

Mass dependence of the normalized moments with M > 1: from tf to

rg. Errors if not shown are smaller than the size of the circle.

Intensities of partial waves in microbarns (without division by
the bin size). Full circles show the unique or preferred solution
(see text); open circles, possible other solutions. Errors if not

shown are smaller than the size of the circles.

Comparison of partial wave intensities above 1400 MeV/c? with
various solutions of Martin and Pennington [9]. Units and conven-

tions are as in fig. 2.
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Fig. & : Comparison of partial wave intensities with the solutions of

Estabrooks and Martin [4]. Units and intensities are as in fig. 2.

Fig. 5 : Mass dependence of the ratio |LU|/[|L0|V£(L + 1)]. In case of
.ambiguity only the preferred solution is plotted. Values with
errors exceeding 100% are not shown. The curve denoted 1/m“ﬂ
(normalized at the p peak) shows the dependence expected from the
absorption model if the strength of absorption does not depend on
moe The curve denoted EM shows the results of Estabrooks and
Martin.

Fig. 6 : The ratio of transversity amplitudes with m = 0. Hereafter gg is

a shortened notation for Ugg, gp for Ug;, etc. A deviation from-

unity shows the strength of non-T exchange.

Fig. 7 : The relative phases between the S and P, transversity amplitudes.
The open circles for the h amplitude represent the solution more
similar to the "up" solution. The curves are from Estabrooks and

Martin [20].

Fig. 8 : The relative phases between the unnatural spin-parity exchange
transversity amplitudes of the same dipion spin (gg stands for
Ug:, etc.). The open circles for the h amplitude represent the

solution that is more similar to the "up" solution. The phase

coherence assumption is right if the phase difference is 180°.

Fig. 9 :  The relative phases with respect to the Dy transversity amplitudes
between 1140 MeV/c? and 1420 MeV/c?. The curves marked A and B
represent the solutions of Estabrooks and Martin [4], o and B

those of Martin and Pennington [9].

Fig. 10 :  The relative phases with respect to the F, transversity amplitudes
above 1380 MeV/c?. 1In case of ambiguity, open circles represent
the disfavoured solution (see end of section 3 for details). The

curves show the o, B, and B’ solutions of Martin and Pennington.
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The Barrelet zeros of the transversity-down amplitude g. The full
squares (circles) show the real (imaginary) part for the unique
or preferred solutions; the open ones, those of the disfavoured
solutions (see end of section 3 for details). The curves are after

Estabrooks and Martin [4].

The Barrelet zeros of the transversity-up amplitude h. The full
squares (circles) show the real (imaginary) part for the unique or
preferred solutions; the open ones, those of the disfavoured solu-
tions (see end of section 3 for details). The curves are after

Estabrooks and Martin [4].
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