
Analytical solutions for transient and steady state beam loading in
arbitrary traveling wave accelerating structures

A. Lunin and V. Yakovlev

Fermilab, P.O. Box 500, Batavia, Illinois 60510, USA

A. Grudiev

CERN, CH-1211 Geneva-23, Switzerland
(Received 15 December 2010; published 19 May 2011)

Analytical solutions are derived for both transient and steady state gradient distributions in the traveling

wave (TW) accelerating structures with arbitrary variation of parameters over the structure length. The

results of the unloaded and beam loaded cases are presented. Finally, the exact analytical shape of the rf

pulse waveform was found in order to apply the transient beam loading compensation scheme during the

structure filling time. The obtained theoretical formulas were cross-checked by direct numerical

simulations on the CLIC main linac accelerating structure and demonstrated a good agreement. The

proposed methods provide a fast and reliable tool for the initial stage of the TW structure analysis.
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I. INTRODUCTION

The steady state theory of beam loading in electron
linear accelerators was developed in the 1950s by a number
of authors both for constant impedance [1–3] and constant
gradient [4] accelerating structures. They considered the
equation for energy conservation in a volume between any
two cross sections; the power gained by the beam or lost in
the walls due to the Joule effect results in a reduction of the
power flow. Later on, transient behavior was studied fol-
lowing a similar approach, but in this case, in addition to
the power dissipated in the walls and gained by the beam,
the transient change in the energy stored in the volume
contributes to the power flow variation along the structure.
Again, only constant impedance [5–7] or constant gradient
[8,9] accelerating structures were considered.

However, traveling wave accelerating structures with
arbitrary (neither constant impedance nor constant gra-
dient) geometrical variations over the length are widely
used today in order to optimize the acceleration structure
and linac performance [10,11]. The relationships between
structure length, input, and average accelerating gradients
are obtained by solving the energy conservation equation
numerically. For the first time an analytical solution of the
gradient profile in a loaded arbitrary traveling wave (TW)
structure was recently proposed in [12] but for the steady
state regime only. The comprehensive numerical analysis
of an arbitrary TW structure including the effects of a

signal dispersion was recently published in [13] using the
circuit model and mode matching technique.
In this paper, generalized analytical solutions of the

gradient distribution in the TW accelerating structure
with an arbitrary variation of parameters over the structure
length are presented for both steady state and transient
regimes. It is based on the method suggested earlier by
one of the coauthors [14] and is similar to the classical
approach [1–9]. Finally, a simple analytical relation is
derived that allows the input power ramp needed to create,
at the end of the filling time, the field distribution inside the
TW structure that coincides to the loaded field distribution
in the presence of the beam to be determined. The compact
analytical formulas so obtained give us a better under-
standing of the physics of TW structures and provide a
tool for a fast preliminary structure optimization.
The following definitions are used throughout the paper:

(i) P—power flow through the structure cross section; (ii)
W�—stored energy per unit length; (iii) !—circular fre-
quency; (iv)Q�—quality factor; (v) G�—loaded accelerat-

ing gradient; (vi) ~G�—unloaded accelerating gradient;
(vii) I—beam current; (viii) vg

�—group velocity; (ix)

��—normalized shunt impedance, often called R=Q,
where R is the shunt impedance per unit length; and (x)
z—longitudinal coordinate. The symbol * denotes that
continuous parameters are averaged over the structure
period and represent the effective values of an individual
cell.
The following assumptions are used: (a) the structure is

perfectly matched at both ends and has no internal reflec-
tions; (b) all dispersion effects that limit field rise time:
tr � c=!vg, where c is the speed of light, are neglected;

(c) time separation between two neighboring bunches and
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time of flight of the beam through the structure are much
less than the filling time of the structure.

II. STEADY STATE REGIME

The basic traveling wave structure relations are

P ¼ Wvg (2.1)

W ¼ G2

!�
: (2.2)

Energy conservation including wall losses and the interac-
tion with the beam gives

dP

dz
¼ �W!

Q
�GI: (2.3)

Using Eq. (2.2) in the derivation of the power flow Eq. (2.1)
yields

dP

dz
¼ W

dvg

dz
þ vg

dW

dz

¼ G2

!�

dvg

dz
þ vg

!

�
2G

�

dG

dz
�G2

�2

d�

dz

�
: (2.4)

Substituting Eq. (2.4) into Eq. (2.3) and using Eq. (2.2)
results in the first order nonhomogeneous differential
equation with variable coefficients:

dG

dz
¼ �GðzÞ�ðzÞ � �ðzÞ; (2.5)

where �ðzÞ ¼ 1
2 ½ 1vg

dvg

dz � 1
�

d�
dz þ !

vgQ
�, �ðzÞ ¼ I !�

2vg
. The

solution of the nonhomogeneous differential Eq. (2.5),
GðzÞ, can be presented as a product of the solution of the

homogeneous equation ~GðzÞ and a function CðzÞ:
GðzÞ ¼ ~GðzÞ � CðzÞ; (2.6)

TABLE I. Parameters of the CLIC main linac accelerating structure.

Average loaded accelerating gradient 100 MV=m
Frequency 12 GHz

rf phase advance per cell 2�=3 rad
First, middle, and last cell group velocity 1.65, 1.2, 0.83 % of c

First, middle, and last cell Q factor (Cu) 5536, 5635, 5738

First, middle, and last cell normalized shunt impedance 14 587, 16 220, 17 954 �=m
Number of regular cells 26

Structure length including couplers 230 mm

Bunch spacing 0.5 ns

Bunch population 3:7� 109

Number of bunches in the train 312

Rise time 22 ns

Filling time 67 ns

Peak input power 61.3 MW

FIG. 1. Individual cell geometry of the CLIC main linac accelerating structure with strong waveguide high order modes damping (a),
HFSS simulations of the surface electric (b), and magnetic (c) fields are shown.
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where

d ~G

dz
¼ � ~GðzÞ�ðzÞ: (2.7)

Substituting Eq. (2.6) into Eq. (2.5) and using Eq. (2.7)
yields

dCðzÞ
dz

¼ ��ðzÞ
~GðzÞ : (2.8)

Integrating Eq. (2.8) gives

CðzÞ ¼ �
Z z

0

�ðz0Þ
~Gðz0Þ dz

0 þ C1;

where the constant C1 ¼ 1 [taking into account the initial

condition Gð0Þ ¼ ~Gð0Þ] and z0 is a local integration
variable.

Therefore the general solution of Eq. (2.5) is

GðzÞ ¼ ~GðzÞ
�
�
Z z

0

�ðz0Þ
~Gðz0Þdz

0 þ 1

�
: (2.9)

The solution for the homogeneous Eq. (2.7) is

~GðzÞ ¼ G0e
�
R

z

0
�ðz0Þdz0 ; (2.10)

where G0 ¼ Gð0Þ is a gradient at the beginning of accel-
erating structure and can be found from initial conditions:

G0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�ð0ÞP0

vgð0Þ

s
; (2.11)

where P0 is input rf power.
The integral of function �ðzÞ can be simplified using

analytical solutions:
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FIG. 2. The HFSS simulation of the full CLIC accelerating structure. Electric field profile (a), input (S11, red curve) and output (S22,
blue curve) couplers matching (b), phase advance per cell versus frequency (c), and internal reflections (standing wave ratio) in the
structure (d) are shown. The phase advance per cell is equal to 120� and both couplers are matched better than �30 dB level at
operating frequency of 11.994 GHz.
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Z z

0
�ðz0Þdz0 ¼ 1

2

�
ln

�
vgðzÞ
vgð0Þ

�
� ln

�
�ðzÞ
�ð0Þ

�

þ
Z z

0

!

vgðz0ÞQðz0Þ dz
0
�
: (2.12)

Finally we can rewrite Eq. (2.10) as

~GðzÞ ¼ G0

ffiffiffiffiffiffiffiffiffiffiffiffi
vgð0Þ
vgðzÞ

vuut ffiffiffiffiffiffiffiffiffiffi
�ðzÞ
�ð0Þ

s
e�ð1=2Þ

R
z

0
ð!=vgðz0ÞQðz0ÞÞdz0

¼ G0gðzÞ: (2.13)

Equations (2.13) and (2.9) give us an expression for the
loaded gradient:

GðzÞ ¼ ~GðzÞ
�
1�

Z z

0

I
~Gðz0Þ

!�ðz0Þ
2vgðz0Þdz

0
�

¼ G0gðzÞ � gðzÞ
Z z

0

I

gðz0Þ
!�ðz0Þ
2vgðz0Þdz

0: (2.14)

The first term on the right-hand side of Eq. (2.14) is the
solution of the homogeneous equation for the unloaded
gradient obtained above in Eq. (2.13). The second term is
the so-called beam induced gradient which is the
difference between the loaded and unloaded gradient
distributions.

Parameters of the CLIC main linac accelerating struc-
ture are summarized in Table I [11]. They have been used
to compare an accurate solution for an arbitrary variation
of the TW structure parameters given by Eq. (2.14) to an
approximate solution given in [4], where it has been as-
sumed that the shunt impedance and Q factor are constant
in the range over which the group velocity changes and that
they are both equal to their respective averages over the
structure.

The unloaded gradient has been calculated for a 3D
model of the structure using ANSOFT HFSS [15], a
frequency-domain finite-element code which takes into
account internal reflections [11]. First of all, the parameters
of individual cells were calculated for the given phase
advance, shunt impedance, group velocity, and maximum
EM-field strength on the surface. The result of individual
cell optimization is shown in Fig. 1. Next, the input and
output rf couplers were designed in order to match the TW
structure with feeding waveguide and rf loads. The detailed
procedure of rf coupler design using ANSOFT HFSS code is
described in [16]. After that, we made the simulation of full
CLIC main linac accelerating structure and verified rf
phase advance per cell and internal reflections using the
well-known ‘‘Kroll’s’’ method [17] (see Fig. 2). Finally, we
derived the secondary values (stored energy and rf power
flow per cell) necessary for the unloaded gradient
calculation.

Both the loaded and unloaded gradients are shown in
Fig. 3 for an input rf power of 61.3 MWwhich corresponds
to an average loaded gradient of 100 MV=m. There is

clearly a very good agreement between the accurate ana-
lytical solution and the numerical simulation. In contrast,
the approximate solution is quite different from the accu-
rate solution due mainly to a significant (� 30%) variation
of the shunt impedance along the structure, see Table I.

III. TRANSIENT REGIME

The transient regime can also be derived analytically.
The instantaneous energy conservation is given by

@W

@t
¼ �dP

dz
�W!

Q
�GI: (3.1)

Substituting Eqs. (2.2) and (2.4) into Eq. (3.1) yields

@G

@t
¼�G

2

dvg

dz
�vg

dG

dz
þvgG

2�

d�

dz
�!G

2Q
�!�

2
I: (3.2)

We assume the following initial conditions:

Gð0;tÞ¼G0ðtÞ; at z¼0 Gðz;0Þ¼0; at t¼0: (3.3)

Using the Laplace transformation of a function GðtÞ,

ĜðpÞ¼LfGðtÞg¼
Z 1

0
e�ptGðtÞdt;

t	0; its differentiation property:L

�
dG

dt

�
¼pĜ�Gðz;0Þ;

and taking into account Eq. (3.3) we can write Eq. (3.2) as
follows:

pĜ¼�Ĝ

2

dvg

dz
�vg

dĜ

dz
þvgĜ

2�

d�

dz
�!Ĝ

2Q
�!�

2
Î: (3.4)
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FIG. 3. Loaded (red) and unloaded (blue) gradients calculated
accurately (solid) and approximately (dashed) for the CLIC main
linac accelerating structure. In blue circles, the unloaded gra-
dient calculated numerically is shown.
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First, we consider the unloaded case (I ¼ 0). In this case
Eq. (3.4) becomes a homogeneous differential equation:

d ~̂G

dz
¼ � ~̂Gðz; pÞ�̂ðz; pÞ; (3.5)

where �̂ðz; pÞ ¼ 1
2 ½ 1vg

dvg

dz � 1
�

d�
dz þ !

vgQ
þ 2p

vg
�. The solution

of Eq. (3.5), obtained in a similar manner to the solution of
Eq. (2.7), is

~̂Gðz; pÞ ¼ ~̂Gð0; pÞe�
R

z

0
�̂ðz0;pÞdz0

¼ ~̂Gð0; pÞgðzÞe�p
R

z

0
½dz0=vgðz0Þ�; (3.6)

where gðzÞ is defined in Eq. (2.13). The time-domain
solution of Eq. (3.6) is obtained by applying the inverse
Laplace transformation and its time shifting property:
L�1fFðpÞe�p�g ¼ fðt� �ÞHðt� �Þ, where Hðt� �Þ is
the Heaviside step function and

�ðzÞ ¼
Z z

0

dz0

vgðz0Þ (3.7)

is the signal time delay. Thus, the distribution of the un-
loaded gradient in time domain along the structure is

~Gðz; tÞ ¼ G0½t� �ðzÞ�gðzÞH½t� �ðzÞ�; (3.8)

or taking into account Eqs. (2.11) and (2.13) it can be
expressed as a function of the input rf power:

~Gðz;tÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0½t��ðzÞ�

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
!�ðzÞ
vgðzÞ

s
e�ð1=2Þ

R
z

0
½!=vgðz0ÞQðz0Þ�dz0

�H½t��ðzÞ�: (3.9)

The solution of nonhomogeneous Eq. (3.4) is obtained in a
similar manner to the solution of Eq. (2.5) as a product of

the solution to the homogeneous equation ~̂Gðz; pÞ and a

function Ĉðz; pÞ:
Ĝðz; pÞ ¼ ~̂Gðz; pÞ � Ĉðz; pÞ: (3.10)

Then Eq. (3.4) becomes

dĜ

dz
¼d ~̂G

dz
ĈþdĈ

dz
~̂G¼�Ĝðz;pÞ�̂ðz;pÞ� �̂ðz;pÞ; (3.11)

where �̂ðz; pÞ ¼ Î !�
2vg

.

Substituting Eqs. (3.5) and (3.10) into Eq. (3.11) yields

~̂G
dĈ

dz
¼ ��̂ðz; pÞ (3.12)

and furthermore using Eqs. (3.6) and (3.7),

~̂Gð0; pÞgðzÞe�p�ðzÞ dĈ
dz

¼ ��̂ðz; pÞ: (3.13)

The solution of Eq. (3.13) can be obtained by integration in
the form

~̂Gð0;pÞĈðz;pÞ¼�
Z z

0

�̂ðz0;pÞ
gðz0Þ ep�ðz0Þdz0þĈ1ðpÞ; (3.14)

where Ĉ1ðpÞ ¼ ~̂Gð0; pÞ [taking into account the initial

condition Ĝð0; pÞ ¼ ~̂Gð0; pÞ]. Note, that gðzÞ> 0.
Finally, the general solution of Eq. (3.4) is derived using
Eqs. (3.10) and (3.14):

Ĝðz;pÞ¼ ~̂Gð0;pÞĈðz;pÞgðzÞe�p�ðzÞ

¼
�
~̂Gð0;pÞ�

Z z

0

�̂ðz0;pÞ
gðz0Þ ep�ðz0Þdz0

�
gðzÞe�p�ðzÞ

¼ ~̂Gðz;pÞ�gðzÞ
Z z

0

�̂ðz0;pÞ
gðz0Þ e�p½�ðzÞ��ðz0Þ�dz0: (3.15)
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FIG. 4. The instantaneous unloaded (blue) and loaded (red)
gradient distributions along the structure at different moments of
time during the transient related to structure filling (a) and to the
beam injection (b). The steady state solutions are shown as well
(solid lines).
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Thus the time-dependent solution of Eq. (3.1) is obtained
by applying the inverse Laplace transform to Eq. (3.15).
Here again the time shifting property has been used:

Gðz;tÞ¼G0½t��ðzÞ�gðzÞH½t��ðzÞ�

�gðzÞ
Z z

0

I½t��ðzÞþ�ðz0Þ�H½t��ðzÞþ�ðz0Þ�
gðz0Þ

�!�ðz0Þ
2vgðz0Þdz

0; (3.16)

where �ðzÞ is a function of the coordinate z and given by
Eq. (3.7).

The first term on the right-hand side of Eq. (3.16) is the
solution of the homogeneous equation for the unloaded
gradient obtained above in Eq. (3.8) or Eq. (3.9) in terms of
the input power. The second term is the so-called beam
induced gradient which is the difference between the
loaded and unloaded gradient distributions.

For the CLIC main linac accelerating structure with the
parameters from Table I, the time-dependent solution given
by Eq. (3.16) during the transient related to structure filling
and to beam injection is illustrated in Figs. 4(a) and 4(b),
respectively. In Fig. 5, the corresponding input power and
beam-current time dependences are shown together with
the unloaded, loaded, and beam voltages defined as

VðtÞ ¼
Z L

0
Gðz; tÞdz; ~VðtÞ ¼

Z L

0

~Gðz; tÞdz;
VbðtÞ ¼ VðtÞ � ~VðtÞ;

(3.17)

respectively, where L is the structure length. In order to
mitigate unwanted dispersion effects the signal front width
is limited by a slow amplitude rise, with the rise time
tr ¼ 22 ns � c=!vg. The sum of the signal rise time tr

and the structure filling time tf ¼ �ðLÞ ¼ 66:7 ns form the

overall time of 89 ns corresponding to a transient of a
cavity excitation. The total beam pulse length tb is
312� 0:5 ¼ 156 ns and the beam current I ¼ eNefb ¼
1:6� 10�19 � 3:72� 109=ð0:5� 10�9Þ is 1.2 A [11].
A transient change in the loaded voltage just after the

beam injection causes energy spread along a multibunch
beam train. One possible method of transient beam loading
compensation in TW structures is presented in the next
section.

IV. COMPENSATION OF THE TRANSIENT
BEAM LOADING

The idea of transient beam loading compensation was
proposed in 1993 at SLAC (USA) [18], where a linear
ramp of the input rf amplitude has been applied to com-
pensate the bunch-to-bunch energy variation to first order.
Later a sophisticated numerical algorithm for beam load-
ing compensation was developed in the framework of the
Next Linear Collider project in order to calculate the
precise profile of the rf pulse wavefront [19]. Recently,
the effectiveness of this method of transient beam loading
compensation has been experimentally verified at KEK
(Japan) [20,21].
In this paper, the exact modification of the input power

during a filling time tf needed to set the gradient distribu-

tion at the beam injection time equal to the steady state
loaded gradient solution GðzÞ is calculated. Thus, the
loaded voltage remains flat during the time when the
beam is on because the transient related to the beam
injection is fully compensated by the transient of the cavity
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FIG. 5. The time dependence of the input rf power (blue) with
a rise time of 22 ns, beam current (green), and the corresponding
unloaded (black), loaded (red), and beam (light blue) voltages
are shown.
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unloaded, loaded, and beam voltages are shown in black, red,
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excitation itself (at least in the framework of the applied
analytical model).

Based on Eq. (3.8), the instantaneous gradient distribu-
tion at the moment of injection t ¼ tf is

Gðz; tfÞ ¼ ~Gðz; tfÞ ¼ G0½tf � �ðzÞ�gðzÞ: (4.1)

At the same time, the steady state beam loaded solution is
expressed by (2.14). Equating Eq. (4.1) and Eq. (2.14), the
required time dependence for the input gradient G0ðtÞ
during the filling time is obtained:

G0½tf��ðzÞ�gðzÞ¼G0ðtfÞgðzÞ�gðzÞ
Z z

0

I

gðz0Þ
!�ðz0Þ
2vgðz0Þdz

0;

(4.2)

where G0ðtfÞ is the steady state value of the input gradient

after injection. The input gradient in Eq. (4.2) indirectly
depends on time. Introducing the function zðtÞ as a solution
of the following integral equation,

tðzÞ ¼
Z L

z

dz0

vgðz0Þ ; (4.3)

Eq. (4.2) becomes an explicit function of time:

G0ðtÞ ¼ G0ðtfÞ �
Z zðtÞ

0

I

gðz0Þ
!�ðz0Þ
2vgðz0Þ dz

0: (4.4)

An expression for the input rf power is derived using
Eq. (2.11):

P0ðtÞ¼P0ðtfÞ
2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vgð0Þ

!�ð0ÞP0ðtfÞ

vuut

�
Z zðtÞ

0

I

gðz0Þ
!�ðz0Þ
2vgðz0Þdz

0
3
52

; (4.5)

where P0ðtfÞ is the steady state value of the input rf power

after injection.
The solution of Eq. (4.5) is shown in Fig. 6 (blue)

together with the beam current (green) injected exactly at
the end of the ramp and the corresponding unloaded
(black), loaded (red), and beam (light blue) voltages. The
gradient distribution at different moments of time is pre-
sented for the compensated case in Figs. 7(a) and 7(b) for
the structure filling transient and the beam injection tran-
sient, respectively.

V. SUMMARY

Analytical expressions for unloaded and loaded gradient
distributions in traveling wave structures with arbitrary
variation of parameters were derived in steady state and
in transient. They were applied to the case of the CLIC
main linac accelerating structure. The analytical solution
agrees very well with the numerical solution obtained
using finite-element code. On the other hand, it differs
from the approximate solution obtained using expressions
derived earlier in [4]. Finally, the exact analytical solution
was found for the wavefront of input rf pulse which theo-
retically provides exact compensation of the beam loading
effect. The derived analytical formulas are very useful
during the preliminary stages of structure design and later
for structure efficiency optimization.
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FIG. 7. The instantaneous unloaded gradient distribution along
the structure at different moments of time is presented in (a).
Special correction to the input rf pulse was applied (see Fig. 6).
In (b), the instantaneous unloaded gradient at different moments
of time after beam injection is shown in blue. Solid lines
represent the steady state distributions for loaded (red) and
unloaded (blue) gradients. The beam injection time is 89 ns.

ANALYTICAL SOLUTIONS FOR TRANSIENT AND STEADY . . . Phys. Rev. ST Accel. Beams 14, 052001 (2011)

052001-7



ACKNOWLEDGMENTS

The authors are thankful toW.Wuensch and N. Shipman
for carefully reading the manuscript.

[1] K. Johnsen, Proc. Phys. Soc. London Sect. B 64, 1062
(1951).

[2] G. Saxon, Proc. Phys. Soc. London Sect. B 67, 705 (1954).
[3] R. B. Neal, J. Appl. Phys. 29, 1019 (1958); W.W. Hansen

Laboratories, M. L. Report No. 379, Stanford, 1957.
[4] R. B. Neal, W.W. Hansen Laboratories, M. L. Report

No. 513, Stanford, 1958.
[5] R. B. Neal, M. L. Report No. 388, 1957.
[6] J. E. Leiss, NBS Internal Report 1958.
[7] J. E. Leiss, Beam Loading and Transient Behavior in

Travelling Wave Electron Linear Accelerators, in Linear
Accelerators, edited by A. Septier and P.M. Lapostolle
(North-Holland Publishing Company, Amsterdam, 1969).

[8] L. Burnod, LAL Report No. 17, Orsay, 1961.
[9] J.W. Wang, Ph.D. dissertation, Stanford University, 1989

[Report No. SLAC-339, 1989].
[10] R. H. Miller et al., in Proceedings of the XVIII

International Linac Conference (LINAC96) (CERN,
Geneva, Switzerland, 1996).

[11] A. Grudiev and W. Wuensch, in Proceedings of the XXV
Linear Accelerator Conference (LINAC10) (JACoW,
2010), MOP068, http://www.jacow.org.

[12] G. Guignard and J. Hagel, Phys. Rev. ST Accel. Beams 3,
042001 (2000).

[13] R.M. Jones, V. A. Dolgashev, and J.W. Wang, Phys. Rev.
ST Accel. Beams 12, 051001 (2009).

[14] M.M. Karliner, O.A. Nezhevenko, B.M. Fomel, and V. P.
Yakovlev, Report No. INP 86-146, 1986 (in Russian).

[15] ANSOFT HFSS, www.ansoft.com.
[16] A. Lounine and T. Higo, in Proceedings of the 14th

Symposium on Accelerator Science and Technology
(National Laboratory for High Energy Physics (KEK),
Tsukuba, Japan, 2003).

[17] N.M. Kroll et al., in Proceedings of the 20th International
Linac Conference, Monterey, CA, 2000 (SLAC, Menlo
Park, CA, 2000).

[18] K. A. Thompson and R.D. Ruth, in Proceedings of the
Particle Accelerator Conference, Washington, DC, 1993
(IEEE, New York, 1993).

[19] C. Nantista and C. Adolphsen, SLAC NLC-Note Report
No. 25, 1997.

[20] M. Satoh et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 538, 116 (2005).

[21] M. Satoh et al., Phys. Rev. ST Accel. Beams 12, 013501
(2009).

A. LUNIN, V. YAKOVLEV, AND A. GRUDIEV Phys. Rev. ST Accel. Beams 14, 052001 (2011)

052001-8

http://dx.doi.org/10.1088/0370-1301/64/12/306
http://dx.doi.org/10.1088/0370-1301/64/12/306
http://dx.doi.org/10.1088/0370-1301/67/9/306
http://dx.doi.org/10.1063/1.1723355
http://www.jacow.org
http://dx.doi.org/10.1103/PhysRevSTAB.3.042001
http://dx.doi.org/10.1103/PhysRevSTAB.3.042001
http://dx.doi.org/10.1103/PhysRevSTAB.12.051001
http://dx.doi.org/10.1103/PhysRevSTAB.12.051001
www.ansoft.com
http://dx.doi.org/10.1016/j.nima.2004.08.124
http://dx.doi.org/10.1016/j.nima.2004.08.124
http://dx.doi.org/10.1103/PhysRevSTAB.12.013501
http://dx.doi.org/10.1103/PhysRevSTAB.12.013501

