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branching ratios are B(BY — u*u~) <5.6 x 1078 and B(B® — utpu~) < 1.5 x 1078 at 95% confidence
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1. Introduction

Within the Standard Model (SM) exclusive dimuon decays of
the B and BY mesons! are rare as they occur only via loop dia-
grams and are helicity suppressed. New Physics models, especially
those with an extended Higgs sector, can significantly enhance the
branching fractions, although in some models the rates are low-
ered.

The amplitudes contributing to the branching ratio B(B‘q] —

wtu™) (where g =d,s for the B® and B‘S) mesons respectively)
can be expressed in terms of the scalar (cs), pseudoscalar (cp)
and axial vector (c4) Wilson coefficients in a completely general
approach [1]. Within the SM, the contributions of cs and cp are
negligible while c4 is calculated with an accuracy of a few per-
cent [2]. The dominant contribution stems from an electroweak
penguin with a Z° decaying into two muons. However, the ac-
curacy of the SM prediction for B(Bg — ut ™) is limited by the

knowledge of the decay constants of the Bg mesons. This limita-
tion can be reduced by normalizing to the well-measured mass
differences of the Bg mesons. Using this approach [3], the SM pre-
dictions are

B(BY — ™)y, = (0.324£0.02) x 1078,

B(B® — ut ), = (0.010£0.001) x 1075,

Many extensions to the SM predict a very different Higgs sec-
tor. For instance, within the Minimal Supersymmetric SM (MSSM)
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in the large tang approximation [4], c¥3™ o tan® B/M3, where
My denotes the pseudoscalar Higgs mass and tang the ratio of
Higgs vacuum expectation values. The most restrictive limits on
the search for Bg — st~ have so far been achieved at the Teva-

tron, due to the large bb cross-section at hadron colliders. The best
limits at 95% C.L. published so far are obtained using 6.1 fb~! by
the DO Collaboration [5], B(BY — u*u™) < 5.1 x 1078, and using
2 fb~! by the CDF Collaboration [6], B(B? — ™) < 5.8 x 108
and B(B® — utu™) < 1.8 x 1078, The CDF Collaboration has also
presented preliminary results [7] with 3.7 fb~', that lower the
limits to B(BY — u*pu™) <43 x 1078 and BB — utu~) <
0.76 x 1078,

The LHCb experiment is well suited for such searches due to
its good invariant mass resolution, vertex resolution, muon iden-
tification and trigger acceptance. In addition, LHCb has a hadronic
trigger capability which provides large samples of Bg — hTh'~ de-
cays, where h and h’ stand for a hadron (kaon or pion). These are
used as control samples in order to reduce the dependence of the
results on the simulation.

The measurements in this Letter use about 37 pb~' of inte-
grated luminosity collected by LHCb between July and October
2010 at /s =7 TeV. Assuming the SM branching ratio, about
0.7 (0.08) BY — utpu~ (B® — p*u™) are expected to be recon-
structed using the bb cross-section, measured within the LHCb
acceptance, of 75+ 14 pb [8].

2. The LHCb detector

The LHCb detector [9] is a single-arm forward spectrometer
with an angular coverage from approximately 10 mrad to 300
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(250) mrad in the bending (non-bending) plane. The detector con-
sists of a vertex locator (VELO), a warm dipole magnet with a
bending power of [Bdl =4 Tm, a tracking system, two ring-
imaging Cherenkov detectors (RICH), a calorimeter system and a
muon system. The VELO consists of a series of silicon modules,
each providing a measure of the radial and azimuthal coordinates,
with the sensitive area starting at 8 mm from the beam line dur-
ing collisions. The tracking system comprises four layers of sili-
con sensors before the magnet and three stations equipped with
silicon sensors in the inner part and straw tubes in the outer
part after the magnet. Track momenta are measured with a pre-
cision between ép/p = 0.35% at 5 GeV/c and Sp/p = 0.5% at
100 GeV/c. The RICH system provides charged hadron identifica-
tion in a momentum range 2-100 GeV/c. The calorimeter system
consists of a preshower, a scintillating pad detector, an electro-
magnetic calorimeter and a hadronic calorimeter. It identifies high
transverse energy (Et) hadron, electron and photon candidates and
provides information for the trigger. Five muon stations composed
of MWPC (except in the highest rate region, where triple-GEMs are
used) provide fast information for the trigger and muon identifica-
tion capability.

LHCb has a two-level trigger system both for leptonic and
purely hadronic final states. It exploits the finite lifetime and rela-
tively large mass of charm and beauty hadrons to distinguish heavy
flavour decays from the dominant light quark processes. The first
trigger level (LO) is implemented in hardware and reduces the rate
to a maximum of 1 MHz, the read-out rate of the whole detector.
The second trigger level (High Level Trigger, HLT) is implemented
in software running on an event filter CPU farm. In the first stage
of the software trigger (HLT1) a partial event reconstruction is
performed. The second stage (HLT2) performs a full event recon-
struction to enhance the signal purity further.

The forward geometry of LHCb allows the first level trigger to
collect events containing one or two muons with very low trans-
verse momenta (pr): more than 90% of the data were collected
with a pr threshold of 1.4 GeV/c for single muon triggers and
pr(1) > 0.48 GeV/c and pt(m2) > 0.56 GeV/c for dimuon trig-
gers. The E7 threshold for the hadron trigger varied in the range
2.6 to 3.6 GeV. The single muon trigger line in the HLT requires
either pr > 1.8 GeV/c or includes a cut on the impact param-
eter (IP) with respect to the primary vertex, which allows for
a lower pr requirement (pr > 0.8 GeV/c, IP > 0.11 mm). The
dimuon trigger line requires muon pairs of opposite charge form-
ing a common vertex and an invariant mass M, > 4.7 GeV/c?.
A second trigger line, primarily to select J/y events, requires
297 < My, <3.21 GeV/c2. The remaining region of the dimuon
invariant mass is also covered by trigger lines that in addition
require the dimuon secondary vertex to be well separated from
the primary vertex. Other HLT trigger lines select generic displaced
vertices, providing a high efficiency for purely hadronic decays (for
instance Bg — hth' 7).

3. Analysis strategy

An important feature of this analysis is to rely as much as pos-
sible on data and to restrict to a minimum the use of simulation.
Nevertheless, some Monte Carlo (MC) simulation has been used,
based on the PYTHIA 6.4 generator [11] and the GEANT4 pack-
age [12] for detector simulation. The first part of the analysis is the
event selection (Section 4), which significantly reduces the size of
the dataset by rejecting most of the background.

The second part consists of the study of three normalization
channels with known branching ratios: BT — J/y(uTu)K,
BY — J/y(utuT)¢(KTK™) and B® — K*m~. Using each of
these normalization channels, B(Bg — ut ™) can be calculated

das:

B(Bg — pf",u_)
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where OO i+ - denotes the normalization factor, fBg denotes

the probability that a b-quark fragments into a Bg and fporm de-
notes the probability that a b-quark fragments into the b-hadron
relevant for the chosen normalization channel with branching frac-
tion Bporm. The reconstruction efficiency (EREC) includes the ac-
ceptance and particle identification, while €SELREC denotes the se-
lection efficiency on reconstructed events. The trigger efficiency
on selected events is denoted by €™ICISEL. This normalization en-
sures that knowledge of the absolute luminosity and bb production
cross-section are not needed, and that many systematic uncertain-
ties cancel in the ratio of the efficiencies. The event selection for
these channels is specifically designed to be as close as possible
to the signal selection. The ratios of reconstruction and selection
efficiencies are estimated from the simulation, while the ratios of
trigger efficiencies on selected events are determined from data
(Section 5).

In the third part of the analysis (Section 6) each selected
event is given a probability to be signal or background in a two-
dimensional probability space defined by the dimuon invariant
mass and a geometrical likelihood (GL). The dimuon invariant mass
and GL probability density functions for both signal and back-
ground are determined from data. This procedure ensures that
even though the GL is defined using simulated events, the result
will not be biased by discrepancies between data and simulation.

Section 7 describes the final measurement. In order to avoid
unconscious bias in the analysis, the invariant mass region for the
signal (Mo 60 MeV/c? and M o %60 MeV/c?) was blinded until
the selection criteria and analysis procedure had been defined.

4. Event selection

The selection has been designed in order to reduce the data
sample to a manageable level by simultaneously keeping the effi-
ciency for the signals as high as possible and the selection between
signals and control channels as similar as possible. This last re-
quirement is needed to minimize the systematic uncertainty in the
ratio of the selection efficiencies. The optimal separation between
signal and background is left to the likelihoods (Section 6). The
basic cuts of the selection have been defined on Monte Carlo sim-
ulation [10] and then adapted to the data.

The data for the signal and all the normalization candidates
are selected using either an inclusive two-body or a J/v selec-
tion. Tracks are first required to be of good quality (x2/ndf < 5)
and to be displaced with respect to the closest primary vertex
(x3/ndf > 12.5, where x2 is the difference between the x2 of
the primary vertex built with and without the considered track).
To reject bad combinations before performing the vertex fit, the
two tracks are required to have a distance of closest approach of
less than 0.3 mm. The secondary vertex is required to be well
fitted (x2/ndf < 9) and must be clearly separated from the pri-
mary in the forward direction (vertex distance significance larger
than 15). When more than one primary vertex is reconstructed,
the one that gives the minimum impact parameter significance for
the candidate is chosen. The reconstructed candidate has to point
to the primary vertex (Xlzp/ndf < 12.5) in the case of the inclusive
two-body selection. For all selections, the primary vertex is refit-
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Table 1

Summary of the factors and their uncertainties needed to calculate the normalization factors (aﬂg

ﬂﬁﬂ,) for the three normalization channels considered. The branching

ratios are taken from Refs. [14,16]. The trigger efficiency and number of B® — K* 7~ candidates correspond to only TIS events, as described in the text.

REC _SEL|REC 6TRIG\SEL

B (x107%) s i il Nnorm g - (x1079) oy (x1079)
sig " sig Sig
Bt — J/¥(ut KT 5.98 £0.22 0.49 £0.02 0.96 £ 0.05 12,366 + 403 84+13 2.27+0.18
B2—> J/yutu e KTK™) 3.4+£09 0.25£0.02 0.96 £0.05 760 £ 71 10.5+29 2.83£0.86
B —» Ktm~ 1.94+0.06 0.82 +£0.06 0.072£0.010 578 £ 74 73+1.8 1.994+0.40

ted excluding the signal tracks before calculating the Xl%,/ndf and
the vertex distance significance of the candidate.

Tracks are defined as muons if they have at least one hit in two
to four of the last four muon stations depending on the momen-
tum. In the inclusive J/y selection both tracks must be identified
as muons and have an invariant mass within 60 MeV/c? of the
nominal J/v mass. The efficiency of the muon identification re-
quirement has been measured using an inclusive sample of |/
events where one of the tracks does not use any information from
the muon chambers. The efficiency measured with data agrees
with MC expectations as a function of momentum within 2%, and
the residual differences are taken into account in the systematic
uncertainties.

Events passing the two-body selection are considered Bg —
ut ™ candidates if both tracks pass the muon identification crite-
ria, and their invariant mass lies within 60 MeV/c? of the nominal
Bg mass. The invariant mass of the Bg — h*h’'~ candidates has to

be within 600 MeV/c? of the nominal B mass. As the acceptance
of the tracking stations is larger than the muon chambers, the se-
lected Bg — hth'~ candidates are required to have both tracks
within the muon chamber acceptance to minimize the differences
with Bg — . The total efficiencies including acceptance, re-
construction and selection criteria on MC By — p*.~ and B) —
h*h'~ events are 5.5% and 4.5% respectively; the main difference
is due to material interactions. Assuming the SM branching ratio,
0.3 BY — utpu~ and 0.04 B® — putu~ events are expected after
all selection requirements. There are 343 (342) Bg — utu~ can-

didates selected from data in the BY (B%) mass window.
The dominant background after the Bg — utu~ selection is

expected to be bb — X [10,13]. This is confirmed by com-
paring the kinematical distributions of the sideband data with a
bb — ppuX MC sample. The muon misidentification probability as
a function of momentum obtained from data using Kg —atnT,
A— pr~ and ¢ — KTK~ decays is in good agreement with MC
expectations. An estimate of the background coming from misiden-
tified hadrons is obtained by reweighting the hadron misidenti-
fication probability using the momentum spectrum of the back-
ground in the invariant mass sidebands. The single hadron average
misidentification probability is measured to be (7.1 £ 0.5) x 103
and the double hadron misidentification probability is (3.5£0.9) x
107>, where the correlation between the momenta of the two
hadrons is taken into account. About 10% of the background is due
to pairs consisting of one real muon and a hadron misidentified
as muon, mostly from decays in flight. The contribution from dou-
ble misidentified hadrons is negligible. The number of expected
By — h*h'~ candidates misidentified as B — p*pu~ within the
search window of +60 MeV/c? around the B? (B%) mass is less
than 0.1 (0.3).

For the B* — J/wK* and B? — J/v¢ normalization chan-
nels some additional cuts are required. In the former case, the K*
candidates are required to pass the same track quality and im-
pact parameter cuts as the muons from the J/y. For B? — J/ve
candidates, the KK~ invariant mass is required to be within
+10 MeV/c? of the ¢ mass [14]. The B vertex has to be of good

quality, x2/ndf < 25. The requirements on Xl%/ndf and vertex sep-
aration significance for the B candidate are the same as those
for the signal selection. The total efficiencies including acceptance,
reconstruction and selection criteria for MC Bt — J/¥K* and
B? — J/¥ ¢ events are 2.6% and 1.3% respectively.

5. Evaluation of the normalization factor

The branching fractions of the three normalization channels,
B* — J/¥(utpu)K*, B - J/y(utu)p(KTK™) and B —
K*m—, are shown in Table 1. The first two decays have similar
trigger and muon identification efficiency to the signal but a differ-
ent number of particles in the final state, while the third channel
has the same two-body topology but is selected with the hadronic
trigger. The branching ratio of the B? — J /¥ ¢ decay is not known
precisely (~ 25%) but has the advantage that the normalization of
BY — w*u~ with a BY decay does not require the knowledge of
the ratio of fragmentation fractions, which has an uncertainty of
~13% [15].

5.1. Ratio of reconstruction and selection efficiencies

The accuracy of the simulation of the reconstruction efficiency
€REC relies on the knowledge of the detector geometrical ac-
ceptance, the material interactions and the tracking efficiency.
The uncertainty on the tracking efficiency is taken to be 4% per
track [8] and this is the dominant source of the systematic uncer-
tainty in the ratio with the two normalization channels involving

J/¥ mesons. The ratios €5m/€s predicted by the simulation

are 0.58 + 0.02 (B* — J/yK'), 0.39+0.03 (B® - J/y¢) and
0.75+0.05 (B® — Ktz ™).

The effect of an extra particle on the ratio of € is cross-
checked in data using the decay B® — J/y(utu " )K*O(Ktm~).
Selecting B® and B™ in a similar phase-space region, the ratio of
B® — J/wK*® and BT — J/¥ K™ yields (corrected for the ratio of
branching ratios) is a good measure of the ratio of eREC between
BT — J/wK* and Bg — utu~, as shown in Ref. [10]. The mea-
surement from data is 0.59 £ 0.04, in good agreement with the
estimate from MC simulation (0.58 + 0.02).

The accuracy of the simulation of €SELREC relies on how well
the MC describes the variables entering the selection. Of these
only the IP distributions show a significant discrepancy: the data
are measured to have ~ 10% worse resolution than the simulation.
Smearing the track parameters in MC to reproduce the IP distribu-
tion in data changes the selection efficiencies by 5-7% depending
on the channel. However, the ratios of eﬁEHT‘,‘EC ;Z”REC remain un-
changed within the MC statistical uncertainty. The ratios predicted
by the MC are 0.85+ 0.01 (Bt — J/¢K™T), 0.63 £ 0.01 (B? —
J/¥) and 1.09 + 0.01 (B® — K*7~), where the uncertainties
correspond to the MC statistical uncertainties. The largest contribu-
tion to the difference in the selection efficiencies for BT — J/¥ K™+
and B? — J /¥ ¢ compared to the signal comes from the additional
XI% requirements on the extra tracks in the normalization chan-
nels. For the B — K*m~ normalization channel, the selection

REC
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efficiency is higher than for the signal as the tight (+60 MeV/c?)
mass window is not applied to the Bg — h™h’~ channel. The ratios
of efficiencies including acceptance, reconstruction and selection
between normalization and signal decays are shown in Table 1.

5.2. Ratio of trigger efficiencies

The trigger efficiency €™ICISEL can be estimated from data as
described in Ref. [10]. Events that would have triggered even with-
out the presence of the decay products of the signal under study
are tagged as TIS events (Trigger Independent of Signal). TIS events
are mostly triggered by the decay products of the other b which
can be in the acceptance given the forward geometry of LHCb.

If the presence of the signal under study alone is sufficient to
trigger, events are tagged as TOS (Trigger On Signal). An event can
also be TIS and TOS simultaneously (TIS&TOS). The overall trigger
efficiency on selected events can then be expressed as:

TRIG TIS NTRIG TRIG
¢ TRIGISEL _ N NPNT 6TlsN )
NSEL — NSEL NTIS NTIS

where NSEL is not directly observable as it corresponds to a sam-
ple of selected events for a fully efficient trigger. The TIS efficiency
(€M) can however be measured directly on data using the ratio
NTIS&TOS /NTOS - Therefore €TRIGISEL can be expressed in terms of
fully observable quantities.

The trigger efficiency for selecting B* — J/¥K*+ and BY —
J/¥¢ is obtained from a large inclusive sample of J/v events
using Eq. (2). The result is ;""" = (85.9 £ 0.9t % 2.05ys0)%,
where the systematic uncertainty reflects the approximation of the
method as seen in the simulation. This efficiency is parameterized
as a function of the largest pr and the largest IP of the two muons.
Using the phase space of the Bg — utu~ decay in these two
variables, the trigger efficiency for the signal is evaluated to be

TRIGISEL _ =1(89.9 % 0.8stat & 4.0syst)%, where the systematic un-

BY—putp
certainty is increased to account for the limitations of using only
two variables (the largest pr and IP of the muons in the final state)
to parameterize the trigger response.

In the case of the B — K7~ normalization channel, the trig-
ger efficiency is computed using the same events that are used
for the normalization in Eq. (1). Therefore, combining Eqs. (1) and
(2) results in an expression equivalent to a normalization which
uses only TIS events. The total number of these events after the
first trigger steps (LO and HLT1) is 578, accepting all HLT2 triggers,
which does not allow for a precise measurement of €™, Instead,
this efficiency can be measured using another control channel,
Bt — J/wK*, with the result: €TS(LO x HLT1) = (6.9 + 0.6)%. The
small correction due to the HLT2 trigger inefficiency on selected
B® - K*m~ candidates is taken from the trigger emulation. The
ratios 6,T,0R§g,|SEL/eSTil;IG|SEL for the three normalization channels are

given in Table 1.
5.3. Overall normalization factor

The yields needed to evaluate the normalization factor for the
two channels containing a J/v in the final state are obtained from
a Gaussian fit to the invariant mass distribution. The number of
candidates can be seen in Table 1, where the uncertainty is dom-
inated by the differences observed using different fitting models.
In the case of the B - K+~ decay, the RICH particle identi-
fication and mass information are used to extract the fraction of
KT~ events from the selected inclusive BS — h™h’~ sample.
The efficiency of the kaon and pion identification requirements
is not needed since their ratio is extracted from the known ra-
tio of B - 7+~ and B® — K*z~ branching ratios as described

in Ref. [10]. The number of TIS B® — K+~ events observed is
shown in Table 1.

As can be seen in Table 1, the normalization factors calculated
using the three complementary channels give compatible results.
The final normalization factor is a weighted average which takes
into account all the sources of correlations, in particular the domi-
nant one coming from the uncertainty on fy/fs =3.71+£0.47 [15],
with the result:

o =(8.6+1.1)x 1077,

B—ptp~
Qgo_ 4y~ = (2.24£0.16) x 107°.

6. Signal and background likelihoods

After the selection described in Section 4 the signal purity as-
suming the SM branching ratio is still about 103 for B? —utu”
and 107 for B® — utu~. Further discrimination is achieved
through the combination of two independent variables: the multi-
variate analysis discriminant likelihood, GL, combining information
that is largely based on the topology of the event, and the invariant
mass. The GL is defined using the statistical method described in
Refs. [13,17]. The GL is defined to have a flat distribution between
zero and one for signal candidates, and to cluster around zero for
background candidates. The geometrical variables included in the
definition of the GL are intended to be a complete set describing
the properties of the decay, and the transverse momentum of the
B candidate is also included, which is uncorrelated with the in-
variant mass. The variables used in the definition of the GL are:

e Lifetime of the B candidate. This variable is computed using the
distance between the secondary vertex and primary vertex,
and the reconstructed momentum of the B candidate. When
more than one primary vertex is reconstructed, the one that
gives the minimum B impact parameter significance is cho-
sen.

e Muon impact parameter x2. This is the lowest impact parameter
x2 of the two muon candidates with respect to any primary
vertex reconstructed in the event.

e Impact parameter of the B candidate.

e Distance of closest approach between the two muon candidates.

e Isolation. For each of the muon candidates, a search is per-
formed for other tracks that can make a good vertex with the
muon candidate, as in Ref. [10]. The number of compatible
tracks is used as the discriminant variable.

e Transverse momentum of the B candidate.

The analysis is performed in two-dimensional bins of invari-
ant mass and GL. The invariant mass in the signal regions
(£60 MeV/c? around the BY and the B masses) is divided into
six bins of equal width, and the GL into four bins of equal width
distributed between zero and one. A probability to be signal or
background is assigned to events falling in each bin.

6.1. Signal geometrical likelihood

Although the GL variable described above was defined using MC
events, the probability that a signal event has a given value of GL
is obtained from data using inclusive Bg — h*h’'~ events. Studies
with large samples of MC events show that after reconstruction
and selection the GL distributions obtained from Bg — putu~ and
Bg — h*h’~ signal events agree within uncertainties (3%). On the
other hand, the two distributions are different after the trigger is
emulated. This bias can be removed if only TIS Bg — h™h'~ events
are used in the evaluation of the GL distribution. However, the total
number of TIS Bg — h™h’~ events after all trigger steps (LO, HLT1
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Fig. 1. Probability of signal events in bins of GL obtained from the inclusive sample
of TIS Bg — hTh' ~ events (solid squares). The background probability (open circles)
is obtained from the events in the sidebands of the pu invariant mass distribution
in the B? mass window.

Table 2

Probability of signal events in bins of GL obtained from the inclusive sample of TIS
Bg — hth'~ events. The background probability in the B? mass window is obtained
from the events in the sidebands of the dimuon invariant mass distribution.

GL bin Signal prob. Background prob.
0.0-0.25 0.360 £ 0.130 0.973573:-0039
0.25-0.5 0.239 % 0.096 0.021815:9930
0.5-0.75 0.176 + 0.046 0.004515:9012
0.75-1.0 0.225+0.036 0.000243:50031

—0.00015

and HLT2) is 152 which is insufficient. Instead, for the Bg — hth'~
events, the first two trigger steps (LO and HLT1) are required to
be TIS while at the HLT2 step any of the HLT2 triggers are ac-
cepted. This yields 955 events. The GL distribution obtained using
these events is corrected for the small bias (< 5%) introduced at
the HLT2 stage using the trigger emulation. Detailed checks with a
large sample of D® — K~ 7+ decays have validated this procedure.

The number of TIS Bg — h*h’~ events in each GL bin is ob-
tained from a fit to the inclusive mass distribution [18] assigning
the muon mass to the two particles. The measured fractions in
each GL bin can be seen in Fig. 1 and are quoted in Table 2. The
systematic uncertainties are included, estimated by comparing the
results from the inclusive Bg — h*h’'~ fit model with those ob-
tained using a double Crystal Ball function [19] and a simple back-
ground subtraction. The measured GL distribution obtained from
TIS Bg — h*h ~ events is compatible with a flat distribution, as
expected if the simulation reproduces correctly the data.

6.2. Signal invariant mass likelihood

The signal mass lineshape is parameterized using a Crystal
Ball function [19]. Two methods have been used to estimate the
Bg — 't~ mass resolution from data. The first of these methods
uses an interpolation between the measured resolutions for cc res-
onances (J/v, ¥(2S)) and bb resonances (7' (1S), 7 (2S), T (3S))
decaying into two muons. It has been observed that over this mass
range the dimuon invariant mass resolution depends linearly on
the invariant mass of the muon pair to good approximation. Events
selected in the mass ranges around the cc and bb resonances were
weighted such that the momentum spectra of these resonances re-
produce the expected momentum spectrum of the b hadron in the
decay Bg — . The mass resolutions of the cc and bb reso-
nances were then determined fitting a Crystal Ball (J/v, T(1S))
or a Gaussian (y(2S), T (2S) and 7 (3S)) over exponential back-
grounds.

The mass resolution is defined as the o of the Crystal Ball when
there is sufficient data to perform a fit with the Crystal Ball func-
tion (J/¢¥ and 7 (1S)). Otherwise a Gaussian fit is made (¥ (25),
T(2S), T (35)) and the o of the Gaussian is used as an estima-
tor of the o of the Crystal Ball. For the Crystal Ball function, the
parameters describing the radiative tail are in good agreement be-
tween data and the Monte Carlo simulation. No systematic shifts in
the resolution has been found by using a Crystal Ball or a Gaussian
above the transition point.

Interpolating linearly between the five fitted resolutions to M BY

an invariant mass resolution of o = 26.83 4 0.14 MeV/c? was es-
timated for Bg — u ™. The systematic uncertainty is estimated

to be 1 MeV/c? mainly due to the reweighting of the momentum
spectrum of the dimuon resonances and the variation of the reso-
lution over the width of the B) — u* ™ signal region.

The second method that was used to estimate the invariant
mass resolution from data is to use the inclusive Bg — h*th'~ sam-
ple. The particle identification requirement would modify the mo-
mentum and transverse momentum spectrum of pions and kaons,
and thus the mass resolution. Therefore, the fit is performed to the
inclusive Bg — h™h’~ sample without requiring particle identifica-
tion and assigning the muon mass to the decay products. The fit
has been performed in the GL range [0.25, 1.0] and the results are
shown in Fig. 2. The fitted parameters are: the mass resolution, the
BY and 32 masses, the signal yield, the combinatorial background
yields, as well as the fraction of radiative tail and the parameters
that describe the combinatorial background. The relative contribu-
tions of B® and B? decays are fixed to their known values. The
result of the fit for the mass resolution, o = 25.8 4+ 1.0 MeV/c?, is
consistent with the value obtained from the interpolation method.
However, by varying the assumptions made for the parameters
describing the partially reconstructed three-body b-hadron decays
(physical background), the estimate obtained for the resolution can
change by up to 2.7 MeV/c2. This is assigned as systematic uncer-
tainty for this method.

The weighted average of the two methods, 0 = 26.7 +
0.9 MeV/c?, is taken as the invariant mass resolution and con-
sidered to be the same for B® and BY decays. The mean values of
the masses obtained from the inclusive Bg — h*th'~ fit are con-
sistent with, but not as precise as, the values obtained using the
exclusive decay modes B® — K*7~ and BY — KK~ isolated us-
ing the RICH particle identification: Mpo = 5275.0 &+ 1.0 MeV/c?
and MB? =5363.1+ 1.5 MeV/c?, which are used in the evaluation
of the invariant mass likelihood. The mean values of the masses
are ~ 0.07% below the known values [14] which is attributed to
a small residual miscalibration of the magnetic field map. How-
ever this has no impact on the analysis, provided that the search
windows are centred around the measured values.

6.3. Background likelihood

The mass sidebands are defined in the range between M B +

600 (1200) MeV/c? for the lower (upper) two GL bins, excluding
the two search windows (M B + 60 MeV/c?). The background in

the mass sidebands is fitted with an exponential function, f(M) =
Ae *M_ The value of the exponential index k is fitted indepen-
dently in each GL bin, in order to account for potentially different
background compositions. The distribution of the invariant mass
for each GL bin is shown in Fig. 3, and the predictions for the
numbers of events in the signal regions can be seen in Tables 3
and 4. The background probability in the B? mass window as a
function of GL is shown in Fig. 1 and in Table 2. The results have
been checked by fixing the exponential index k to be the same in
all GL bins, using a double exponential, or using a simple linear
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fit in the region around the signal window. In all cases the pre-
dicted background is consistent with the result of the exponential
fit with different k values, although the quality of the fit is signifi-
cantly worse when k is forced to be the same for all bins.

7. Results

For each of the 24 bins (4 bins in GL and 6 bins in mass) the
expected number of background events is computed from the fits

to the invariant mass sidebands described in Section 6.3. The re-
sults are shown in Tables 3 and 4. The expected numbers of signal
events are computed using the normalization factors from Sec-
tion 5, and the signal likelihoods computed in Section 6.1 and

Section 6.2 for a given value of B(Bg — ™). The expected
numbers of signal events for the SM branching ratios are shown
in Tables 3 and 4. The distribution of observed events in the GL

vs invariant mass plane can be seen in Fig. 4, and the observed
number of events in each bin are given in Tables 3 and 4. The
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compatibility of the observed distribution of events in the GL vs
invariant mass plane with a given branching ratio hypothesis is
evaluated using the CLg method [20]. This provides two estimators:
CL; is a measure of the compatibility of the observed distribu-
tion with the signal hypothesis, while CL, is a measure of the
compatibility with the background-only hypothesis. The observed
distribution of CL; as a function of the assumed branching ratio
can be seen in Fig. 5. The expected distributions of possible values
of CLs assuming the background-only hypothesis are also shown
in the same figure as a green shaded area that covers the region
of +10 of background compatible observations. The uncertainties
in the signal and background likelihoods (Section 6) and normal-
ization factors (Section 5) are used to compute the uncertainties in
the background and signal predictions in Tables 3 and 4. These un-

’Sfiv‘r TGRS A N P .
5500 6000 6500
m,,.(MeV/c?)

Fig. 4. Observed distribution of selected dimuon events in the GL vs invariant mass
plane. The orange short-dashed (green long-dashed) lines indicate the +60 MeV/c?
search window around the BE (B9). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this Letter.)

Table 3

certainties are the only source of systematic uncertainty and they
are included in the CLs using the techniques described in Ref. [20].
Given the specific pattern of the observed events, the systematic
uncertainty on the background prediction has a negligible effect
on the quoted limit. The effect of the uncertainty on the signal
prediction increases the quoted limits by less than 3%.

The evaluation of CL, [20] gives a probability of about 20% for
the compatibility with the background-only hypothesis for both
the BY and B° decays. This low value can be attributed to the
slight deficit of observed events in the most sensitive bins, as
can be seen in Tables 3 and 4. As no significant deviation from
the background-only hypothesis is observed, upper limits are com-
puted using the CL; distributions in Fig. 5 with the results

B(B? - utpu~) <43 (5.6) x 1078 at90% (95%) C.L.,
B(B® - utp™) <1.2(1.5 x 1078 at90% (95%) C.L.,

while the expected values of the limits are B(BY — pu*tu™) <
5.1 (6.5) x 1078 and B(B® - utu~) < 1.4 (1.8) x 10~8 at 90%
(95%) C.L. The limits observed are similar to the best published
limits [5] for the decay B? — uT ™ and more restrictive for the
decay BO — utu~ [6].

8. Conclusions

With about 37 pb~! of integrated luminosity, LHCb has searched
for the rare decays B? — u*u~ and B® — u*p~ and reached
sensitivities similar to the existing limits from the Tevatron. This
could be achieved due to the large acceptance and trigger ef-
ficiency of LHCb, as well as the larger bb cross-section in pp
collisions at /s = 7 TeV. The observed events are compatible with
the background expectations, and the upper limits are evaluated
to be

B(B? - pntu™) <56x107% at95%CL,
B(B® - putpu) <15x107% at95%CL,

Expected background, expected SM signal and observed number of events in bins of GL and invariant mass, in the +60 MeV/c?> mass window around the B? mass central

value of 5363.1 MeV/c?.

Invariant mass GL bin
bin (MeV/c?) [0,0.25] [0.25,0.5] [0.5,0.75] [0.75,1)
[—60, —40] Exp. bkg. 56.917] 1317019 0.28279578 0.016+0:02)
Exp. sig. 0.007615:9034 0.00507*5:9027 0.0037+5:901% 0.0047+5:9012
Observed 39 2 1 0
[—40, —20] Exp. bkg. 56.117] 1.287018 0.26973572 0.0151+3:01%°
H +0.0084 +0.0067 +0.0036 +0.0035
Exp. sig. 00220755584 0.014619:5057 0.0107+3:5035 0.0138790032
Observed 55 2 0 0
[~20,0] Exp. bkg. 55.3111 1.241017 0.25775:9% 0.013915:9178
Exp. sig. 0.03875.913 0.02510512 0.018379:5053 0.023519:50%0
Observed 73 0 0 0
[0, 20] Exp. bkg. 54.4111 1211017 0.246"5:95 0.012815:916%
i +0.015 +0.012 +0.0063 +-0.0060
Exp. sig. 0.03870:913 0.02510512 0.018319:50%3 0.023510:50%0
Observed 60 0 0 0
[20,40] Exp. bkg. 53.6119 1.18%317 0.23575.9% 0.01187351>2
i +0.0084 +0.0067 0.0036 +0.0035
Exp. sig. 0.0220*3:9954 0.0146+3:5557 0.0107+3:503¢ 0.0138+3:0032
Observed 53 2 0 0
[40, 60] Exp. bkg. 52.8719 1.147518 0.22475:9%9 0.010819:5140
; 0.0031 -+0.0025 0.0013 +0.0013
Exp. sig. 0.0076+3:5031 0.005019:50% 0.0037+3:5013 0.0047+3:5013
Observed 55 1 0 0
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Table 4

Expected background, expected SM signal and observed number of events in bins of GL and invariant mass, in the +60 MeV/c? mass window around the B° central value

of 5275.0 MeV/c2.

Invariant mass GL bin
bin (MeV/c?) [0.0.25] [0.25,0.5] [0.5,0.75] [0.75,1]
[—60, —40] Exp. bkg. 60.8112 1.487018 0.34573.952 0.02473:5%7
Exp. sig. 0.00090+3-90036 0.00060+3:50029 0.00044+0:50016 0.00056 30001
Observed 59 2 0 0
[—40, —20] Exp. bkg. 59.9711 1.447519 0.32975:950 0.02210:022
Exp. sis. 0.00263*3205%2 0.00174*308079 0.00128°3%0%%8 0.00164*205%2
Observed 67 0 0 0
[—20,0] Exp. bkg. 59.0111 1407518 0.31575:977 0.02010:522
Exp. sig. 0.0045+0%017 0.003009014 0.00219°9%%7 0.00280°0 9000
Observed 56 2 0 0
[0,20] Exp. bkg. 58.1%1] 1.367018 0.300730% 0.019%0:21
EXp. sig. 0.004510:5017 0.003075:9014 0.0021975-90067 0.0028070:500€0
Observed 60 0 0 0
[20, 40] Exp. bkg. 57.3%11 1337017 0.28715.0%9 0.01713018
Exp. sig. 0.0026379-00093 0.00174 135007 0.0012813:50038 0.0016473:00052
Observed 42 2 1 0
[40, 60] Exp. bkg. 56.4771 1.29%017 0.27475:087 0.015815:917
Exp. sig. 0.0009073-00053 0.0006013:-50057 0.00044+3:50014 0.0005679:50013
Observed 49 2 0 0
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Fig. 5. (a) Observed (solid curve) and expected (dashed curve) CLs values as a function of B(B? — p*17). The green shaded area contains the +10 interval of possible
results compatible with the expected value when only background is observed. The 90% (95%) C.L. observed value is identified by the solid (dashed) line. (b) The same for
B(B® — put ™). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

while the expected values of the limits are B(B? - utu) <
6.5x 1078 and B(B® - utp~) < 1.8 x 1078 at 95% C.L.

The LHC is expected to deliver a much larger sample of pp col-
lisions in 2011. Given the low level of background in the most
sensitive bins shown in Tables 3 and 4, LHCb should be able to
explore the interesting region of branching ratios at the 10~8 level
in the near future.
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