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Abstract

Hitherto unobserved long-lived massive particles with electric and/or colour charge are predicted by a
range of theories which extend the Standard Model. In this paper a search is performed at the ATLAS
experiment for slow-moving charged particles produced in proton-proton collisions at 7 TeV centre-of-
mass energy at the LHC, using a data-set corresponding to an integrated luminosity of 34 pb−1. No
deviations from Standard Model expectations are found. This result is interpreted in a framework of
supersymmetry models in which coloured sparticles can hadronise into long-lived bound hadronic states,
termed R-hadrons, and 95% CL limits are set on the production cross-sections of squarks and gluinos.
The influence of R-hadron interactions in matter was studied using a number of different models, and
lower mass limits for stable sbottoms and stops are found to be 294 and 309 GeV respectively. The lower
mass limit for a stable gluino lies in the range from 562 to 586 GeV depending on the model assumed.
Each of these constraints is the most stringent to date.
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1. Introduction

The discovery of exotic stable massive particles (SMPs)1 at the LHC would be of fundamental signif-
icance. The motivation for SMP searches at ATLAS arises, for example, from proposed solutions to the
gauge hierarchy problem, which involve previously unseen particles with TeV-scale masses [1, 2]. The
ATLAS experiment has recently searched for SMPs with large electric charge [3]. SMPs possessing colour
charge represent another class of exotic particle which can be sought. Hadronising SMPs are anticipated
in a wide range of exotic physics models [1] that extend the Standard Model (SM). For example, these
particles appear in both R-parity conserving supersymmetry (SUSY) and universal extra dimensions.
The possibility of direct pair production through the strong nuclear force implies large production cross-
sections. Searches for these particles are thus an important component of the early data exploitation
programs of the LHC experiments [4]. In this paper, the first limits from the ATLAS experiment are
presented on the production of coloured, hadronising SMPs in proton-proton collisions at 7 TeV centre-
of-mass energy at the LHC. Results are presented in the context of SUSY models predicting the existence
of R-hadrons [5], which are heavy objects formed from a coloured sparticle (squark or gluino) and light
SM partons.

SMPs produced at LHC energies typically possess the following characteristics: they are penetrating2

and propagate at a low enough speed that they can be observed as being subluminal using measurements
of time-of-flight and specific ionisation energy loss [1]. Previous searches for R-hadrons have typically
been based on either the signature of a highly ionising particle in an inner tracking system [7–9] or a slow-
moving muon-like object [9–11]. The latter limits rely on the assumption that the R-hadron is electrically
charged when it leaves the calorimeter and can thus be detected in an outer muon system. However,
hadronic scattering of R-hadrons in the dense calorimeter material, and the properties of different mass

1The term stable is taken in this paper to mean that the particle has a decay length comparable to the size of the ATLAS
detector or longer.

2A small fraction of SMPs can be brought to rest by interactions in the detector. Should they have finite lifetimes an
alternative approach to the direct detection of SMPs would be to observe their decays [6].
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hierarchies for the R-hadrons, may render most of the produced R-hadrons electrically neutral in the muon
system[12]. Such an effect is expected for R-hadrons formed from sbottom-like squarks [13]; the situation
for gluino-based R-hadrons is unclear, with different models giving rise to different phenomenologies. The
previous mass limit for gluino R-hadrons with minimal sensitivity to scattering uncertainties is 311 GeV
at 95% confidence level [9] from the CMS collaboration.

The ATLAS detector contains a number of subsystems which provide information which can be used
to distinguish SMPs from particles moving at velocities close to the speed of light. Two complementary
subsystems used in this work are the pixel detector, which measures ionisation energy loss (dE/dx),
and the tile calorimeter, which measures the time-of-flight from the interaction point for particles which
traverse it. Furthermore, since there is no requirement that a candidate be reconstructed in the outer
muon spectrometer, the search is robust to theoretical uncertainties on the fraction of R-hadrons that
are charged when leaving the calorimeter system. The analysis extends the mass limits beyond already
published limits and represents the first dedicated direct search for sbottom R-hadrons at a hadron
collider.

2. Simulation of R-hadrons and background processes

Monte Carlo simulations are used primarily to determine the efficiency of the R-hadron selection
together with the associated systematic uncertainties. Predicted backgrounds are estimated using data,
as described in Section 4. However, simulated samples of background processes (QCD and tt̄, W and Z
production) are used to optimise the R-hadron selections, without biasing the selection in data.

Pair production of g̃g̃, t̃¯̃t and b̃
¯̃
b is simulated in Pythia [14] using the DW tune [15, 16]. The string

hadronisation model [17], incorporating specialised hadronisation routines [1] is used to produce final
states containing R-hadrons. For gluino scenarios the probability for a gluino to form a gluon-gluino
bound state, based on a colour octet model, is assumed to be 10% [1]. The simulation of R-hadron
interactions in matter is handled by dedicated Geant4 routines [18, 19] based on three different models
with alternative assumptions. R-hadrons containing squarks are simulated using the model described in
Ref. [13]. This model is motivated by extrapolations from SM heavy quark hadron spectra. It furthermore
employs a triple-Regge formalism to describe hadronic scattering. For gluino R-hadrons there are less
strict theoretical constraints since no SM analogue exists for a heavy colour octet. Consequently a physics
model is chosen, as described in Refs. [20, 21]. This model has been used in other publications [6, 9, 22]
and it imposes few constraints on allowed stable states. Doubly charged R-hadrons and a wide variety
of charge reversal signatures in the detector are possible. Hadronic scattering is described through a
purely phase space driven approach. More recent models for the hadronic scattering of gluino R-hadrons
predict that the majority of all produced R-hadrons will be electrically neutral after just a few hadronic
interactions. One of these models is an extension of the triple-Regge model used to describe squark
R-hadrons [12]. Another is the bag-model based calculation presented in Ref. [23]. Independent results
for gluino R-hadrons are presented here for these models.

The simulated samples have gluino (squark) masses in the range 100-700 GeV (100-500 GeV), roughly
matching the sensitivity that can be achieved given the statistical precision of the data sample on which
the present analysis is based. The cross-sections of the individual samples are normalised to the predic-
tions of the Prospino NLO program [24] using CTEQ 6.6 parton density functions (PDFs) [25]. All
other sparticles are set to high mass and are decoupled from the calculations used in this work.

3. The ATLAS detector

The ATLAS detector is described in detail in Ref. [26]. Below, some features of the subsystems most
important for the present analysis are outlined.

3.1. Specific energy loss from the pixel detector
As the innermost sub-detector in ATLAS, the silicon-based pixel detector contributes to precision

tracking in the region3 |η| < 2.5. The sensitive detectors of the pixel detector barrel are placed on three

3ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of
the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y
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concentric cylinders around the beam-line, whereas each end-cap consists of three disks arranged perpen-
dicular to the beam axis. The pixel detector therefore typically provides at least three measurements for
each track. In the barrel (end-cap) the intrinsic accuracy is 10 µm in the r-φ plane and 115 µm in the z
(r)-direction. The integrated time during which a signal exceeds threshold has a sub-linear dependence
on the charge deposited in each pixel. This has been measured in dedicated calibration scans, enabling
an energy loss measurement for charged particles using the pixel detector.

The charge released by a track crossing the pixel detector is rarely contained within just one pixel.
Neighbouring pixels are joined together to form clusters, and the charge of a cluster is calculated by
summing up the charges of all pixels after applying a calibration correction. The specific energy loss,
dE/dx, is estimated as an average of the individual cluster dE/dx measurements (charge collected in the
cluster, corrected for the track length in the sensor), for the clusters associated with the track. To reduce
the effects of the Landau tail, the dE/dx of the track is calculated as the truncated mean of the individual
cluster measurements. In the study presented here at least two clusters are required for the pixel detector
dE/dx measurement (dE/dxPixel). Further details and performance of the method are described in [27].

3.2. Time-of-Flight from the tile calorimeter

The ATLAS tile calorimeter is a sampling calorimeter that constitutes the barrel part of the hadronic
calorimetry in ATLAS. It is situated in the region 2.3 < r < 4.3 m, covering |η| . 1.7, and uses iron as
the passive material and plastic scintillators as active layers. Along the beam axis, the tile calorimeter
is logically subdivided into four partitions, each segmented in equal intervals of azimuthal angle (φ)
into 64 modules. The modules are further divided into cells, which are grouped radially in three layers,
covering 0.1 units in η in the first two layers and 0.2 in the third. Two bundles of wavelength-shifting
fibres, associated with each cell, guide the scintillation light from the exposed sides of the module to
photomultiplier tubes. The signal from each photomultiplier tube is digitised using dual ADCs covering
different dynamic ranges. Analysing seven consecutive samplings with an interval of 25 ns allows the
amplitude, pedestal value and peak position in time to be extracted. The tile calorimeter provides a
timing resolution of 1-2 ns per cell for energy deposits typical of minimum-ionising particles (MIPs). The
measured times have been corrected for drifts in the LHC clock using high-precision timing measurements
from a beam pick-up system [28] and calibrated such that energy depositions associated with muons from
Z-boson decays are aligned at t = 0 in both data and simulations.

Although the readout electronics have been optimised to provide the best possible timing resolution
for β = 1 particles, the performance for slower particles (0.3 < β < 1) is not seriously compromised. In
addition, SMPs tend to traverse the entire tile calorimeter, leaving statistically independent signals in up
to six cells.

The time-of-flight and hence the speed, β, of an R-hadron candidate can be deduced from time
measurements in the tile calorimeter cells along the candidate trajectory. All cells along the particle
trajectory with an energy deposition larger than 500 MeV are used to make an independent estimate of
β. The time resolution has been shown to improve with the energy measured in the cell [29], so the cells
are combined using an average weighted by cell energy to get a velocity measurement (βTile). Combining
the measurements from all cells results in a time resolution of ∼1 ns.

4. Event selection

The data sample used in this work corresponds to an integrated luminosity of 34 pb−1. Final states
with R-hadrons can also contain jets and missing transverse energy (Emiss

T ) arising from QCD radiation
which can be used to select candidate events. Due to the large cross-section for jet production at the LHC,
triggering on jets with low transverse energy is not feasible. A superior trigger efficiency for the signal is
obtained by using a trigger on missing transverse energy utilising only calorimeter information[30] (a full
description of the ATLAS trigger system is given in [26]). Using an Emiss

T -based trigger is possible since
R-hadrons would typically deposit only a small fraction of their energy as they propagate through the
ATLAS calorimeters. The trigger threshold applied is Emiss

T = 40 GeV which gives an efficiency ranging

axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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from approximately 15% for a gluino-mass of 100 GeV to 32% for a 600 GeV mass. The missing transverse
energy trigger is based on a level-1 trigger decision derived from coarsely segmented energy measurements,
followed by a decision at the higher-level trigger based on the full granularity of the ATLAS calorimeter.

4.1. Selection of R-hadron candidates

Table 1 shows the cut flow of the analysis. After the trigger selection, each event is required to contain
a track with a transverse momentum greater than 10 GeV. This track must be matched either to a muon
reconstructed in the muon spectrometer or to a cluster in the tile calorimeter. The track is required to
have MIP-compatible energy depositions in the calorimeter. Such an event is referred to in the table
as a Candidate. Each event is required to contain at least one good primary vertex, to which at least
three tracks are associated. Only tracks in the central region (|η| < 1.7) are considered. This matches
the acceptance of the tile calorimeter. To ensure well measured kinematics, track quality requirements
are made: the track must have at least two hits in the pixel detector, at least six hits in the silicon-strip
Semiconductor Tracker, and at least six associated hits in the Transition Radiation Tracker (TRT). Jet
candidates are reconstructed using the anti-kt jet clustering algorithm [31, 32] with a distance parameter
of 0.4. In order to suppress backgrounds from jet production, the distance in η-φ space between the
candidate and any jet with ET ≥ 40 GeV must be greater than ∆R =

√
(∆η)2 + (∆φ)2 = 0.5. Finally,

the measured transverse momentum of the candidate must be greater than 50 GeV.

Table 1: Observed and expected event yields at different steps of the data selection procedure. The individual rows of the
table correspond to the stages in the cut flow as defined in the text. The rows denoted Mass preselection and Final selection
indicate the number of events having at least one candidate with a mass estimate from both subsystems and passing the
final mass cuts, respectively. These selections are defined in Section 5. In addition to data and background, predictions
from the signal simulations are shown. Predicted yields are scaled to the integrated luminosity of the data sample.

Cut level Data Background 300 GeV g̃ 500 GeV g̃ 600 GeV g̃ 200 GeV t̃ 200 GeV b̃

No cuts - - 2.13× 103 80.4 21.8 405 405
Trigger - - 616 25.6 6.96 109 108
Candidate 75466 68.0× 103 416 17.6 4.80 87.4 67.9
Vertex 75461 68.0× 103 416 17.6 4.80 87.4 67.9
|η| <1.7 64618 60.5× 103 364 15.7 4.32 75.2 56.8
Track quality 59872 58.1× 103 355 15.3 4.20 73.3 54.9
∆R > 0.5 49205 49.4× 103 349 15.1 4.13 72.7 54.5
pT > 50 GeV 5116 6.56× 103 330 14.5 3.95 68.9 50.0
Mass preselection 36 56.0 184 9.70 2.75 32.6 18.9
Final selection - - 173 9.17 2.62 30.6 17.5

After the selection, 5208 candidates in 5116 events are observed. Figure 1 shows the dE/dxPixel and
βTile distributions for these candidates together with background simulations. As can be seen, the βTile

measurements are centred around one. The width of the distribution, as determined by a Gaussian fit
around the bulk of the data, is ∼0.1. Reasonable agreement between data and the background simulations
is observed, although the latter calculations are not used in any quantitative way in the analysis. The
expected distributions for signal particles are overlaid and scaled to the luminosity of the data by their
production cross-section, illustrating the sensitivity of these observables to R-hadrons.

5. Mass reconstruction

For each candidate, the mass is estimated by dividing its momentum by βγ, determined either from
pixel detector ionisation or from the tile calorimeter time-of-flight. In the pixel detector, the following
simplified Bethe-Bloch equation gives a good description of the relation between the most probable value
(M dE

dx
) of dE/dxPixel and βγ in the range relevant to this analysis (0.2 < βγ < 1.5):

M dE
dx

(β) =
p1

βp3
ln(1 + (p2βγ)p5)− p4 (1)

To find β, and hence a mass estimate, this equation must be solved for β, identifying the measured
dE/dxPixel with M dE

dx
. This requires the dE/dxPixel value to be above that of a MIP. The parameters

p1–p5 in Equation 1 are determined from fits to SM particles with well-known masses and ionisation
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Figure 1: Distributions of dE/dxPixel (left) and βTile (right) in data after the transverse momentum selection pT > 50 GeV.
Spectra for simulated background processes are plotted for comparison. The uncertainty shown on the background is the
Monte Carlo statistical uncertainty.

properties, p, K and π[27], and provide a relative dE/dxPixel resolution of about 10% in the asymptotic
region (βγ > 1.5). To reduce the backgrounds further, the final selection requires that dE/dxPixel >
1.8 MeVg−1cm2 compared to dE/dxPixel ∼ 1.1 MeVg−1cm2 deposited by a MIP. In the tile calorimeter,
the β-values are required to be less than 1.

The pixel detector and the tile calorimeter provide independent measurements from which the mass
of the SMP candidate can be estimated. Making requirements on both mass estimates is a powerful
means to suppress the tails in the individual distributions arising from instrumental effects. In Figure 2
the estimated mass distributions based on dE/dxPixel and βTile are shown after the 50 GeV transverse
momentum cut of the event selection. In contrast to the other figures in this paper, the signal distributions
are stacked on top of the background to illustrate the total expected spectra for the signal+background
scenarios.
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Figure 2: Mass estimated by the pixel detector (left) and the tile calorimeter (right). To obtain a mass estimate, a cut of
dE/dxPixel > 1.1 MeVg−1cm2 is imposed for the pixel detector distribution. This is a looser cut than used in the analysis
itself. For the tile calorimeter, the requirement is that βTile < 1.

To establish signal regions for each mass hypothesis, the mean, µ, and Gaussian width, σ, of the mass
peak is determined for both the pixel detector and the tile calorimeter measurement. The signal region is
then defined to be the region above the fitted mean minus twice the width (i.e. mPixel > µPixel − 2σPixel

for the mass as estimated by the pixel detector and mTile > µTile−2σTile for the mass as estimated by the
tile calorimeter). The final signal region is defined by applying both of the individual mass requirements.
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6. Background estimation

Rather than relying on simulations to predict the tails of the dE/dxPixel and βTile distributions, a data-
driven method is used to estimate the background. No significant correlations between the measurements
of momentum, dE/dxPixel, and βTile are observed. This is exploited to estimate the amount of background
arising from instrumental effects. Estimates for the background distributions of the mass estimates are
obtained by combining random momentum values (after the kinematic cuts defined above) with random
measurements of dE/dxPixel and βTile. The sampling is performed from candidates passing the kinematic
cuts defined in Section 4.1 for the case of βTile, while dE/dxPixel is extracted from a sample fulfilling
10 < pT < 20 GeV.

The process is repeated many times to reduce fluctuations and the resulting estimates are normalised
to match the number of events in data. The resulting background estimates can be seen in Figure 3 for
the pixel detector (requiring dE/dxPixel > 1.8 MeVg−1cm2) and the tile calorimeter (requiring βTile < 1)
separately. As can be seen from the figures, there is a good overall agreement between the distribution
of candidates in data and the background estimate. The expected background at high mass is generally
small.
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Figure 3: Background estimates for the pixel detector (left) and the tile calorimeter (right). Signal samples are superimposed
on the background estimate. The total systematic uncertainty of the background estimate is indicated by the error band.

Combining the pixel detector and the tile calorimeter mass estimates as described in Section 5 fur-
ther reduces the background while retaining most of the expected signal. In contrast to the individual
background estimates shown in Figure 3, the combined background is obtained by combining one random
momentum value with random measurements of both dE/dxPixel and βTile. The agreement between the
distribution of candidates in data and the background estimate is good. This is seen in Table 2, which
contains the event yields in the signal regions defined in Section 5 for the gluino signal, for the estimated
background and for real data. The table also contains the means and the widths of the estimated mass
distributions, which are used to determine the signal regions, as described in Section 5. Using combined
data, there are no events containing a candidate with mass greater than 100 GeV. There are five candi-
dates observed for the 100 GeV mass hypothesis, for which the mass window extends to values less than
100 GeV.

7. Systematic uncertainties and checks

A number of sources of systematic uncertainties are investigated. This section describes uncertainties
arising due to the limited accuracy of theory calculations used in this work together with experimental
uncertainties affecting the signal efficiency and background estimate.

Uncertainties due to the limited accuracy of perturbative QCD calculations are studied in the fol-
lowing way. The production cross-section from Prospino is calculated using the sparticle mass as the
renormalisation scale with uncertainties estimated by varying the renormalisation and factorisation scales
upward and downward by a factor of two in accordance with Ref. [24]. This leads to a broadly mass-
independent uncertainty of ∼15% in the event yield. A variation of less than 5% is observed substituting
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Table 2: Expected number of signal and background events for the pixel detector and the tile calorimeter separately and
combined for gluino mass hypotheses between 100 and 700 GeV. The fitted means and widths of the estimated mass
distributions are shown on the left. To the right of the vertical line, the number of signal and estimated background events
are shown in the relevant signal regions, along with the number of events observed in data. Systematic uncertainties are
discussed in Section 7.

Nominal µPixel σPixel µTile σTile No. of signal cand. (g̃) Est. no. of bkg. cand. NData

mass (GeV) (GeV) (GeV) (GeV) (GeV) Pixel Tile Comb. Pixel Tile Comb. Comb.

100 107 10 109 19 15898 49300 13912 61 330 5.4 5
200 214 24 211 36 1417 2471 1235 19 61 0.87 0
300 324 40 315 56 202 304 173 6.5 17 0.22 0
400 425 67 415 75 43 57 37 3.4 7.2 0.082 0
500 533 94 513 106 11 13 9.2 1.82 4.4 0.044 0
600 641 125 624 145 3.1 3.5 2.6 1.08 3.2 0.028 0
700 727 149 714 168 0.99 1.07 0.84 0.74 2.1 0.018 0

the MSTW 2008 NLO PDF set [33] for CTEQ 6.6. Variations of scale parameters used in Pythia to
model higher-order radiation are also performed within the range allowed by data[4]. This leads to an
uncertainty of ∼10% in the signal efficiency.

A systematic shift in the scale of the missing transverse energy in the simulation of the signal would
lead to a change in trigger efficiency and hence signal acceptance. This uncertainty is estimated by varying
the missing transverse energy by the corresponding scale uncertainty[34]. The result is an effect of 7-13%
on the relative signal efficiency. Based on the difference between the trigger efficiency for data and the
simulation for events containing a W boson decaying muonically, a further 3-5% systematic uncertainty
is applied. Both of these effects depend on the mass of the signal sample, and the larger uncertainties
apply to the low-mass scenarios.

Uncertainties arising from track reconstruction are also studied. To account for differences in detector
alignment between the simulation and data, a smearing is applied to the track pT which describes the
performance observed for high-pT muons as a function of η and pT. Doubling the smearing has a
negligible effect on the predicted yields. Furthermore, to account for data/simulation differences in track
reconstruction efficiency, a 2% uncertainty on the signal yield is assumed [35].

Only calorimeter cells measuring an energy above a threshold of 500 MeV are used in the calculation of
βTile. To study the impact of this threshold on the efficiency of the measurement, the tile calorimeter cell
energy scale is varied by ±5% [36] leading to a small (≤ 1%) effect on the predicted yields of R-hadrons
which fall into the individual signal regions. The predicted cell time distributions are smeared to match
the data. To evaluate the sensitivity of the signal yield to this smearing, the smearing is applied twice,
and the impact is seen to be less than 1%.

To estimate the effects of an imperfect description of the dE/dxPixel resolution by the simulation,
individual values of dE/dxPixel are smeared according to a Gaussian function with width 5%[27]. Fur-
thermore, to study possible effects due to a global dE/dxPixel scale uncertainty, the scale is shifted by
±3%. These variations are motivated by observed differences between data and Monte Carlo simulations
and they change the predicted number of events passing the signal selections by less than 1%.

Adding the above errors in quadrature together with an 11% uncertainty from the luminosity measure-
ment [37], a total systematic uncertainty of 17-20% on the signal event yield is estimated, where the larger
uncertainty applies to the low-mass scenarios. The systematic uncertainty on the background estimate is
found to be 30%. This arises from contributing uncertainties in the dE/dxPixeland βTiledistributions (25%)
and the use of different methods to determine the absolute normalisation of the background prediction
(15%).

As a final cross-check of the consistency of the analysis, the TRT was used. The TRT is a straw-based
gas detector, and the time in which any signal exceeds the threshold is read out. This time provides an
estimate of continuous energy loss and is usable for particle identification [38]. The measurement is sim-
ilar to (but independent of) the pixel detector time-over-threshold measurement, from which dE/dxPixel

is based. No deviations from backgrounds expectations are observed, and the TRT thus provides an
additional confirmation that no signal was missed.
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8. Exclusion limits

Given an expected cross-section as calculated by Prospino and our computed efficiency, the expected
number of signal events as a function of mass is determined and a lower limit on the R-hadron mass using
the CLs method [39] is calculated. The results for the signal models defined in Section 2 are summarised
in Figure 4.
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Figure 4: Cross-section limits at 95% CL as a function of sparticle mass. Since five candidate events are observed for
the mass windows used for the 100 GeV mass hypotheses, the mass points between 100 and 200 GeV are connected with a
dotted line. This indicates that fluctuations in the excluded cross-section will occur. The mass limits quoted in the text are
inferred by comparing the cross-section limits with the model predictions. Systematic uncertainties from the choice of PDF
and the choice of renormalisation and factorisation scales are represented as a band in the cross-section curves. Previous
mass limits are indicated by shaded vertical lines for sbottom (ALEPH), stop (CDF) and gluino (CMS).

The observed 95% CL limits are 294 GeV for sbottom R-hadrons and 309 GeV for stop R-hadrons,
while the lower limit for the mass of a hadronising gluino is 586 GeV. These limits include the systematic
uncertainties on the signal cross-section and efficiency, as well as on the data-driven background estimate,
as described above. Evaluating the mass limits for gluino R-hadrons using the triple-Regge based model
and bag-model calculation of Ref. [23], gives 566 and 562 GeV respectively. The lower mass limits from
ATLAS are shown in Figure 4 and compared with earlier results from ALEPH [8] (sbottom) , CDF [11]
(stop), and CMS [9] (gluino). The ATLAS limits have a higher mass reach than those obtained from the
previous searches.

9. Summary

A search has been performed for slow-moving squark- (stop and sbottom) and gluino-based R-hadrons,
pair-produced in proton-proton collisions at 7 TeV centre-of-mass energy at the ATLAS detector at the
LHC. Candidate R-hadrons were sought which left a high transverse momentum track associated with
energy depositions in the calorimeter. Observables sensitive to R-hadron speed (ionisation energy loss
and time-of-flight) were used to suppress backgrounds and allow the reconstruction of the candidate mass.
The influence of the scattering of R-hadrons in matter on the search sensitivity was studied using a range
of phenomenological scattering models. At 95% confidence level the most conservative lower limits on
the masses of stable sbottoms, stops and gluinos are 294, 309, and 562 GeV, respectively. Each of these
limits are the most stringent to date.
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Y. Jiang32b, M. Jimenez Belenguer41, G. Jin32b, S. Jin32a, O. Jinnouchi157, M.D. Joergensen35,
D. Joffe39, L.G. Johansen13, M. Johansen146a,146b, K.E. Johansson146a, P. Johansson139, S. Johnert41,
K.A. Johns6, K. Jon-And146a,146b, G. Jones82, R.W.L. Jones71, T.W. Jones77, T.J. Jones73,
O. Jonsson29, C. Joram29, P.M. Jorge124a,b, J. Joseph14, X. Ju130, V. Juranek125, P. Jussel62,
V.V. Kabachenko128, S. Kabana16, M. Kaci167, A. Kaczmarska38, P. Kadlecik35, M. Kado115,
H. Kagan109, M. Kagan57, S. Kaiser99, E. Kajomovitz152, S. Kalinin174, L.V. Kalinovskaya65,
S. Kama39, N. Kanaya155, M. Kaneda155, T. Kanno157, V.A. Kantserov96, J. Kanzaki66, B. Kaplan175,
A. Kapliy30, J. Kaplon29, D. Kar43, M. Karagoz118, M. Karnevskiy41, K. Karr5, V. Kartvelishvili71,
A.N. Karyukhin128, L. Kashif172, A. Kasmi39, R.D. Kass109, A. Kastanas13, M. Kataoka4,
Y. Kataoka155, E. Katsoufis9, J. Katzy41, V. Kaushik6, K. Kawagoe67, T. Kawamoto155,
G. Kawamura81, M.S. Kayl105, V.A. Kazanin107, M.Y. Kazarinov65, S.I. Kazi86, J.R. Keates82,
R. Keeler169, R. Kehoe39, M. Keil54, G.D. Kekelidze65, M. Kelly82, J. Kennedy98, C.J. Kenney143,
M. Kenyon53, O. Kepka125, N. Kerschen29, B.P. Kerševan74, S. Kersten174, K. Kessoku155,
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74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 Department of Physics, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
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