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ABSTRACT
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attempts to estimate the influence of
non—perturbative effects associated with
the existence of a non-trivial vacuum
structure in QCD on processes at large
momenta.
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In this talk I will discuss briefly the appearance of non-trivial Euclidean
solutions to the classical equations of an SU(2) (SU(N)) gauge theory, the so-
called instantonsl), and the modifications they cause in defining vacuum expec-
tation values in the theory. I will present the main results of some attemptsz)_S)
to understand some phenomenological and some not so phenomenclogical cousequences
of these modifications. Further details can be found in one of several reviews

that exist in print or in Refs 2)-3).
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The main starting point is the observation made by Callan, Dashen and Gross

that in a theory based on a Lagrangian density:
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where fab are SU(N) structure constants, the vacuum is more complicated than
c

Au = 0 or its gauge transform, due to the existence of an infinite number of

vacuum-like states 1ln>, (n=-»,...0,...x) separated by finite barriers. Thus

instead of considering < Olexp (-Ht)|0 >, which for t»e= gives the functional
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we have to cousider
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where the functional integral has to be performed over all Au of homotopy

clags v = n-m. For v = 0 the minimal action vanishes (Au = 0) and

< n|exp(—Ht)!n >n 0(1). For v # 1 the minimal action is bounded from be-
low. For example, for v =1 the minimal action = 8W2[g2 and the correspending

field configuration
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is the so-called one instanton sclution., Here G;N » W ¥ where nzv is the

7

't Hooft temsor *, and x Y and o are usually referred to as the position and

the size of the instantonl). Thus
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which behaves like a typical tunnelling amplitude (vanishing exponentially as
g + 0), and as such is unseen by the usual pertubation theory. The real vacuum

of the theory is given by
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that each |B> wvacuum is the ground state of a physically ine-
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One can show
quivalent world and that different 6 worlds do not communicate with each other.
However when € # O the theory exhibits a spontaneous breakdown of P + T in-
variance. As the theory we are considering is thought of as a model for the theo-
ry of strong interactions, clearly 8 ~ 0 . The question why physics chocses this
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value has not as yet been satisfactorily answered
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In his ploneering work7) 't Hooft, and later also others managed to cal-

+ o 1in a one-loop approximation. It was found that
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where g is the familiar running coupling comstant, U is the renormalization

culate «1 lexp(—Ht)I‘O)t

scale parameter and d(p) , instanton density functiom, is defined by the above

expression., For SU(3). (without fermions)
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and we see that the contribution of small size instantons is suppressed. However,

)

the 1ntegratlon extends to arbitrarily large p , for which the running coupling
constant is not calculable and so for complete understanding we need more informa-
tion about the infra-red limit of the theory or we have to choose a process in
which, for some reason, large size instantons are also suppressed. This is the

case in our applications.

When we calculate the vacuum expectation value of an operator A we have

(o) e a1

gj)@»\ = {0 LA

(9

p
< QIVM.) = “:"

hs-@ﬂ



_3_.

where the sum runs over the discrete sectors of function space corresponding to

different homotopy classes and where we have set 0 = G. The conventional per—

turbation approach takes cnly n = 0 terms.
Three obvious questions pose themselves at this point:

1} Is this correct ? i.e. are we sure that quantum corrections do not change

the theory so much that the discussion based on homotopy classes is misleading ?
2) How to calculate functional integrals ?

3) How to perform the sum ?

The answers to these questions are as follows : 1) this answer is unclear at this
point. Although Wittenll) has raised some objections based on the analogy to a
two-dimensional theory it is not clear to what extent his arguments apply to this
four-dimensional theory. 2)We only know how to perform Gaussian integration and
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g0 we have to resort to perturbation theory in each sector . 3) Not clear at
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all. As conventional perturbation theory works so well we expand in the number

of instantons {and anti-instantons)
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+ two instanton contribution +

Tt is not clear, at this stage, whether such an expansion makes sense., Recent
work of Fateev et. alla), based however on a two-dimensional model, suggests cau-~
tion when drawing conclusions from such expansions. However, until the theory is
better understood or a different calculational scheme found we shall use thé ex—

pansion given above and interpret our results with cautioen.

Our procedure will be to choose processes for which we can isclate dominant

perturbative contributions and then calculate one instanton {and one anti-instanton)

corrections to these ccntributions.

. + - .
The "cleanest" application is c(e e - anything) (at large Qz), where
nanq::::::>u~—¢dominates. We shall also consider deep inelastic scattering and

the Drell-Yan process which are asymptotically described by the diagrams:

. rs

and

L

respectively.
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As the structure of the proton cannot be determined pertubatively we shall use a
toy model in which protons are represented by "sgcalar photons' with q2 = 0 and
for simplicity we also replace other photons by "gealar" photons with @ large.

Thus we study the effects of instantens on diagrams:

— T
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+ F 2 ‘\\

e
hoping that the observed effects persist in the complete theory.

To perform calculations we use propagators of scalar and spiner particles

15)

in an instanton background field, obtained by Brown et., al . In this way,

when we consider U(e+e— + anything), integrate over instanton position and size
(with a cut-off) and then having continued the expressions to Minkcwski space

take the appropriate imaginary part we find that the result is independent {(for

Q2 + ®) of the instanton-size cut-off. To understand this point we obéerve that
there is only one scale in this problem (1/Q) and that the dominant contribution
comes from the instanton sizes of this scale., In this way we find the asymétotic

behaviour of the instanton correction to R
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Putting all factors in for the calculated fermion loop we obtain our phenomenclogical
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This result holds in the limit of vanishing fermion mass. It can be shown that

estimates:
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the lowest order mass éorfectionss) do not alter this conclusicn. It is of the
greatest importance to determine whether this result is altered by the intro-
duction of higher mass insertions'or consideration of multi-instanton contri-
butions. Unfortunately, at the moment, technical problems prevent us from being

able to determine these contributions.
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The same problem was also studied by Andrei and Gross13) who reached a

’
different conclusion. This difference stems from the fact that they did not iso-
late the required imaginary part; their contribution is entirely real. It may be
that the inclusion of the higher mass insertions, or higher order terms in per-

tubation theory, brings together the behaviour of the real and the imaginary part
of the amplitude, as they expect, but to check this, further work is required. At

the level of the calculations performed so far the instanton corrections are gi-

ven by the expressions above,

When we consider a model for deep inelastic scattering, based on the "box
. . ' 2 ,
diagram" mentioned before we can show that as Q2 +eo (x-y) =+ 0, while Z and

t are arbitrary. Thus in general the leading short distance singularity (x-y)24 0
of the instanton correction is the same as in conventional pertubation theory.

The details depend on the details of the 2z and t behaviour and thus are
unknown. However, one can show that the instanton contribution effectively re=

4Y,12)

normalizes perturbative effects , that it can be inccrporated in the definition

of the quark distributions and that in general it does not go away as Q2 + o,

Conventional perturbative calculations show that the Drell-Yan cross section
factorizes into a product of quark and anti-quark distributions as measured in
deep inelastic scattering, 7The question then arises whether this is true also for
the distributions which include the effects of instanton correcticons. When we cal-
culate the Drell-Yan structure function in our '"scalar photon'" model, i.e., using
the six-legged box diagram mentioned before and performing an expansion in the

number of instantons, i.e.,

L = Lo + gd\{ig&gdlf)(L|—Lo)+ 13)
/ A

instanton free contribution correction due to one instanton

and one anti-instanton

We find that L # P (top) P (bottom) where P is the corresponding structure

function for '"deep inelastic scattering” in the same model, i.e., is given by:

P = P, + (d% §&g al¢) (?\ "Pe) o (14)

We find an additional contribution, which in general, is not expected to vanish

at large Q2. Its form and behaviour are model dependent and thus cannct be re-

liably calculated.
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Because o6f this we do not claim that the inclusion of instantons definitely vio-

lates factorization. We only point out that the question of factorization is more
complicated and that the existence of additional vacuum-like states in GQCD can pro-

vide a source of factorization breakdown.

‘In conclusion: we have studied the effects of some non—perturbative pheno-
mena (those associated with the existence of instantoms) on physical processes at
large momenta, i.e., where perturbative calculations are expected to be valid. We
found that in a process where no large distances are involved (0'(e+e_+ anything})
the non-pertubation effects we have studied vanish very rapidly, thus supporting
the use of.convéntional perturbation theory. TFor the processes where some large
distances are involved the instanton corrections are strickly speaking, not cal-
culable without further assumptions. When we performed the analysis in a very
simple model we found a breakdown of the factorization observed in perturbation

theory. We regard this as a hint of what may happen in the true thecry.

Acknowledgments: I want to thank my collaborators for working with me on these
problems and Professor Tran for inviting me to give this talk at the enjoyable

and stimulating Rencentre de Moriond.
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