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Abstract 
Analytical solutions are derived for transient and steady state gradient distributions in the 
travelling wave accelerating structures with arbitrary variation of parameters over the structure 
length. The results of both the unloaded and beam loaded cases are presented. 
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1. Introduction 
The steady state theory of beam loading in electron linear accelerators was developed in 50-th 

by a number of authors both for constant impedance [1,2,3] and constant gradient [4] accelerating 
structures. They considered equation for energy conservation in a volume between any two cross 
sections: the power gain by the beam or power lost in the walls due to Joule effect result in 
reduction of the power flow. Later on, transient behavior was studied following similar approach, 
but in this case, in addition to the power dissipated in the walls and gained by the beam, transient 
change in the energy stored in the volume contributes to the power flow variation along the 
structure. Again only constant impedance [5,6,7] or constant gradient [8,9] accelerating structures 
were considered.  

On the other hand, traveling wave accelerating structures with arbitrary (neither constant 
impedance nor constant gradient) geometrical variations over the length are widely used today in 
order to optimize the structure and linac performance [10,11].  The relationships between 
structure length, input and average accelerating gradients are obtained numerically solving the 
energy conservation equation. In this paper, generalized analytical solutions for the steady state 
and transient gradient distribution in the traveling wave accelerating structure with arbitrary 
variation of parameters over the structure length are presented.  It is based on the method 
suggested earlier by one of the coauthors [12] and is similar to the classical approach [1-9].   

The following definitions are used throughout the paper: 
P  –  Power flow throw  the structure cross section 
W * –  Stored energy per unit of length 
ω  –  Circular frequency 
Q *  –  Quality factor  
G
~

* –  Loaded accelerating gradient  
G *  –  Unloaded accelerating gradient 
I  –  Beam current 

gv *  –  Group velocity 
ρ *  –  Normalized shunt impedance, often called QR , where R  is the shunt impedance per 
unit of length 
z  –  Longitudinal coordinate  
where * denotes that continuous parameters are averaged over the structure period and represent 
the effective values at individual cell. 
The following assumptions are used: a) the structure is perfectly matched at both ends and has no 
internal reflections, b) all dispersion effects that limit field rise time: gr vct ω>> , where  is the 
speed of light, are neglected, c) time of flight of the beam through the structure is much less than 
the filling time of the structure. 

c

 
2. Steady State Regime 
The basic traveling wave structure relations are: 

gWvP =            (2.1) 

ωρ

2GW =            (2.2) 

Energy conservation including wall losses and the interaction with the beam gives: 
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Using Eq. (2.2) in the derivation of the power flow Eq. (2.1) yields: 
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Substituting Eq. (2.4) to Eq. (2.3) and using Eq. (2.2) results in the first order non-homogeneous 
differential equation with variable coefficients: 
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differential Eq. (2.5) can be presented as a product of the solution of the homogeneous 
equation 
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Substitution Eq. (2.6) to Eq. (2.5) and using Eq. (2.7) yields: 
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Integrating Eq. (2.8) gives: 
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Therefore the general solution of Eq. (2.5) is: 
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The solution for the homogeneous Eq. (2.7) is: 
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where  is a gradient at the beginning of accelerating structure and can be found from 
initial conditions : 
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where is input RF power. 0P
The integral of function )(zα can be simplified using analytical solutions: 
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Finally we can rewrite Eq. (2.10) as: 
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Eqs. (2.13) and (2.9) give us expression for the loaded gradient: 
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Table 1: Parameters of the CLIC main linac accelerating structure [10]. 
 First cell Middle cell Last cell 

cvg  [%] 1.65 1.2 0.83 
ρ  [Ω/m] 14587        16220 17954 
Q 5536                 5635 5738 

 
The group velocity, normalized shunt impedance and quality factor in the first, middle and last 
cells of the CLIC main linac accelerating structure are summarized in Table 1 [11]. These 
parameters have been used to compare accurate solution for arbitrary variation of the structure 
parameters given by Eq. (2.14) and approximate solution given in [4] for a structure with 
constant Q-factor and normalized shunt impedance which are taken as for the middle cell but 
with linear varying group velocity. Both the loaded and unloaded gradients are shown in Fig. 1 
for input RF power of 63.1 MW which corresponds to the average loaded gradient of 100 MV/m. 
In addition, the unloaded gradient has been calculated for 3D model of the structure using Ansoft 
HFSS [13] frequency-domain finite-element code which takes into account internal reflections. 
There is clearly a very good agreement between the accurate analytical solution and the 
numerical simulation. On the contrary, the approximate solution is quite different from the 
accurate solution mainly due to significant (~30%) variation of the shunt impedance along the 
structure, see Table 1.  
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Fig. 1 Loaded (red) and unloaded (blue) gradients calculated accurately (solid) and approximately 
(dashed) for CLIC main linac accelerating structure. In blue circles, the unloaded gradient 
calculated numerically is shown. 



 
3.  Transient Regime 
The transient regime can also be derived analytically. The instantaneous energy conservation is 
given by: 
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Substituting Eqs. (2.1), (2.2) and (2.4) into Eq. (3.1) yields: 
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We assume the following initial conditions: 
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Using Laplace transformation of a function : , its 

differentiation property:
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First, we consider unloaded case ( ). Then Eq. (3.4) becomes homogeneous differential 
equation: 
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where is defined in Eq. (2.13). The time-domain solution of Eq. (3.7) is obtained by 
applying inverse Laplace transformation and its time shifting property: 
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is the signal time delay. Thus, the distribution of the unloaded gradient in time-domain along the 
structure is: 
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 or taking into account Eqs. (2.11) and (2.13) it can be expressed as a function of the input RF 
power:  
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The solution of non-homogeneous Eq. (3.4) is obtained similar to the solution of Eq. (2.5) as 
product of solution of homogeneous equation ),(~̂ pzG  and a function : ),(ˆ pzC
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Then Eq. (3.4) becomes   
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Substituting Eqs. (3.5) and (3.11) into Eq. (3.12) yields: 

),(ˆˆ~̂ pz
dz
CdG β−=           (3.13)

 
and furthermore using Eqs. (3.7) and (3.8) 
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Solution of Eq. (3.14) can be obtained by integration in the form:
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Thus the time-dependent solution of Eq. (3.1) is obtained by applying inverse Laplace transform 
to Eq. (3.16). Here again the time shifting property has been used:  
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where, )(zτ  is the function of coordinate given by Eq. (3.8). 
The first term on the right hand side of Eq. (3.17) is the solution of the homogeneous equation for 
the unloaded gradient obtained above Eq. (3.9) or Eq. (3.10) in terms of the input power. The 
second term is the so-called beam induced gradient which is the difference between the loaded 
and unloaded gradient distributions.  



The time-dependent solution given by Eq. (3.17) during the transient related to structure filling 
and to beam injection is illustrated in Fig. 2 (a) and (b), respectively, for the CLIC main linac 
accelerating structure with the parameters from the Table 1. In Fig. 3, the corresponding input 
power and beam current time dependences are shown together with the unloaded, loaded and 
beam voltages defined as: 
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Fig. 2 The instantaneous unloaded (blue) and loaded (red) gradient distributions along the 
structure at different moments of time during the transient related to structure filling (a) and to 
the beam injection (b). The steady state solutions are shown as well (solid lines). 
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Fig. 3 The time dependence of the input RF power (blue) with the rise time of 21 ns, beam 
current (green) and the corresponding unloaded (black), loaded (red) and beam (light blue) 
voltages are shown. 
 
The change in the loaded voltage right after injection due to the transient beam loading of the 
structure causes energy spread along the beam. One of the possible methods of compensation of 
this transient beam loading effect is presented in the next section. 
 
4.  Compensation of the transient beam loading 

The idea of the transient beam loading compensation is similar to the one used in [14] where 
linear ramp of the input RF amplitude has been applied to compensate the bunch-to-bunch energy 
variation to first order. In this paper, exact modification of the input power during a feeling time  is calculated in order to bring the gradient distribution at injection equal to the steady-state 
loaded gradient solution . Based on Eq. (3.9) the instantaneous gradient distribution at the 
moment of injection t is: 
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At the same time, the steady state beam loaded solution is expressed by (2.14).  Equating Eq. 
(4.1) and Eq. (2.14) the required time dependence for the input gradient  during the feeling 
time is obtained: 
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where  is the steady-state value of the input gradient after injection. The input gradient in 
Eq. (4.2) indirectly depends on time. Introducing function  as a solution of the following 
integral equation:
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Eq. (4.2) becomes an explicit function of time: 
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Expression for the input RF power is derived using Eq. (2.11): 
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where  is the steady-state value of the input RF power after injection. The solution of Eq. 
(4.5) is shown in Fig. 4 (blue) together with the beam current (green) injected exactly at the end 
of the ramp and the corresponding unloaded (black), loaded (red) and beam (light blue) voltages. 
The loaded voltage is flat during the time when the beam is present in the structure and the 
transient related to the beam injection is fully compensated, at least in the framework of this 
analytical model (see introduction for the assumptions made). The gradient distribution at 
different moments of time is presented for the compensated case in Fig. 5 (a) and (b) for the 
structure filling transient and the beam injection transient, respectively. 
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Fig. 4 The input RF pulse profile with 21 ns rise time and ramp-up during the feeling time for the 
transient beam loading compensation is shown in blue. Beam current injected exactly at the end 
of the ramp is shown in green. The corresponding unloaded, loaded and beam voltages are shown 
in black, red and light blue, respectively.
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Fig. 5 The instantaneous unloaded gradient distribution along the structure at different moments 
of time during the structure filling is presented in (a). Special correction to the input RF pulse 
was applied (see Fig.4). In (b), the instantaneous unloaded gradient at different time moments 
after beam injection is shown in blue. Solid lines represent the steady state distributions for 
loaded (red) and unloaded (blue) gradients. Beam injection time is 89 ns. 
 
Summary 
Analytical expressions for unloaded and loaded gradient distributions in travelling wave 
structures with arbitrary variation of parameters were derived in steady state and in transient. 
They were applied to the case of the CLIC main linac accelerating structure. The obtained 
analytical solution agrees very well with the numerical solution obtained using finite-element 
code. On the other hand, it differs from the approximate solution obtained using expressions 
derived earlier in [4]. 
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